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Abstract

Consider a platform that wants to learn a per-
sonalized policy for each user, but the platform
faces the risk of a user abandoning the platform if
they are dissatisfied with the actions of the plat-
form. For example, a platform is interested in
personalizing the number of newsletters it sends,
but faces the risk that the user unsubscribes for-
ever. We propose a general thresholded learn-
ing model for scenarios like this, and discuss
the structure of optimal policies. We describe
salient features of optimal personalization algo-
rithms and how feedback the platform receives
impacts the results. Furthermore, we investigate
how the platform can efficiently learn the hetero-
geneity across users by interacting with a popu-
lation and provide performance guarantees.

1. Introduction
Machine learning algorithms are increasingly intermediat-
ing interactions between platforms and their users. As a re-
sult, users’ interaction with the algorithms will impact op-
timal learning strategies; we investigate this consequence
in our work. In the setting we consider, a platform wants to
personalize service to each user. The distinctive feature in
this work is that the platform faces the risk of a user aban-
doning the platform if they are dissatisfied with the actions
of the platform. Algorithms designed by the platform thus
need to be careful to avoid losing users.

There are many examples of such settings. In the near
future, smart energy meters will be able to throttle con-
sumers’ energy consumption to increase efficiency of the
power grid during peak demand, e.g., by raising or low-
ering the level of air conditioning. This can lead to cost
savings for both utility companies and consumers. How-
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ever, if the utility company is too aggressive in its throt-
tling of energy, a user might abandon the program. Due
to heterogeneity in housing, appliances and preferences of
customers, it is important that utility companies learn per-
sonalized strategies for each consumer.

Content creators (e.g., news sites, blogs, etc.) face a similar
problem with e-mail dissemination. There is value in send-
ing more e-mails, but each e-mail also risks the recipient
unsubscribing, taking away any opportunity of the creator
to interact with the user in the future. Yet another example
is that of mobile app notifications. These can be used to
improve user engagement and experience. However if the
platform sends too many notifications, an upset user might
turn off notifications from the application.

In all of the above scenarios, we face a decision problem
where “more is better;” however, there is a threshold be-
yond which the user abandons and no further rewards are
gained. This work focuses on developing insight into the
structure of optimal learning strategies in such settings.
We are particularly interested in understanding when such
strategies take on a “simple” structure, as we elaborate be-
low.

In Section 2, we introduce a benchmark model of learning
with abandonment. In the initial model we consider, a plat-
form interacts with a single user over time. The user has a
threshold θ drawn from a distribution F , and at each time
t = 0, 1, 2, . . . the platform chooses an action xt. If xt ever
exceeds θ, the user abandons; otherwise, the user stays, and
the platform earns some reward dependent on xt.

We first consider the case where the distribution F and the
reward function are known (say, from prior estimation),1

and the challenge is finding an optimal strategy for a given
new user. We consider the problem of maximizing ex-
pected discounted reward. Intuitively, we might expect that
the optimal policy is increasing and depends on the dis-
count factor: in particular, we might try to serve the user
at increasing levels of xt as long as we see they did not
abandon. Surprisingly, our main result shows this is not the
case: that in fact, the static policy of maximizing one-step
reward is optimal for this problem. Essentially, because the
user abandons if the threshold is ever crossed, there is no

1We also use F to denote the CDF.
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value to trying to actively learn the threshold.

In Section 3, we consider how to adapt our results when F
and/or the reward function are unknown. In this case, the
platform can learn over multiple user arrivals. We relate
the problem to one of learning an unknown demand curve,
and suggest an approach to efficiently learning the thresh-
old distribution F and the reward function.

Finally in Section 4, we consider a more general model
with “soft” abandonment: after a negative experience,
users may not abandon entirely, but continue with the plat-
form with some probability. We characterize the structure
of an optimal policy to maximize expected discounted re-
ward on a per-user basis; in particular, we find that the
policy adaptively experiments until it has sufficient confi-
dence, and then commits to a static action. We empirically
investigate the structure of the optimal policy as well.

Related work The abandonment setting we consider is
the unique and novel feature of this work. Independently
from this work, Kanoria et al. (2018) model the abandon-
ment problem using only two actions; the safe action and
the risky action. This naturally leads to rather different re-
sults. There are some similarities with the mechanism de-
sign literature, though there the focus is on strategic behav-
ior by agents (Rothschild, 1974; Myerson, 1981; Farias &
Van Roy, 2010; Pavan et al., 2014; Lobel & Paes Leme,
2017). As in this work, the revenue management liter-
ature considers agents with heuristic behaviour, but the
main focus is on dealing with a finite inventory (Gallego
& Van Ryzin, 1994).

It may seem that our problem is closely related to many
problems in reinforcement learning (Sutton & Barto, 1998)
due to the dynamic structure of our problem. However,
there are important differences. Our focus is on personal-
ization; viewed through the lens of reinforcement learning,
this corresponds to having only a single episode to learn,
which is independent of other episodes (users). On the
other hand, in reinforcement learning the focus is on learn-
ing an optimal policy using multiple episodes where infor-
mation carries over between episodes. These differences
present novel challenges in the abandonment setting, and
necessitate use of the structure present in this setting.

Also related is work on safe reinforcement learning,
where catastrophic states need to be completely avoided
(Moldovan & Abbeel, 2012; Berkenkamp et al., 2017). In
such a setting, unlike in ours, the learner usually has ac-
cess to additional information, for example a safe region is
given. In this work, there is no hard constraint on avoiding
catastrophic states, they simply lead to less reward.

2. Threshold Model
In this section, we formalize the problem of finding a per-
sonalized policy for a single user without additional feed-
back.

2.1. Formal setup and notation

We consider a setting where heterogeneous users interact
with a platform at discrete time steps indexed by t, and fo-
cus on the problem of finding a personalized policy for a
single user. The user is characterized by sequence of hid-
den thresholds {θt}∞t=0 jointly drawn from a known distri-
bution that models the heterogeneity across users. At every
time t, the platform selects an action xt ∈ X ⊂ R+ from a
given closed set X. Based on the chosen action xt, the plat-
form obtains the random rewardRt(xt) ≥ 0. The expected
reward of action x is given by r(x) = E(Rt(x)) < B,
which we assume to be stationary, bounded, and known to
the platform.2 While not required for our results, we expect
r to be increasing. When the action exceeds the threshold
at time t, the process stops. More formally, let T be the
stopping time that denotes the first time the xt exceeds the
threshold θt:

T = min{t : xt > θt}. (1)

The goal is to find a sequence of actions {xt}∞t=0 that max-
imizes:

E

[
T−1∑
t=0

γtRt(xt)

]
, (2)

where γ ∈ (0, 1) denotes the discount factor. We note
that this expectation is well defined even if T = ∞, since
γ < 1. We focus here on the discounted expected reward
criterion. An alternative approach is to consider maximiz-
ing the average reward on a finite horizon; considering this
problem remains an interesting direction for future work.

2.2. Optimal policies

Without imposing further restrictions on the structure of
the stochastic threshold process, the solution is intractable.
Thus, we first consider two extreme cases: (1) the thresh-
old is sampled at the start and then remains fixed across
time; and (2) the thresholds are independent across time.
Thereafter, we look at the robustness of the results when
we deviate from these extreme scenarios.

Fixed threshold We first consider a case where the
threshold is sampled at the beginning of the horizon, but
then remains fixed. In other words, for all t, θt = θ ∼ F .
Intuitively, we might expect that the platform tries to grad-
ually learn this threshold, by starting with small xt and in-

2In Section 3 we discuss the case when both F and r are un-
known.
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creasing it as long as the user does not abandon. In fact, we
find something quite different: our main result is that the
optimal policy is a constant policy.

Theorem 1. Suppose that for all t, θt = θ for θ ∼ F , and
that the function p : x → r(x)(1 − F (x)) has a unique
optimum x∗ ∈ X. Then, the optimal policy is xt = x∗ for
all t.

All proofs can be found in the supplemental material, but
we sketch an argument why there exists a constant policy
that is optimal. Consider a policy that is increasing and
suppose it is optimal.3 Then there exists a time t such that
xt = y < xt+1 = z. Compare these two actions with the
policy that would use action z at both time periods. First
suppose θ < y; then the user abandons under either alterna-
tive and so the outcome is identical. Now consider θ ≥ y;
then by the optimality of the first policy, given knowledge
that θ ≥ y, it is optimal to play z. But that means the con-
stant policy that selects z at both time periods is at least as
good as the optimal policy.

In the appendix, we provide another proof of the result us-
ing value iteration. This proof also characterizes the op-
timal policy and optimal value exactly (as in the proposi-
tion). Remarkably, the optimal policy is independent of the
discount factor γ.

Independent thresholds For completeness, we also note
here the other extreme case: suppose the thresholds θt are
drawn independently from the same distribution F at each
t. Then since there is no correlation between time steps,
it follows immediately that the optimal policy is a constant
policy, with a simple form.

Proposition 2. If

x∗ ∈ arg max
x∈X

r(x)(1− F (x))

1− γ(1− F (x))
(3)

is the unique optimum, then the optimal policy under the
independent threshold assumption is xt = x∗ for all t.

Robustness So far, we have considered two extreme
threshold models and have shown that constant policies,
albeit different ones, are optimal. In this section we look at
the robustness of those results by understanding what hap-
pens when we interpolate between the two sides by consid-
ering an additive noise threshold model. Here, the thresh-
old at time t consists of a fixed term and a noisy term:
θt = θ + εt, where θ ∼ F is drawn once, and the noise
terms are drawn at every time t, independent of θ. In gen-
eral, the optimal policy in this model is increasing and in-
tractable because the posterior over θ now depends on all
previous actions. However, there exists constant policies

3It is clear that the optimal policy cannot be decreasing.

that are close to optimal in case the noise terms are either
small or large, reflecting our preceding results in the ex-
treme cases.

First consider the case where the noise terms are small. In
particular, suppose the error distribution has an arbitrary
distribution over a small interval [−y, y]. Note in particular
that we do not assume the noise is independent across time.

Proposition 3. Suppose εt ∈ [−y, y] and the reward func-
tion r is L-Lipschitz. Then there exists a constant policy
with value Vc such that

V ∗ − Vc ≤
2yL

1− γ
(4)

where V ∗ is the value of the optimal policy for the noise
model.

This result follows from comparing the most beneficial and
detrimental scenarios; εt = y and εt = −y for all t, re-
spectively, and noting that in both cases the optimal poli-
cies are constant policies, because thresholds are simply
shifted. We can then show that the optimal policy for the
worst scenario achieves the gap above compared to the op-
timal policy in the best case. The details can be found in
the appendix.

Similarly, when the noise level is sufficiently large with
respect to the threshold distribution F , and independent
across time, there also exists a constant policy that is close
to optimal. The intuition behind this is as follows. First,
if the noise level is large, the platform receives only little
information at each step, and thus cannot efficiently update
the posterior on θ. Furthermore, the high variance in the
thresholds also reduces the expected lifetime of any policy.
Combined, these two factors make learning ineffective.

We formalize this by comparing a constant policy to an or-
acle policy that knows θ but not the noise terms εt. Let G
be the CDF of the noise distribution εt with Ḡ denoting its
complement: Ḡ(y) = 1 − G(y). Then we note that for a
given threshold θ, the probability of survival is Ḡ(x − θ),
and thus the expected value for the constant policy xt = x
for all t is

Ḡ(x− θ)r(x)

1− γḠ(x− θ)
. (5)

Define the optimal constant policy given knowledge of the
fixed part of the threshold, θ by x(θ):

x(θ) = arg max
x

Ḡ(x− θ)r(x)

1− γḠ(x− θ)
. (6)

We can furthermore define the value of policy xt = x(θ)
when the threshold is θ′ by v(θ, θ′):

v(θ, θ′) =
Ḡ(x(θ)− θ′)r(x(θ))

1− γḠ(x(θ)− θ′)
. (7)



Learning with Abandonment

We note that v is non-decreasing in θ′. We assume that v is
Lv-Lipschitz:

|v(θ, θ′)− v(s, θ′)| ≤ Lv|θ − s| (8)

for all θ and s. Note that noise distributions G that have
high variance lead to a smaller Lipschitz constant.

To state our result in this case, we define an η-cover, which
is a simple notion of the spread of a distribution.
Definition 1. An interval (l, u) provides an η-cover for dis-
tribution F if F (u)− F (l) > η.

In other words, with probability as least 1 − η, a ran-
dom variable drawn from distribution F lies in the interval
(l, u).
Proposition 4. Recall that we assume r is bounded by B,
and X is a continuous and connected space. Suppose v
defined above is Lv-Lipschitz, and there exists an η-cover
for threshold distribution Fθ with widthw = u−l. Then the
constant policy xt = l+u

2 with expected value Vθ satisfies

V ∗ − Vθ ≤ Vo − Vθ ≤
Lvw

2
+ 2

ηB

1− γ
. (9)

The shape of v, and in particular its Lipschitz constant Lv
depend on the threshold distribution F and reward function
r. As the noise distributionG “widens”, Lv decreases. As a
result, the bound above is most relevant when the variance
of G is substantial relative to spread of F .

To summarize, our results show that in the extreme cases
where the thresholds are drawn independently, or drawn
once, there exists a constant policy that is optimal. Fur-
ther, the class of constant policies is robust when the joint
distribution over the thresholds is close to either of these
scenarios.

3. Learning Thresholds
Thus far, we have assumed that the heterogeneity across
the population and the mean reward function are known to
the platform, and we have focused on personalization for a
single user. It is natural to ask what the platform should do
when it lacks such knowledge, and in this section we show
how the platform can learn an optimal policy efficiently
across the population. We study this problem within the
context of the fixed threshold model described above, as
it naturally lends itself to development of algorithms that
learn about population-level heterogeneity. In particular,
we give theoretical performance guarantees on UCB type
(Auer et al., 2002) algorithms, and compare performance
to an explore-exploit benchmark.

Learning setting We focus our attention on the fixed
threshold model, and consider a setting where n users ar-
rive sequentially, each with a fixed threshold θu (u =

1, . . . , n) drawn from unknown distribution F with support
on [0, 1]. To emphasize the role of learning from users over
time, we consider a stylized setting where the platform in-
teracts with one user at a time, deciding on all the actions
and observing the outcomes for this user, before the next
user arrives. Inspired by our preceding analysis, we con-
sider a proposed algorithm that uses a constant policy for
each user. Furthermore, we assume that the rewards Rt(x)
are bounded between 0 and M , but otherwise drawn from
an arbitrary distribution that depends on x.

Regret with respect to an oracle We measure the per-
formance of learning algorithms against the oracle that
has full knowledge about the threshold distribution F and
the reward function r, but no access to realizations of
random variables. As discussed in Section 2, the opti-
mal policy for the oracle is thus to play constant policy
x∗ = maxx∈[0,1] r(x)(1− F (x)). We define regret as

regretn(A) = nr(x∗)(1− F (x∗))

− (1− γ)

n∑
u=1

E

[
Tu−1∑
t=0

γtr(xu,t)

]
(10)

which we note is normalized on a per-user basis with re-
spect to the discount factor γ.

3.1. UCB strategy

We propose a UCB algorithm (Auer et al., 2002) on a suit-
ably discretized space, and prove an upper bound on its re-
gret in terms of the number of users. This approach is based
on earlier work by (Kleinberg & Leighton, 2003)[Section
3] for learning demand curves. Before presenting the de-
tails, we introduce the UCB algorithm for the standard
multi-armed bandit problem (Bubeck et al., 2012).

In the standard setting, there are K arms, each with its own
mean µi. At each time t, UCB(α) selects the arm with
largest index Bi,t

Bi,t = X̄i,ni(t) + σ

√
2α log t

ni(t)
(11)

where ni(t) is the number of pulls of arm i at time t. We
assume Bi,t = ∞ if ni(t) = 0. The following lemma
bounds the regret of the UCB index policy.

Lemma 5 (Theorem 2.1 (Bubeck et al., 2012)). Suppose
rewards for each arm i are independent across multiple
pulls, σ-sub-Gaussian and have mean µi. Define ∆i =
maxj µj − µi. Then, UCB(α) attains regret bound

regretn(UCB) ≤
∑

i:∆i>0

8ασ2

∆i
log n+

α

α− 2
. (12)
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Kleinberg & Leighton (2003) adapt the above result to the
problem of demand curve learning. We follow their ap-
proach: First discretize the action space and then use the
standard UCB approach to find an approximately optimal
action. For each user, the algorithm selects a constant ac-
tion xu and either receives reward Ru = 0 if xu > θu or
Ru =

∑∞
t=0 γ

tRt(xu).

We need to impose the following additional assumption on
the function p(x) = r(x)(1− F (x)).

Assumption 1 (Lemma 3.11 in Leighton and Kleinberg).
There exists constants c1 and c2 such that

c1(x∗ − x)2 < p(x∗)− p(x) < c2(x∗ − x)2 (13)

for all x ∈ [0, 1].

For example, if p is strongly concave, this assumption is
satisfied. Then, we prove the following learning result.

Theorem 6. If p satisfies the concavity condition (13),
then UCB(α) on the discretized space with K =
O
(
(n/ log n)1/4

)
arms satisfies

regretn(UCB) ≤ O
(√

n log n
)

(14)

for all α > 2.

The proof consists of two parts, first we use Assumption 1
to bound the difference between the best action and the best
arm in the discretized action space. Then we use Theorem 5
to show that the learning strategy has small regret compared
to the best arm, again leveraging Assumption 1 to argue that
most arms are pulled few times. Combined, these prove the
result.

It is important to note that the algorithm requires prior
knowledge of the number of users, n. In practice it is rea-
sonable to assume that a platform is able to estimate this ac-
curately, but otherwise the well-known doubling trick can
be employed at a slight cost.

3.2. Lower bound

We now briefly discuss lower bounds on learning algo-
rithms. If we restrict ourselves to algorithms that play a
constant policy for each user, the lower bound by Klein-
berg & Leighton (2003) applies immediately.

Proposition 7 (Theorem 3.9 in (Kleinberg & Leighton,
2003)). Any learning algorithm A that plays a constant
policy for each user, has regret at least

regretn(A) ≥ Ω(
√
n) (15)

for some threshold distribution.

Thus, the discretized UCB strategy is near-optimal in the
class of constant policies.

However, algorithms with dynamic policies for users can
obtain more information on the user’s threshold and there-
fore more easily estimate the empirical distribution func-
tion. Whether the O(

√
n) lower bound carries over to dy-

namic policies is an open problem.

3.3. Simulations

In this section, we empirically compare the performance of
the discretized UCB against other policies. For our simula-
tions, we also include the KL-UCB algorithm (Garivier &
Cappé, 2011), and an explore-exploit strategy as a bench-
mark.

KL-UCB The KL-UCB algorithm by Garivier & Cappé
(2011) is an improved variant of the standard UCB algo-
rithm with tighter performance guarantees and better per-
formance in practice. Using the same argument, we can
show a similar regret bound for our setting.
Proposition 8. If p satisfies the concavity condition
(13), then KL-UCB on the discretized space with K =
O
(
(n/ log n)1/4

)
arms satisfies

regretn(KL-UCB) ≤ O
(√

n log n
)

(16)

Explore-exploit strategy Policies with dynamic actions
for each user can gain more information about the threshold
distribution. To understand possible gains from this addi-
tional information we consider a heuristic explore-exploit
strategy that provides a benchmark for the UCB algorithms.
The explore-exploit strategy first estimates an empirical
distribution function, and then uses that to optimize a con-
stant policy. For this algorithm, we assume that for zero re-
ward, the learner can observe θu for a particular user, which
mimics a strategy where the learner increases its action by ε
at each time period to learn the threshold θu of a particular
user with arbitrary precision. Because it directly estimates
the empirical distribution function and does not require dis-
cretization, it is better able to capture the structure of our
model.

The explore-exploit strategy consists of two stages.

• First, obtain m samples of θu to find an empirical es-
timate of F , which we denote by F̂m

• For the remaining users, play constant policy xu =
arg max r(x)(1− F̂m(x))

Note that compared to the previous algorithm, we assume
this learner has access to the reward function, and only the
threshold distribution F is unknown. If the signal-to-noise
ratio in the stochastic rewards is large, this is not unrealis-
tic: the platform, while exploring, is able to observe a large
number of rewards and should therefore be able to estimate
the reward function reasonably well.
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Figure 1. Cumulative regret plots for r(x) = x andF = U [0, 1].

Setup For simplicity, our simulations focus on a styl-
ized setting, but we observed similar results under dif-
ferent scenarios.4 We assume that the rewards are deter-
ministic and follow the identity function r(x) = x, and
the threshold distribution (unknown to the learning algo-
rithm) is uniform on [0, 1]. For each algorithm, we run
50 repetitions for n = 2000 time steps, and plot all cu-
mulative regret paths. For the discretized policies, we set

K ≈ 2
(

n
logn

)1/4

= 10. The explore-exploit strategy first

observes 20 + 2
√
n = 110 samples to estimate F , before

committing to a fixed strategy.

Results The cumulative regret paths are shown in Fig-
ure 1. We observe that KL-UCB indeed performs better
than the standard UCB algorithm.5

The explore-exploit strategy outperforms the UCB algo-
rithms, which shows that better information on the distribu-
tion of θu and leveraging the structure of the problem can
lead to gains over the more naive UCB algorithms. Thus
there can be practical benefit to further algorithmic opti-
mization.

4. Feedback
In this section, we consider a “softer” version of abandon-
ment, where the platform receives some feedback before
the user abandons. As example, consider optimizing the
number of push notifications. When a user receives a no-
tification, they may decide to open the app, or decide to
turn off notifications. However, ignoring the notification is
a likely third possible action. The platform can interpret
this as a signal of dissatisfaction, and work to improve the
policy.

In this section, we augment our model to capture such

4Code to replicate the simulations is available at https://
github.com/schmit/learning-abandonment.

5 We also ran experiments with the MOSS algorithm (Audibert
& Bubeck, 2009), which performs similarly to KL-UCB in our
simulations. However, we do not have a theoretical regret bound
for MOSS.

effects. While the solution to this updated model is in-
tractable, we discuss interesting structure that the optimal
policy exhibits: partial learning, and the aggressiveness of
the optimal policy.

Feedback model To incorporate user feedback, we ex-
pand the model as follows. Suppose that whenever the
current action xt exceeds the threshold (i.e., xt > θt),
then with probability q we receive no reward but the user
remains, and with probability 1 − q the user abandons.
Further, we assume that the platform at time t both ob-
serves the reward R(xt), if rewarded, and an indicator
Zt = Ixt>θt . This is equivalent to assuming that users have
geometrically distributed patience; the number of times
they allow the platform to cross their thresholds.

As before, the goal is to maximize expected discounted re-
ward. Note that because the platform does not receive a
reward when the threshold is crossed, the problem is non-
trivial even when q = 1. We restrict our attention to the
single threshold model, where θ is drawn once and then
fixed for all time periods.

Figure 2 shows the numerically computed optimal policy
when the threshold distribution is uniform on [0, 1], the re-
ward function is r(x) = x, the probability of abandonment
q = 0.5 and γ = 0.9. Depending on whether or not a
feedback signal is received, the optimal policy follows the
green or the red line as we step through time from left to
right.

We note that one can think of the optimal policy as a form
of bisection, though it does not explore the entire domain of
F . In particular it is conservative regarding users with large
θ. For example, consider a user with threshold θ = 0.9.
While the policy is initially increasing and thus partially
personalizes to their threshold, xt does not converge to 0.9,
and in fact never comes close. We call this partial learning;
in the next section, we demonstrate that this is a key feature
of the optimal policy in general.

Partial learning Partial learning refers to the fact that
the optimal policy does not fully reduce its uncertainty (the
posterior) on θ. Initially, the policy learns about the thresh-
old using a bisection-type search. However, at some point
(dependent on the user’s threshold), further learning is too
risky and the optimal policy switches to a constant policy.
We note that this happens even when there is no risk of
abandonment at all (q = 1), because at some point even
the risk of losing a reward is not offset by potential gains in
getting a more accurate posterior on θ. Partial learning oc-
curs under some regularity conditions on the threshold dis-
tribution that ensures the posterior does not collapse, and is
Lipschitz as defined in the following paragraph.

Write p(· | l, u) for the posterior distribution over θ given

https://github.com/schmit/learning-abandonment
https://github.com/schmit/learning-abandonment
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Figure 2. Visualization of optimal policy when discount factor
γ = 0.9 in the q = 0.5 model. Follow the tree from left to right,
where if Zt = 0 (reward obtained) the next action follows from
following the green line, and if Zt = 1, the optimal action is
given by the point following the dashed red line if the user has not
abandoned.

lower bound l and upper bound u based on previous actions

p(y | l, u) = P(l + y < θ | l < θ < u)

=
F (u)− F (l + y)

F (u)− F (l)
. (17)

We say the that the posterior distribution is non-degenerate
if the following condition holds:

Definition 2 (Non-degenerate posterior distribution ). For
all λ > 0, there exists a ν such that for all l, uwhere u−l <
ν,

p(ε | l, u) < 1− λε (18)

for 0 < ε < ν.

Thus, for sufficiently small intervals, the conditional prob-
ability decreases rapidly as we move away from the lower
bound of the interval. Suppose F is such that the posterior
is non-degenerate and is Lipschitz in the following sense.

Assumption 2 (Lipschitz continuity of conditional distri-
bution). There exists an L′ > 0 such that for all intervals
[l, u] and all 0 < y < u− l, we have

p(y | l + ε, u)− p(y | l, u) ≤ εL′. (19)

We can use this assumption to show that the value func-
tion corresponding to the dynamic program that models the
feedback model is Lipschitz.

Lemma 9 (Lipschitz continuity of value function). Con-
sider a bounded action space X. If p is Lipschitz with Lip-
schitz constant Lp, and the reward function r is bounded
by B, there exists constant LV such that for all l < u

V (l + ε, u)− V (l, u) ≤ εLV . (20)

Using these assumptions, we can then prove that the opti-
mal policy exhibits partial learning, as stated in the follow-
ing proposition.

Proposition 10. Suppose r is increasing, Lr-Lipschitz,
non-zero on the interior of X and bounded by B. Further-
more, assume p is non-degenerate and Lipschitz as defined
above. For all u ∈ Int(X) there exists an ε(u) > 0 such
that for all l where u− l < ε(u), the optimal action in state
(l, u) is l, that is

V (l, u) =
r(l)

1− γ
. (21)

Furthermore, ε(u) is non-decreasing in u.

We prove this result by analyzing the value function of the
corresponding dynamic program. The result shows that at
some point, the potential gains from a better posterior for
the threshold are not worth the risk of abandonment. This
is especially true when we believe θ to be large. If, to the
contrary, we belief the threshold is small, there is little to
lose in experimentation. Note however that the result also
holds for q = 1, where users never abandon. In this case the
risk of crossing the threshold (and no reward for the current
time step) outweighs (all) possible future gains. Naturally,
if the probability of override is small (i.e. q is small), the
condition on λ also weakens, leading to larger intervals of
constant policies.

Aggressive and conservative policies Another salient
feature of the structure of optimal policies in the feedback
model is the aggressiveness of the policy. In particular, we
say a policy is aggressive if the first action x0 is larger than
the optimal constant policy x∗ in the absence of feedback
(corresponding to q = 0), and conservative if it is smaller.
As noted before, when there is no feedback, there is no ben-
efit to adapting to user thresholds. However, there is value
in personalization when users give feedback.

Empirically, we find that when there is low risk of abandon-
ment, i.e., q ≈ 1, then the optimal policy is aggressive. In
this case, the optimal policy can aggressively target high-
value users because other users are unlikely to abandon im-
mediately. Thus the policy can personalize to high-value
users in later periods.

However, when the risk of abandonment is large (q ≈ 0)
and the discount factor is sufficiently close to one, the op-
timal policy is more conservative than the optimal constant
policy when q = 0. In this case, the high risk of abandon-
ment forces the policy to be careful: over a longer hori-
zon the algorithm can extract value even from low value
users, but it has to be careful not to lose them in the first
few periods. That is, the long term value of a user with
low threshold makes up for the loss in immediate reward
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Figure 3. The relation between the override probability q and the
(approximate) optimal initial action x0 when the discount factor
γ = 0.9. The artifacts in the plot are due to the discretization
error from numerical computations.

gained from aggressively targeting users with a high thresh-
old. Figure 3 illustrates this effect. Here, we use determin-
istic rewards r(x) = x and the threshold distribution is
uniform F = U [0, 1], but a similar effect is observed for
other distributions and reward functions as well.

5. Conclusion
When machine learning algorithms are deployed in settings
where they interact with people, it is important to under-
stand how user behavior affects these algorithm. In this
work, we propose a novel model for personalization that
takes into account the risk that a dissatisfied user abandons
the platform.

This leads to some unexpected results. We show that con-
stant policies are optimal under the fixed threshold and in-
dependent threshold models. Under small perturbations of
these models, constant policies are “robust” (i.e., perform
well in the perturbed model), though in general finding an
optimal policy becomes intractable.

Next, we consider a setting where a platform faces many
users, but does not know the reward function nor pop-
ulation distribution over thresholds. Under suitable as-
sumptions, UCB-type algorithms perform well, both the-
oretically by providing regret bounds and running simula-
tions. An explore-exploit strategy demonstrates that dy-
namic policies could outperform constant policies by ob-
taining better information on the threshold distribution.

Feedback from users leads to more sophisticated learning
strategies that exhibit partial learning; the optimal learn-
ing algorithm personalizes to a certain degree to each user.
Also, we find that the optimal policy is more conservative
when the probability of abandonment is high, and aggres-
sive when that probability is low.

5.1. Further directions

There are several interesting directions of further research
that are outside the scope of this work.

Abandonment models First, more sophisticated be-
haviour on user abandonment should be considered. This
could take many forms, such as a total patience budget that
gets depleted as the threshold is crossed. Another model is
that of users playing a learning strategy themselves, com-
paring this platform to one or multiple outside options.
In this scenario, the user and platform are simultaneously
learning about each other.

User information Second, we have not considered addi-
tional user information in terms of covariates. In the noti-
fication example, user activity seems like an important sig-
nal of their preferences. Models that are able to incorporate
such information and are able to infer the parameters from
data are beyond the scope of this work but an important
direction of further research.

Lower bound for learning Proposition 7 shows no algo-
rithm that uses a constant policy for individual users can
attain regret better than Ω(

√
n). However, the explore-

exploit strategy hints at the existence of dynamic policies
that outperform the UCB type strategies we propose. Find-
ing such policies is an open problem.

Empirical analysis This work focuses on theoretical un-
derstanding of the abandonment model, and thus ignores
important aspects of a real world system. We believe there
is a lot of potential to gain complementary insight from an
empirical perspective using real-world systems with aban-
donment risk.
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