
Multi-Fidelity Black-Box Optimization with Hierarchical Partitions

Rajat Sen 1 Kirthevasan Kandasamy 2 Sanjay Shakkottai 1

Abstract

Motivated by settings such as hyper-parameter
tuning and physical simulations, we consider the
problem of black-box optimization of a function.
Multi-fidelity techniques have become popular
for applications where exact function evaluations
are expensive, but coarse (biased) approximations
are available at much lower cost. A canonical
example is that of hyper-parameter selection in
a learning algorithm. The learning algorithm
can be trained for fewer iterations – this results
in a lower cost, but its validation error is only
coarsely indicative of the same if the algorithm
had been trained till completion. We incorporate
the multi-fidelity setup into the powerful frame-
work of black-box optimization through hierar-
chical partitioning. We develop tree-search based
multi-fidelity algorithms with theoretical guaran-
tees on simple regret. We finally demonstrate the
performance gains of our algorithms on both real
and synthetic datasets.

1. Introduction
Optimizing a black-box function f over a Euclidean domain
X is a classical problem studied in several disciplines includ-
ing computer science, mathematics, and operations research.
It finds applications in many real world scientific and engi-
neering tasks including scientific experimentation, industrial
design, and model selection in statistics and machine learn-
ing (Martinez-Cantin et al., 2007; Parkinson et al., 2006;
Snoek et al., 2012). Given a budget of n evaluations, an
optimization algorithm operates sequentially – at time t, it
chooses to evaluate f at xt based on its previous evaluations
{xi, f(xi)}

t�1
i=1 . At the end of n evaluations, it makes a rec-

ommendation x(n) and its performance is measured by its
1Univerity of Texas as Austin 2Carnegie Mellon University.

Correspondence to: Rajat Sen <rajat.sen@utexas.edu>.

Proceedings of the 35 th International Conference on Machine
Learning, Stockholm, Sweden, PMLR 80, 2018. Copyright 2018
by the author(s).

simple regret Rn,

Rn = sup
x2X

f(x)� f(x(n)).

Our study focuses on applications where exact evaluation
of the function f is expensive. As an example, in the case
of model selection, training and validating large neural net-
works can take several hours to days. Similarly, the simula-
tion of an astrophysical process typically takes multiple days
even on a cluster of super computers. Traditional methods
for black-box optimization are poorly suited for such appli-
cations because we need to invest a considerable number
of evaluations to optimize f . This motivates studying the
multi-fidelity setting where we have cheaper, but potentially
biased approximations to the function (Cutler et al., 2014;
Huang et al., 2006a; Kandasamy et al., 2016c; 2017). As
an illustration, in a hyper-parameter tuning scenario, the
task is to find the best set of hyper-parameters for training
a machine learning model. In this setting, the black-box
function that needs to be optimized is the validation error
after training the learning algorithm to completion (a certain
number of maximum iterations) i.e X represents the allowed
set of hyper-parameters while the function represents the
validation error after training to completion. However, as
training the algorithm till completion is expensive, we may
choose to train the learning algorithm for a few iterations at
chosen hyper-parameters and then test it on the validation
set. These inexpensive validation errors act as the cheap
approximations (fidelities) to the function value and can
indeed provide valuable information regarding the quality
of the hyper-parameters.

The multi-fidelity setup for black-box function optimiza-
tion has been popularly studied in the Bayesian optimiza-
tion setting (Huang et al., 2006b; Kandasamy et al., 2016b;
2017). However, in this paper we focus on another power-
ful framework for sequential black-box optimization that
works with hierarchical partitioning of the function domain
X . These tree-search based methods were initially moti-
vated by an empirically successful heuristic UCT (Kocsis
& Szepesvári, 2006), which subsequently lead to several
theoretically founded algorithms for black-box optimiza-
tion through hierarchical partitioning (Bubeck et al., 2011;
Kleinberg et al., 2008; Munos, 2011; Valko et al., 2013).

In this work, we incorporate cheap approximations or fideli-

Multi-Fidelity Black-Box Optimization

ties with tree-search based methods for black-box optimiza-
tion. We assume access to a tree-like partitioning of the
domain X similar to (Bubeck et al., 2011; Grill et al., 2015;
Munos, 2011). The partitioning of the domain X is denoted
as P and it contains hierarchical cells {Ph,i}, where h de-
notes the height of the cell and i denotes the index. A cell
Ph,i at height h has K children {Ph+1,ik}

K
k=1, which are

distinct partitions of Ph,i. At height 0, there is only one
partition P0,1 = X . An example of such an hierarchical
partition for X = [0, 1] and K = 2 would be: P0,1 = [0, 1],
P1,1,P1,2 = [0, 0.5], (0.5, 1], P2,1 = [0, 0.25]... and so on.
Most of the prior work assume some smoothness property
about the function and hierarchical partitioning. We follow
a similar path adopting the smoothness assumptions in (Grill
et al., 2015). This assumption states that there exists ⌫ and
⇢ 2 (0, 1) such that,

8h � 0, 8x 2 Ph,i⇤h
, f(x) � f(x⇤)� ⌫⇢

h
, (1)

where x
⇤ is assumed to be the unique point in X such that

f(x⇤) = supx2X f(x). This assumption basically says that
the diameter of the function is bounded for all cells that
contain the optima, and that this diameter goes down at a
geometric rate with the height of the cell. We also adopt
the definition of the well-known near-optimality dimension
d(⌫, ⇢) which restricts the number of cells at height h that
contain points close to the optima. This is an important
quantity in the analysis of many tree-search based meth-
ods (Bubeck et al., 2011; Grill et al., 2015; Munos, 2011;
Valko et al., 2013).

In addition we also model that the function can be accessed
at a continuous range of fidelities within Z = [0, 1], where
z = 0 is the cheapest fidelity and z = 1 is the most ex-
pensive one. For instance, in our hyper-parameter tuning
example, z = 1 may correspond to training the learning al-
gorithm for 1000 iterations while z = 0 represents training
the algorithm to 50 iterations. When a function is evaluated
at a point x 2 X with a fidelity z 2 Z , a value fz(x) is
revealed such that |f(x) � fz(x)| < ⇣(z) where ⇣(.) is a
fixed bias function. The bias function is monotonically de-
creasing in z with ⇣(1) = 0. There is also a cost associated
with these evaluations which is captured by a cost function
� : Z ! R+. The cost function is assumed to be mono-
tonically increasing in z. For instance, in hyper-parameter
tuning the cost increases linearly with the number of iter-
ations. The objective is to locate a point x such that f(x)
is as close as possible to supx2X f(x) given a finite cost
budget ⇤.

The following are the main contributions of this work:

(i) We incorporate multiple fidelities/cheap approximations
in black-box function optimization through hierarchical par-
titioning. We propose and analyze two algorithms in this
setting. Our first algorithm is known as MFDOO (Algo-
rithm 1) which requires knowledge about the smoothness

parameter (⌫, ⇢). This algorithm is similar to DOO (Munos,
2011), however it is designed to explore coarser partitions
at lower fidelities while exploring finer partitions at higher
fidelities, when the algorithm zooms in on a promising area
of the function domain. Motivated by recent work (Grill
et al., 2015), we also propose a second algorithm MFPDOO
(Algorithm 2), which does not require knowledge about the
smoothness. This algorithm spawns several instances of
MFDOO (Algorithm 1) with carefully selected parameters,
at least one of which is bound to perform nearly as well as
MFDOO when the smoothness parameters are known.

(ii) We provide simple regret bounds for both of our algo-
rithms, given a fixed cost budget ⇤ for performing evalua-
tions. First we show that when the smoothness parameters
are known, MFDOO has simple regret of O(⇤�1/d(⌫,⇢)+1)
under some conditions on the bias and cost function. Here,
d(⌫, ⇢) is the near-optimality dimension of the function
with respect to parameters (⌫, ⇢). On the other hand a
naive application of DOO (Munos, 2011)1 only using the
highest fidelity z = 1 would yield a regret bound of
O((⇤/�(1))�1/d(⌫,⇢)). We also show that our second al-
gorithm MFPDOO can obtain a simple regret bound of
O((⇤/ log⇤)�1/d(⌫,⇢)+1) even when the smoothness pa-
rameters are not known. The precise details about our theo-
retical guarantees can be found in Section 5.

(iii) Finally, we compare the performance of our algorithms
with several state of the art algorithms (Grill et al., 2015;
Huang et al., 2006b; Jones et al., 1998; Kandasamy et al.,
2016b;b; Srinivas et al., 2009) for black-box optimization
in the multi-fidelity setting, on real and synthetic data-sets.
We demonstrate that our algorithms outperform the state of
the art in most of these experiments.

2. Related Work
We build on a line of work on bandits and black-box opti-
mization with hierarchical partitions (Bubeck et al., 2011;
Kleinberg et al., 2008; Munos, 2011; Valko et al., 2013).
These methods rely on the principle of optimism i.e they
build upper bounds on the value of the functions inside dif-
ferent partitions using the already explored points x1..., xt.
Then at time t+ 1, a point is chosen from the partition that
has the highest value of this upper-bound. We closely follow
the line of work initiated in (Munos, 2011) that was later
extended to noisy function evaluations in (Grill et al., 2015;
Valko et al., 2013). In (Munos, 2011) it was assumed that
the function follows a local Lipschitz condition with respect
to a semi-metric `, and the diameter of the hierarchical parti-
tions with respect to this semi-metric decrease geometrically
with height. Grill et al. (Grill et al., 2015) later merged these

1Note that DOO also requires knowledge of the smoothness
parameters of the function.

Multi-Fidelity Black-Box Optimization

two assumptions into one, by having a single condition that
related the smoothness of the function with the hierarchical
partition. In this work we adapt the regime of (Grill et al.,
2015). However, we also model cheap approximations to
the functions through a one-dimensional fidelity space.

Multi-fidelity optimization has had a rich history in many
settings (Agarwal et al., 2011; Forrester et al., 2007; Huang
et al., 2006a; Klein et al., 2016; Lam et al., 2015; Li et al.,
2016; Poloczek et al., 2016; Sabharwal et al., 2015; Zhang
& Chaudhuri, 2015), with those that are not application-
specific focusing on a Bayesian framework without formal
guarantees (we refer to (Kandasamy et al., 2017) for ad-
ditional discussion). Kandasamy et al. (2016c) propose
and analyse a UCB style multi-fidelity algorithm for the
K-armed bandit setting assuming a finite number of approx-
imations to the K arms. They then extend this work to
develop UCB algorithms for black-box optimization under
Bayesian Gaussian process assumptions on f , both with a
finite number of approximations and a continuous spectrum
of approximations (Kandasamy et al., 2016a;b; 2017). In
all these works, the relation between the approximations
and the true function is known and appears in the form of
uniform bounds on the approximation or a smoothness as-
sumption arising out of the kernel of the Gaussian process.
In our work we merge the multi-fidelity setting with the
hierarchical partitions framework.

3. Problem Setting
We consider the problem of optimizing a function f : X !

R with black-box access at different fidelities. The aim
is to locate a point x such that f(x) is as close as possi-
ble to supx2X f(x), given a finite budget for performing
evaluations.

We assume that the function can be queried at a continuous
range of fidelities in Z , [0, 1]. When the function is
queried at a point x 2 X with fidelity z 2 Z , a value fz(x)
is revealed. We assume that |fz(x)� f(x)|  ⇣(z), where
⇣ : Z ! R+ is a known bias function. It is also assumed
that a single query at fidelity z incurs a cost �(z), where
� : Z ! R+ is a known cost function. We assume there is
a unique point x⇤

2 X at which supx2X f(x) is achieved.

Bias and Cost Functions: The bias function ⇣ is assumed
to be bounded and monotonically decreasing in z. The op-
timal fidelity z is assumed to have zero bias i.e. ⇣(1) = 0.
The cost function � is assumed to be bounded and monoton-
ically increasing in z.

The multi-fidelity setting is motivated by engineering ap-
plications where cheap approximations are available. One
promising use case is that of hyper-parameter tuning, where
the validation performance of a learning algorithm at differ-
ent hyper-parameters can be observed. The aim is to locate

the best hyper-parameter. In such a setting, cheap approxi-
mations are available for instance instead of evaluating the
learning algorithm after a maximum of T iterations, one
may choose to evaluate it after t < T iterations. In this
case T can be mapped to z = 1 and t can be mapped to a
z < 1. The cost function in this setting is proportional to
the O(t) computation required. The bias function is mono-
tonically decreasing with z, however may not be known
exactly in practice. However, prior works in multi-fidelity
setup (Kandasamy et al., 2016a;c; Kleinberg et al., 2008)
have all assumed access to a known bias function for the
theoretical guarantees. Even though we assume the bias
function is known in theory, we shall see in our experi-
ments in Section 6 that a simple parametric form of the
bias function can be assumed and the parameters can be
updated online during the course of our algorithm (similar
to (Kandasamy et al., 2017)).

Simple Regret: The objective is to locate a point x such
that f(x) is as close as possible to supx2X f(x) given a
finite cost budget. Let ⇤ be the total cost budget allowed.
Consider an optimization policy that queries a sequence
of points {x1, ..., xn(⇤)} at fidelities {z1, ..., zn(⇤)} respec-
tively and finally returns a recommendation x⇤. Our main
quantity of interest is the simple regret which is defined as,

R⇤ = sup
x2X

f(x)� f (x⇤) , (2)

such that
Pn(⇤)

i=1 �(zi)  ⇤. Note that the simple regret
is always measured at the highest fidelity as we are only
interested in optimizing the actual function.

3.1. Hierarchical Partitions and Assumptions

In this section we define the hierarchical partitions of the
domain X that we assume access to and then provide our
technical assumptions about the function and the hierarchi-
cal partitions.

Hierarchical Partitions: We assume access to a tree-like
hierarchical partitioning P = {Ph,i} of the domain X ,
where, h denotes a depth parameter. For any depth h � 0,
the cells {Ph,i}1iIh denote a partitioning of the space
X , where Ih is the number of cells at depth h. At depth 0
there is a single cell P0,1 = X . A cell Ph,i can be split into
K child nodes at depth h + 1. In what follows, querying
a cell Ph,i would refer to evaluating the function at a fixed
representative point xh,i 2 Ph,i at a chosen fidelity. The
fixed representative point is usually chosen to be the co-
ordinate wise mid-point for any given cell.

As an illustrative example let us consider a hierarchical
black-box optimization problem over the domain X =
[0, 1] ⇥ [0, 1]. Let us consider a hierarchical partition
of this domain where the cells are of the form {x 2

X : b1,1  x1 < b1,2, b2,1  x2 < b2,2}. Such a

Multi-Fidelity Black-Box Optimization

cell will be denoted by the notation [[b1,1, b1,2], [b2,1, b2,2]].
Then a hierarchical partition with K = 2 starts with
the root node P0,1 = [[0, 1], [0, 1]]. This can be fur-
ther sub-divided into children cells at h = 1 given by
P1,1 = [[0, 0.5], [0, 1]] and P1,2 = [[0.5, 1], [0, 1]]. P1,2

can be further partitioned into P2,1 = [[0.5, 1], [0, 0.5]] and
P2,2 = [[0.5, 1], [0.5, 1]] and so on. The fixed representative
point for a cell [[b1,1, b1,2], [b2,1, b2,2]] is chosen as the point
[(b1,1 + b1,2)/2, (b2,1 + b2,2)/2].

Black-box optimization is akin to a needle in a haystack
problem without any conditions on the function f(x). There-
fore, similar to prior work (Grill et al., 2015) we make the
following smoothness assumption which depends on the
properties of both the function f and the hierarchical parti-
tioning P .
Assumption 1 (Smoothness Decay). There exists ⌫ and
⇢ 2 (0, 1) such that,

8h � 0, 8x 2 Ph,i⇤h
, f(x) � f(x⇤)� ⌫⇢

h
, (3)

where Ph,i⇤h
is the unique partition of height h which con-

tains x⇤.

We also adopt the definition of the near-optimality-
dimension for parameters (⌫, ⇢) from (Grill et al., 2015).
This is a quantity that depends on the choice of parameters,
the partitioning and the function itself.
Definition 1. The near-optimality dimension of f with re-
spect to parameters (⌫, ⇢) is given by,

d(⌫, ⇢) , inf
�
d
0
2 R+ : 9C(⌫, ⇢), 8h � 0,

Nh(2⌫⇢
h)  C(⌫, ⇢)⇢�d0h

o
(4)

where Nh(✏) is the number of cells Ph,i such that
supx2Ph,i

f(x) � f(x⇤)� ✏.

Let (⌫⇤, ⇢⇤) be the parameters with the minimum near opti-
mality dimension d(⌫⇤, ⇢⇤).

Discussion: Access to hierarchical partitions have been
assumed in a string of previous works on black-box op-
timization (Bubeck et al., 2011; Grill et al., 2015; Klein-
berg et al., 2008; Munos, 2011; Slivkins, 2011; Valko et al.,
2013). Many of these prior works assume a semi-metric
` over the domain X (Bubeck et al., 2011; Munos, 2011;
Valko et al., 2013). In (Bubeck et al., 2011), it is assumed
that the function satisfies a weak-Lipschitzness condition.
More recent works (Munos, 2011; Valko et al., 2013) have
assumed a local-smoothness property w.r.t the metric given
by 8x 2 X , f(x⇤) � f(x)  `(x, x⇤). However, recently
Grill et al. (Grill et al., 2015) have observed that Assump-
tion 1 is sufficient to combine several assumptions about
the semi-metric, the function and the hierarchical partitions
into one combinatorial condition and similarly have adapted

the definition of the near-optimality dimension without the
semi-metric. It was depicted in (Grill et al., 2015) that prior
algorithms like (Bubeck et al., 2011; Munos, 2011; Valko
et al., 2013) can be shown to have good regret guarantees
with this new set of assumptions, and therefore we adopt
these assumptions in our work.

4. Algorithms
In this section we present two algorithms for black-box op-
timization using different fidelities and the hierarchical par-
titioning provided. In Section 4.1, we provide Algorithm 1
which requires the knowledge of the optimal smoothness
decay parameters (⌫⇤, ⇢⇤). Then in Section 4.2, we provide
Algorithm 2 that searches for the optimal smoothness by
spawning O(log⇤) instances of Algorithm 1 with a care-
fully designed sequence of smoothness parameters (⌫, ⇢) as
arguments.

4.1. Algorithm with known (⌫⇤, ⇢⇤)

In this section we provide an algorithm which takes as an
argument the smoothness parameters (⌫, ⇢). We show in
Section 5 that if the parameters provided match with the
optimal parameters (⌫⇤, ⇢⇤) then the algorithm enjoys strong
theoretical guarantees under some conditions on the bias
and cost functions ⇣(z) and �(z) respectively.

Algorithm 1 MFDOO: Multi-Fidelity Deterministic Opti-
mistic Optimization

1: Arguments: (⌫, ⇢), ⇣(z), �(z), P , ⇤
2: Define zh = ⇣

�1(⌫⇢h)
3: Let T = {(0, 1)} be the tree initialized (root node

evaluated with fidelity z0). Set of leaves at time t: Lt.
4: Time: t = 1; Cost: C = �(z0).
5: while C  ⇤ do
6: Select the leaf (h, j) 2 Lt with maximum bh,j ,

fzh(xh,j) + ⌫⇢
h + ⇣(zh).

7: Expand this node; add to Tt the K children of (h, j).
8: Evaluate the children at the fidelity level zh+1. t =

t+ 1. C = C +K�(zh+1).
9: end while

10: Let h(⇤) be the height of the tree. Return x⇤ =
argmax(h(⇤),i) fzh(⇤)

(xh(⇤),i).

In Algorithm 1, with some abuse of notation we define for
all h � 0, zh = ⇣

�1(⌫⇢h) i.e the fidelity at which the
bias becomes less than or equal to the smoothness decay
parameter at height h. All cells at height h are evaluated
at the fidelity zh. The intuition is that if x

⇤ belongs to
a cell Ph,i⇤ at height h that has been evaluated, then by
Assumption 1 we have that all points in the cell are at least
⌫⇢

h optimal. Ideally, beyond this point we would only
like to expand leaf nodes that are at least O(⌫⇢h) optimal,

Multi-Fidelity Black-Box Optimization

which can only be achieved if the error due to the fidelities
is O(⌫⇢h). At each step, a leaf node with the highest upper
bound parameter bh,i, is expanded and the children cells are
evaluated.

4.2. Algorithm without the knowledge of (⌫⇤, ⇢⇤)

In this section we describe an algorithm that does not require
the optimal parameters (⌫⇤, ⇢⇤). Algorithm 2 just requires
⇢max, ⌫max which are loose upper-bounds of ⇢⇤ and ⌫⇤
respectively. The algorithm proceeds by spawning O(log⇤)
MFDOO instances with different (⌫, ⇢)’s which have been
carefully designed. Similar ideas were explored in a setting
without fidelities in (Grill et al., 2015). In Section 5, we
show that Algorithm 2 does almost as well as Algorithm 1
without requiring the optimal parameters as input.

Algorithm 2 MFPDOO: Multi-Fidelity Parallel Determin-
istic Optimistic Optimization

1: Arguments: (⌫max, ⇢max), ⇣(z), �(z), P , ⇤
2: Let N = (1/2)Dmax log(⇤/ log(⇤)) where Dmax =

logK/ log(1/⇢max)
3: for i = 0 to N � 1 do
4: Spawn MFDOO (Algorithm 1) with parameters

(⌫max, ⇢
N/(N�i)
max) with budget (⇤�N�(1))/N

5: end for
6: Let x(i)

⇤ be the point returned by the i
th MFDOO in-

stance for i 2 {0, .., N � 1}. Evaluate all {x
(i)
⇤ }i

at the z = 1. Return the point x⇤ = x
(i⇤)
⇤ where

i
⇤ = argmaxi f(x

(i)
⇤).

Algorithm 2 proceeds by spawning N different MFDOO
instances with the parameters specified in step 4 of the
algorithm. We will show in Theorem 2 that at least one of
the MFDOO instances will have a performance comparable
to Algorithm 1 supplied with parameters (⌫⇤, ⇢⇤) with a
budget of O(⇤/N). Step 6 of the algorithm obtains the exact
value of the points returned by all the MFDOO instances by
evaluating them at the highest fidelity, and then chooses the
one with the maximum value. This ensures that the highest
performing MFDOO instance is selected.

Remark 1. Our algorithms and the theoretical results as-
sume that the bias function ⇣(.) is known. However, in
practice we do not assume perfect knowledge about the
bias function. We assume a simple parametric form of the
bias function and update the parameters online, when the
bias assumptions are violated. We provide more details in
Section 6 and show that even without this knowledge, the
algorithms perform better than other benchmarks.

It should be noted that the different MFDOO instances cre-
ated by Algorithm 2 can share information among each
other, when multiple instances query the same partition at

very similar fidelities. This leads to huge improvements in
practice in terms of effectively using the cost budget.

5. Theoretical Results
In this section we first prove a general result about the
simple regret of Algorithm 1 which assumes access to the
optimal parameters (⌫, ⇢). This naturally implies a simple
regret bound on Algorithm 1 when it is supplied with the
parameters (⌫⇤, ⇢⇤) i.e. the ones that have the minimum
near-optimality dimension. Then we refine these guarantees
under some natural conditions on the bias and cost functions.
Finally, we show that Algorithm 2 can achieve guarantees
close to Algorithm 1 with the optimal parameters, without
having access to them.

We first present the following general result about Algo-
rithm 1.

Theorem 1. Let h0 be the biggest number h such

hX

l=0

C(⌫, ⇢)K�(zl)⇢
�d(⌫,⇢)l

 ⇤.

Let h(⇤) = h
0 + 1. Then Algorithm 1 run with parameters

(⌫, ⇢) (s.t ⌫ � ⌫⇤, ⇢ � ⇢⇤), incurs a simple regret of at
most 2⌫⇢h(⇤) and terminates using a total cost of at most
⇤+K�(1).

We defer the proof of Theorem 1 to Section A in the ap-
pendix. Note that the guarantee in Theorem 1 is the tightest
when the parameters (⌫⇤, ⇢⇤) are supplied as the near opti-
mality dimension d(⌫⇤, ⇢⇤) is the lowest.

Now, we impose some natural conditions on the cost and
bias functions. We provide more specialized versions of
the guarantees in Theorem 1 under these two conditions
separately, which are described below.

Assumption 2. We assume that ⇣(.) and �(.) are such
that �(z⇤h)  min{�h,⇤(1)} for some positive constant
�. Here, z⇤h = ⇣

�1(⌫⇤⇢h⇤).

Motivation: The above assumption is motivated by the fol-
lowing hyper-parameter tuning scenario. Consider training
a learning algorithm with a particular hyper-parameter that
involves optimizing a strongly convex and smooth function
with gradient descent. Let the fidelity denote a rescaled
version of the number of steps in gradient descent n. We as-
sume that at the optimal fidelity (N steps) we reach the opti-
mal value of the function up to an error of ✏⇤. Let zn = n/N .
At fidelity zn the error decays to ⇣(zn) = O(rn) for some
r 2 (0, 1). The cost incurred is linear in the number of
steps say �(zn) = sn for s > 0. In this setting it can be
shown that if ⇣(zn) ⇠ ⌫⇤⇢

h
⇤ , then n = O(h) and therefore

�(zn) = O(h).

Multi-Fidelity Black-Box Optimization

The second assumption under which we provide specialized
guarantees is as follows.

Assumption 3. We assume that ⇣(.) and �(.) are such that
�(z⇤h)  min{��h

,⇤(1)} for some constant � 2 (⇢, 1).
Here, z⇤h = ⇣

�1(⌫⇤⇢h⇤).

Motivation: Assumption 3 is motivated by a similar hyper-
parameter tuning scenario as above. Consider training a
learning algorithm with a particular hyper-parameter that
involves optimizing a smooth convex function with accel-
erated gradient descent. Let the fidelity denote a rescaled
version of the number of steps in gradient descent n as
above. At fidelity zn the error decays to ⇣(zn) = O(1/n2).
The cost incurred is linear in the number of steps say
�(zn) = sn for s > 0. In this setting it can be shown
that if ⇣(zn) ⇠ ⌫⇤⇢

h
⇤ , then n = O(��h) for � = O(

p
⇢).

We are now at a position to introduce a specialized corollary
of Theorem 1.

Corollary 1. Algorithm 1 with parameters (⌫, ⇢) (s.t ⌫ �

⌫⇤, ⇢ � ⇢⇤) run with a total budget of ⇤ terminates with
a total cost of at most ⇤ + K�(1) and has the following
properties:

(i) Under Assumption 2: R⇤  2⌫
⇣

C(⌫,⇢)K�
⇤(1�⇢d(⌫,⇢))

⌘ 1
d(⌫,⇢)+✏

for some small ✏ > 0, provided ⇤ is large enough.

(ii) Under Assumption 3:

R⇤  2⌫
⇢

⇣
2C(⌫,⇢)K

⇤(��1⇢�d(⌫,⇢)�1)

⌘ 1
d(⌫,⇢)+1

.

Comparison with DOO (Munos, 2011): The above re-
sult can be directly compared to DOO (Munos, 2011) which
is in the noiseless black-box optimization regime, without
access to fidelities. The simple regret of DOO under the
same assumptions would scale as O

⇣
(⇤/�(1))�1/d(⌫⇤,⇢⇤)

⌘

when all the evaluations are performed at the highest fi-
delity. In contrast our bounds under Assumption 2 scales
as O

⇣
(⇤/�)�1/(d(⌫⇤,⇢⇤)+✏)

⌘
, where ✏ is a constant close

to zero. Note that �(z⇤h)  �(1), and therefore � = �(1)
trivially satisfies the inequality in Assumption 2. Typically,
� is expected to be much less as compared to the highest
fidelity cost �(1). For example in our hyper-parameter tun-
ing example where the fidelity is the number of iterations (a
maximum of N iterations), � is a small constant (see the dis-
cussion on Assumption 2), while �(1) can be O(N). This
can lead to significant gains in simple regret as we show in
our empirical results in Section 6. Similarly, under Assump-
tion 3 our simple regret scales as O

�
⇤�1/(d(⌫⇤,⇢⇤)+1)

�
,

which can be much better than that of DOO (Munos, 2011)
as the total budget is not divided by �(1).

Now, we will provide one of our main results which states
that Algorithm 2 can recover simple regret bounds which

are close to that of Algorithm 1 even when the optimal
smoothness parameters are not known.

Theorem 2. Algorithm 2 when run with upper-bounds ⌫max

and ⇢max with a total cost budget of ⇤ terminates after
using up a cost of at most ⇤+O(K�(1) log⇤) and has the
following regret guarantees:

(i) Under Assumption 2 the simple regret is
O

⇣
(⌫max/⌫⇤)

Dmax
✏+d(⌫⇤,⇢⇤)⇥

⇣
2⇤

K�Dmax log(⇤/ log⇤) �
�(1)
K�

⌘� 1
✏+d(⌫⇤,⇢⇤)

◆

(ii) Under Assumption 3 if � � ⇢max the simple regret is
O

⇣
(⌫max/⌫⇤)

2Dmax
1+d(⌫⇤,⇢⇤)⇥

⇣
2⇤

KDmax log(⇤/ log⇤) �
�(1)
K

⌘� 1
1+d(⌫⇤,⇢⇤)

◆
.

We defer the proof of this theorem to Appendix C.

Comparison with POO (Grill et al., 2015): It is worth-
while to compare our result with that of POO (Grill et al.,
2015) which uses only the highest fidelity. It should be
noted that POO is in a noisy setting, which gives rise to ex-
tra polylog factors in the bounds. However, ignoring poly-
log factors the simple regret bound of POO would scale as
O
�
(⇤/(log(⇤/�(1)) ⇤ �(1)))�1/(d(⌫⇤,⇢⇤)+2)

�
. In contrast

our bounds scale as O

⇣
(⇤/(� log(⇤)))�1/(d(⌫⇤,⇢⇤)+✏)

⌘

and O
�
(⇤/ log(⇤))�1/(d(⌫⇤,⇢⇤)+1)

�
under assumptions 2

and 3 respectively. This can lead to much better perfor-
mance at the same cost budget. We demonstrate this in our
empirical results in Section 6.

6. Empirical Results
In this section we provide empirical results on synthetic
and real datasets. We compare our algorithm with the fol-
lowing related works: (i) BOCA (Kandasamy et al., 2017)
which is a multi-fidelity Gaussian Process (GP) based algo-
rithm that can handle continuous fidelity spaces, (ii) MF-
GP-UCB (Kandasamy et al., 2016c) which is a GP based
multi-fidelity method that can handle finite fidelities, (iii)
GP-EI criterion in bayesian optimization (Jones et al., 1998),
(iv) MF-SKO, the multi-fidelity sequential kriging optimisa-
tion method (Huang et al., 2006b), (v) GP-UCB (Srinivas
et al., 2009) and (vi) MFPDOO(z = 1) which is a version of
our algorithm that uses only the highest fidelity; this is very
similar to POO (Grill et al., 2015) but in a noiseless setting.
This algorithm is referred to as PDOO in the figures, which
is essentially DOO (Munos, 2011) with the smoothness pa-
rameters tuned according to the scheme in POO (Grill et al.,
2015).

For our theoretical guarantees the bias function ⇣ is assumed
to be known. However, in practice we assume a parametric

Multi-Fidelity Black-Box Optimization

0 50 100 150 200
10

-4

10
-2

10
0

10
2

BOCA

GP-UCB

GP-EI

MF-GP-UCB

MF-SKO

MFPDOO

PDOO

(a)

0 50 100 150 200
10

-4

10
-2

10
0

(b)

0 50 100 150 200

10
0

10
2

(c)

0 50 100 150 200

10
-5

10
0

(d)

0 50 100 150 200

10
-5

10
0

(e)

0 100 200 300 400

0.4

0.5

0.6

0.7

0.8

(f)

Figure 1. We compare all the algorithms in both synthetic and real settings. Note that the common legend for all the figures are provided
in Fig. (a) in the interest of space. Figs. (a) to (e) consists of simulation experiments with standard benchmark functions in global
optimization. The function name and the dimensions of the fidelity space and the domain are mentioned on top of the individual figures.
The x-axis plots the total cost budget ⇤ in multiples of the highest fidelity cost �(1). The y-axis denotes the simple regret in a logarithmic
scale. Fig (f) represents a hyper-parameter tuning application on the 20 news group dataset, where the aim is to tune two hyper-parameters
of an SVM classifier. The metric is 5-folds cross-validation accuracy. The fidelities used are the number of samples used in estimating the
cv accuracy, with the highest fidelity being 5000 samples. The x-axis plots the time taken for the experiments to run.

form for the bias function that is ⇣(z) = c(1� z) where c is
initially set to a very small constant like 0.001 in our experi-
ments. The nature of Algorithm 2 is such that the same cells
are queried at different fidelities by the different MFDOO
instances spawned. If a cell is queried at two different fideli-
ties z1 and z2 and the function values obtained are f1 and
f2, then we update c to 2c whenever c|z1 � z2| < |f1 � f2|.
The above update is only performed if |z1 � z2| is greater
than a specified threshold (0.0001 in our experiments). The
hierarchical partitioning is performed according to a scheme
similar to that of the DIRECT algorithm (Finkel, 2003),
where each time a cell is split into K children the dimension
that has the biggest width is split into K regions. We set
K = 2 in all our experiments. Now, we will present the
results of our synthetic experiments.

Our implementation can be found at
https://github.com/rajatsen91/MFTREE DET.

6.1. Synthetic Experiments

We evaluate all the algorithms on standard benchmark func-
tions used in global optimization. The functions have been
modified to incorporate the fidelity space Z = [0, 1]. The
setup followed is identical to the one in (Kandasamy et al.,
2017), except that we only work in a one dimensional fi-
delity space. Also, we perform our experiments in a noise-
less setting and therefore no Gaussian noise is added to
the function evaluations, unlike in (Kandasamy et al., 2017).
Note that MF-GP-UCB and MF-SKO are finite fidelity meth-
ods. The approximations for these methods are obtained at
z = 0.333 and z = 0.667. We provide more details about
the synthetic functions and the fidelities in Appendix D. Our
experiments are performed under the deterministic setting,
where no noise is added to the approximations. However,
several of the algorithms that we compare to have a random-
ized component. For these algorithms, the results are aver-
aged over 10 experiments and the corresponding error bars
are shown. In our algorithm we set the number of MFDOO
instances spawned to be N = 0.1Dmax log(⇤/�(1)), given

Multi-Fidelity Black-Box Optimization

a total budget ⇤. We set ⇢max = 0.95 and ⌫max = 2.0.

The results of the synthetic experiments are shown in Fig-
ure 1(a)-(e), where the title of each figure shows the name
of the function, the dimension of the domain (d) and the
dimension of the fidelity space (p). We have p = 1 in all
our experiments. It can be observed the tree based methods
outperform the other algorithms by a large margin, except
in the experiments with the CurinExp function (Fig. 1c).
Tree-based methods can handle higher dimensions better,
as we can see in the Hartman6 (Fig. 1b) and Borehole
(Fig. 1e) function experiments. Note that MFPDOO also
beats PDOO by a large margin which only uses the highest
fidelity. PDOO is essentially DOO (Munos, 2011) where
the smoothness decay parameters are tuned according to the
scheme in (Grill et al., 2015). MFPDOO can effectively
explore the space at cheaper fidelities and then expend the
higher fidelities in promising regions of the domain, unlike
PDOO.

6.2. Tuning SVM for News Group Classification

In this section we describe our experiments that involve
tuning hyper-parameters for text classification. For this pur-
pose we use a subset of the 20 news group dataset (Joachims,
1996). All the algorithms are used for tuning two hyper-
parameters: (i) the regularization penalty and (ii) the temper-
ature of the rbf kernel both in the range of [10�2

, 103]. For
our experiments, we use the scikit-learn implementation of
SVM classifier and also the inbuilt KFold function for cross-
validation. The bag of words in each of the text document
is converted into tf-idf features before applying the classi-
fication models. We use a one-dimensional fidelity space,
where the fidelity denotes the number of samples used to
obtain 5-fold cross-validation accuracy. z = 1 corresponds
to 5000 samples which is the maximum number of samples
in the subset of the data used. z = 0 corresponds to 100
samples. Note that for the finite fidelity methods MF-SKO
and MF-GP-UCB, approximations are obtained at z = 0.33
and z = 0.667.

For our algorithms we set ⌫max = 1.0 and ⇢max = 0.9.
At the beginning of the experiment some of the budget is
expended to obtain the function values at a point x with
two different fidelities z1 = 0.8 and z2 = 0.2. Thus the
total budget spent in the initialization is ⇤(0.8) + �(0.2).
The function values obtained are then used to initialize c

in the bias function ⇣(z) = c(1 � z). The initial value of
c is set to 2|f1 � f2|/|z1 � z2|. Thereafter, c is updated
online according to the method detailed above. We set
N = 0.5Dmax log(⇤/�(1)).

The cross-validation accuracy obtained as a function of time
is plotted in Fig. 1f for all the candidate algorithms. It can be
observed that MFPDOO outperforms the other algorithms,
especially in low-budget settings.

7. Conclusion
We considered the problem of black-box function optimiza-
tion using hierarchical partitions in the presence of cheap
approximations or fidelities. We propose two tree-search
based algorithms which can navigate the domain effectively
using cheaper fidelities for coarser partitions and more ex-
pensive ones while zeroing in on finer partitions. We ana-
lyze our algorithms under standard smoothness assumptions
and provide simple regret guarantees given a cost budget
⇤. Our simple regret guarantees scale much better with
respect to ⇤ as compared to other hierarchical partitioning
based algorithms that do not use cheaper fidelities. Our first
algorithm (MFDOO) requires the knowledge of the smooth-
ness parameters (⌫⇤, ⇢⇤) and has a simple regret bound of
O(⇤�1/(d(⌫⇤,⇢⇤)+1)) where d(⌫⇤, ⇢⇤) is the near-optimality
dimension. Our second algorithm (MFPDOO) can obtain a
simple regret bound of O((⇤/ log⇤)�1/(d(⌫⇤,⇢⇤)+1)) even
when the smoothness parameter are unknown. Finally, we
empirically validate the performance of our algorithms on
real and synthetic datasets, where they outperform the state-
of-the art multi-fidelity algorithms.

This work opens up several interesting research directions.
The theoretical guarantees of our algorithms assume some
nice properties about the bias and cost functions. We believe
it is possible to design more robust algorithms that have
similar guarantees even for the bias and cost functions that
are not well-designed. Our setting is also restricted to a one
dimensional fidelity space. However, in many application
the fidelity space may be multi-dimensional. For instance,
in the hyper-parameter tuning one can choose to use less
samples or train for lesser iterations. It is an interesting
research direction to incorporate a multi-dimensional fidelity
space with tree-search based algorithms. Finally, in this
work we work in the noise-less setting where the function
and the approximations are deterministic. We believe it is
possible to extend our results to a setting where zero-mean
noise is added to the function and its approximations.

Acknowledgment

This work is partially supported by NSF grant 1320175,
ARO grant W911NF-17-1-0359, and the US DoT supported
D-STOP Tier 1 University Transportation Center.

Multi-Fidelity Black-Box Optimization

References
Agarwal, Alekh, Duchi, John C, Bartlett, Peter L, and Lev-

rard, Clement. Oracle inequalities for computationally
budgeted model selection. In COLT, 2011.

Bubeck, Sébastien, Munos, Rémi, Stoltz, Gilles, and
Szepesvári, Csaba. X-armed bandits. Journal of Ma-
chine Learning Research, 12(May):1655–1695, 2011.

Currin, Carla. A bayesian approach to the design and anal-
ysis of computer experiments. Technical report, ORNL
Oak Ridge National Laboratory (US), 1988.

Cutler, Mark, Walsh, Thomas J., and How, Jonathan P. Re-
inforcement Learning with Multi-Fidelity Simulators. In
ICRA, 2014.

Dixon, L. C. W. and Szego, George Philip. Towards global
optimisation 2, volume 2. North Holland, 1978.

Finkel, Daniel E. Direct optimization algorithm user guide.
Center for Research in Scientific Computation, North
Carolina State University, 2, 2003.

Forrester, Alexander I. J., Sóbester, András, and Keane,
Andy J. Multi-fidelity optimization via surrogate mod-
elling. Proceedings of the Royal Society A: Mathematical,
Physical and Engineering Science, 2007.

Grill, Jean-Bastien, Valko, Michal, and Munos, Rémi.
Black-box optimization of noisy functions with unknown
smoothness. In Advances in Neural Information Process-
ing Systems, pp. 667–675, 2015.

Huang, D., Allen, T.T., Notz, W.I., and Miller, R.A. Se-
quential kriging optimization using multiple-fidelity eval-
uations. Structural and Multidisciplinary Optimization,
2006a.

Huang, Deng, Allen, Theodore T, Notz, William I, and
Miller, R Allen. Sequential kriging optimization using
multiple-fidelity evaluations. Structural and Multidisci-
plinary Optimization, 32(5):369–382, 2006b.

Joachims, Thorsten. A probabilistic analysis of the rocchio
algorithm with tfidf for text categorization. Technical
report, Carnegie-mellon univ pittsburgh pa dept of com-
puter science, 1996.

Jones, Donald R, Schonlau, Matthias, and Welch, William J.
Efficient global optimization of expensive black-box func-
tions. Journal of Global optimization, 13(4):455–492,
1998.

Kandasamy, Kirthevasan, Dasarathy, Gautam, Oliva, Ju-
nier B, Schneider, Jeff, and Póczos, Barnabás. Gaussian
process bandit optimisation with multi-fidelity evalua-
tions. In Advances in Neural Information Processing
Systems, pp. 992–1000, 2016a.

Kandasamy, Kirthevasan, Dasarathy, Gautam, Oliva, Ju-
nier B, Schneider, Jeff, and Poczos, Barnabas. Multi-
fidelity gaussian process bandit optimisation. arXiv
preprint arXiv:1603.06288, 2016b.

Kandasamy, Kirthevasan, Dasarathy, Gautam, Poczos, Barn-
abas, and Schneider, Jeff. The multi-fidelity multi-armed
bandit. In Advances in Neural Information Processing
Systems, pp. 1777–1785, 2016c.

Kandasamy, Kirthevasan, Dasarathy, Gautam, Schneider,
Jeff, and Poczos, Barnabas. Multi-fidelity bayesian opti-
misation with continuous approximations. arXiv preprint
arXiv:1703.06240, 2017.

Klein, Aaron, Falkner, Stefan, Bartels, Simon, Hennig,
Philipp, and Hutter, Frank. Fast bayesian optimization
of machine learning hyperparameters on large datasets.
arXiv preprint arXiv:1605.07079, 2016.

Kleinberg, Robert, Slivkins, Aleksandrs, and Upfal, Eli.
Multi-armed bandits in metric spaces. In Proceedings of
the fortieth annual ACM symposium on Theory of com-
puting, pp. 681–690. ACM, 2008.

Kocsis, Levente and Szepesvári, Csaba. Bandit based monte-
carlo planning. In European conference on machine learn-
ing, pp. 282–293. Springer, 2006.

Lam, Rémi, Allaire, Douglas L, and Willcox, Karen E. Mul-
tifidelity optimization using statistical surrogate model-
ing for non-hierarchical information sources. In 56th
AIAA/ASCE/AHS/ASC Structures, Structural Dynamics,
and Materials Conference, pp. 0143, 2015.

Li, Lisha, Jamieson, Kevin, DeSalvo, Giulia, Rostamizadeh,
Afshin, and Talwalkar, Ameet. Hyperband: A novel
bandit-based approach to hyperparameter optimization.
arXiv preprint arXiv:1603.06560, 2016.

Martinez-Cantin, R., de Freitas, N., Doucet, A., and Castel-
lanos, J. Active Policy Learning for Robot Planning
and Exploration under Uncertainty. In Proceedings of
Robotics: Science and Systems, 2007.

Munos, Rémi. Optimistic optimization of a deterministic
function without the knowledge of its smoothness. In
Advances in neural information processing systems, pp.
783–791, 2011.

Parkinson, David, Mukherjee, Pia, and Liddle, Andrew R. A
Bayesian model selection analysis of WMAP3. Physical
Review, 2006.

Poloczek, Matthias, Wang, Jialei, and Frazier, Peter I.
Multi-information source optimization. arXiv preprint
arXiv:1603.00389, 2016.

Multi-Fidelity Black-Box Optimization

Sabharwal, A, Samulowitz, H, and Tesauro, G. Selecting
near-optimal learners via incremental data allocation. In
AAAI, 2015.

Slivkins, Aleksandrs. Multi-armed bandits on implicit met-
ric spaces. In Advances in Neural Information Processing
Systems, pp. 1602–1610, 2011.

Snoek, Jasper, Larochelle, Hugo, and Adams, Ryan P. Prac-
tical Bayesian Optimization of Machine Learning Algo-
rithms. In Advances in Neural Information Processing
Systems, 2012.

Srinivas, Niranjan, Krause, Andreas, Kakade, Sham M, and
Seeger, Matthias. Gaussian process optimization in the
bandit setting: No regret and experimental design. arXiv
preprint arXiv:0912.3995, 2009.

Valko, Michal, Carpentier, Alexandra, and Munos, Rémi.
Stochastic simultaneous optimistic optimization. In In-
ternational Conference on Machine Learning, pp. 19–27,
2013.

Zhang, C. and Chaudhuri, K. Active Learning from Weak
and Strong Labelers. In NIPS, 2015.

