
Overcoming Catastrophic Forgetting with Hard Attention to the Task

SUPPLEMENTARY MATERIALS

A. Data
The data sets used in our experiments are summarized in Table 1. The MNIST data set (LeCun et al., 1998) comprises
28× 28 monochromatic images of handwritten digits. Fashion-MNIST (Xiao et al., 2017) comprises gray-scale images of
the same size from Zalando’s articles1. The German traffic sign data set (TrafficSigns; Stallkamp et al., 2011) contains traffic
sign images. We used the version of the data set from the Udacity self-driving car github repository2. The NotMNIST data
set (Bulatov, 2011) comprises glyphs extracted from publicly available fonts, making a similar data set to MNIST; we just
need to resize the images3. The SVHN data set (Netzer et al., 2011) comprises digits cropped from house numbers in Google
Street View images. The FaceScrub data set (Ng & Winkler, 2014) is widely used in face recognition tasks (Kemelmacher-
Shlizerman et al., 2016). Because some of the images listed in the original data set were not hosted anymore on the
corresponding Internet domains, we use a version of the data set stored on the MegaFace challenge website4 (Kemelmacher-
Shlizerman et al., 2016), from which we select the first 100 people with the most appearances5. The CIFAR10 and CIFAR100
data sets contain 32× 32 color images (Krizhevsky, 2009).

To match the image input shape required in our experiments, some of the images in the corresponding data sets need to be
resized (FaceScrub, TrafficSigns, and NotMNIST) or padded with zeros (MNIST and FashionMNIST). In addition, for the
data sets comprising monochromatic images, we replicate the image across all RGB channels. Note that we do not perform
any sort of data augmentation; we just adapt the inputs. We provide the necessary code to perform such adaptations in the
links listed above.

Table 1. Data sets used in the study: name, reference, number of classes, and number of train and test instances.

DATA SET CLASSES TRAIN TEST

CIFAR10 (KRIZHEVSKY, 2009) 10 50,000 10,000
CIFAR100 (KRIZHEVSKY, 2009) 100 50,000 10,000
FACESCRUB (NG & WINKLER, 2014) 100 20,600 2,289
FASHIONMNIST (XIAO ET AL., 2017) 10 60,000 10,000
NOTMNIST (BULATOV, 2011) 10 16,853 1,873
MNIST (LECUN ET AL., 1998) 10 60,000 10,000
SVHN (NETZER ET AL., 2011) 100 73,257 26,032
TRAFFICSIGNS (STALLKAMP ET AL., 2011) 43 39,209 12,630

B. Raw Results
B.1. Task Mixture

We report all forgetting ratios ρ≤t for t = 1 to 8 in Table 2. A total of 10 runs with 10 different seeds are performed and the
averages and standard deviations are taken.

1https://github.com/zalandoresearch/fashion-mnist
2https://github.com/georgesung/traffic_sign_classification_german
3Code and processed data available on github: https://github.com/nkundiushuti/notmnist_convert
4http://megaface.cs.washington.edu/participate/challenge.html
5Code and processed data available on github: https://github.com/nkundiushuti/facescrub_subset

https://github.com/zalandoresearch/fashion-mnist
https://github.com/georgesung/traffic_sign_classification_german
https://github.com/nkundiushuti/notmnist_convert
http://megaface.cs.washington.edu/participate/challenge.html
https://github.com/nkundiushuti/facescrub_subset
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Table 2. Average forgetting ratio ρ≤t for the considered approaches (10 runs, standard deviation into parenthesis).

APPROACH ρ≤1 ρ≤2 ρ≤3 ρ≤4 ρ≤5 ρ≤6 ρ≤7 ρ≤8

LFL -0.00 (0.01) -0.73 (0.29) -0.88 (0.18) -0.89 (0.13) -0.91 (0.11) -0.90 (0.09) -0.92 (0.08) -0.92 (0.08)
LWF -0.00 (0.01) -0.14 (0.13) -0.38 (0.17) -0.63 (0.11) -0.68 (0.08) -0.70 (0.03) -0.76 (0.06) -0.80 (0.06)
SGD -0.00 (0.00) -0.20 (0.08) -0.41 (0.09) -0.49 (0.07) -0.54 (0.07) -0.57 (0.06) -0.62 (0.06) -0.66 (0.03)
IMM-MODE -0.00 (0.01) -0.11 (0.08) -0.27 (0.12) -0.37 (0.10) -0.39 (0.07) -0.45 (0.05) -0.49 (0.06) -0.49 (0.05)
SGD-F -0.00 (0.00) -0.20 (0.15) -0.30 (0.15) -0.38 (0.11) -0.42 (0.09) -0.44 (0.08) -0.45 (0.07) -0.44 (0.06)
IMM-MEAN -0.00 (0.00) -0.12 (0.10) -0.24 (0.11) -0.32 (0.06) -0.37 (0.06) -0.40 (0.06) -0.42 (0.07) -0.42 (0.04)
EWC -0.00 (0.00) -0.08 (0.06) -0.15 (0.11) -0.18 (0.07) -0.21 (0.07) -0.23 (0.04) -0.25 (0.05) -0.25 (0.03)
PATHNET -0.02 (0.03) -0.09 (0.16) -0.11 (0.19) -0.12 (0.21) -0.14 (0.22) -0.15 (0.23) -0.17 (0.23) -0.17 (0.23)
PNN -0.10 (0.12) -0.11 (0.10) -0.13 (0.09) -0.14 (0.04) -0.13 (0.03) -0.13 (0.02) -0.12 (0.01) -0.11 (0.01)
HAT -0.01 (0.02) -0.02 (0.03) -0.03 (0.03) -0.03 (0.02) -0.04 (0.02) -0.05 (0.02) -0.06 (0.02) -0.06 (0.01)

B.2. Layer Use

In Fig. 1 we show an example of layer capacity monitoring as the sequence of tasks evolves. As mentioned in the main
paper, we can compute a percent of active weights for a given layer and task.
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Figure 1. Layer-wise weight usage with sequential task learning, including (lines) and excluding (bars) the cumulative attention of past
tasks. Task sequence corresponds to seed 0.

B.3. Network Compression

The final results of the network compression experiment reported in the main paper (after reaching convergence) are available
in Table 3. We run HAT on isolated tasks with c = 1.5 and uniform embedding initialization U(0, 2).

B.4. Training Time

To have an idea of the training time for each of the considered approaches, we report some reference values in Table 4. We
see that HAT is also quite competitive in this aspect.

C. Additional Results
C.1. Incremental CIFAR

As an additional experiment to complement our evaluation, we consider the incremental CIFAR setup, following a similar
approach as Lopez-Paz & Ranzato (2017). We divide both CIFAR10 and CIFAR100 data sets into consecutive-class subsets
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Table 3. Results for the compression experiment reported in the main paper: test accuracy A1 with SGD, test accuracy A1 after
compressing with HAT, and percentage of network weights used after compression.

DATA SET RAW A1 COMPRESSED A1 SIZE

CIFAR10 79.9% 80.8% 13.9%
CIFAR100 52.7% 49.1% 21.4%
FACESCRUB 82.7% 82.3% 21.0%
FASHIONMNIST 92.4% 91.9% 2.3%
MNIST 99.5% 99.4% 1.2%
NOTMNIST 90.9% 91.5% 5.7%
SVHN 94.2% 93.8% 3.1%
TRAFFICSIGNS 97.5% 98.1% 2.9%

Table 4. Wall-clock training time measured on a single NVIDIA Pascal Titan X GPU: total (after learning the 8 tasks), per epoch, and
per batch (batches of 64). Batch processing time is measured for a forward pass (Batch-F), and for both a forward and a backward pass
(Batch-FB).

APPROACH TRAINING TIME
TOTAL [H] EPOCH [S] BATCH-F [MS] BATCH-FB [MS]

PNN 6.0 4.1 10.2 27.5
PATHNET 4.5 3.6 10.6 23.9
EWC 3.9 3.1 7.9 19.7
MULTITASK 3.4 94.8 3.1 15.7
IMM-MEAN 3.2 2.6 6.9 17.1
IMM-MODE 3.1 2.5 6.7 16.0
LWF 2.2 2.2 5.7 14.2
HAT 2.2 1.6 4.0 11.7
SGD 1.4 0.9 2.5 6.6
LFL 1.3 0.9 4.4 9.2
SGD-F 0.5 0.9 2.5 6.8

and use them as tasks, presented in random order according to the seed. We take groups of 2 classes for CIFAR10 and
20 classes for CIFAR100, yielding a total of 10 tasks. We decide to take groups of 2 and 20 classes in order to have a similar
number of training instances per task. The rest of the procedure is as in the main paper. The most important results are
summarized there. The complete numbers are depicted in Fig. 2 and reported in Table 5.

Table 5. Average forgetting ratio ρ≤t for the incremental CIFAR task (10 runs, standard deviation into parenthesis).

APPROACH ρ≤1 ρ≤2 ρ≤3 ρ≤4 ρ≤5 ρ≤6 ρ≤7 ρ≤8 ρ≤9 ρ≤10

LFL -0.00 (0.01) -0.53 (0.31) -0.63 (0.25) -0.67 (0.21) -0.70 (0.20) -0.74 (0.17) -0.77 (0.15) -0.79 (0.14) -0.79 (0.14) -0.78 (0.14)
LWF -0.00 (0.02) -0.10 (0.03) -0.27 (0.05) -0.42 (0.05) -0.50 (0.06) -0.53 (0.04) -0.59 (0.06) -0.64 (0.06) -0.68 (0.05) -0.70 (0.05)
SGD-F -0.00 (0.01) -0.25 (0.14) -0.33 (0.16) -0.35 (0.18) -0.37 (0.16) -0.40 (0.18) -0.41 (0.18) -0.41 (0.19) -0.42 (0.19) -0.43 (0.20)
PATHNET -0.15 (0.31) -0.18 (0.20) -0.21 (0.26) -0.22 (0.28) -0.24 (0.29) -0.27 (0.29) -0.28 (0.30) -0.30 (0.30) -0.32 (0.29) -0.35 (0.28)
SGD -0.00 (0.01) -0.19 (0.09) -0.27 (0.09) -0.30 (0.04) -0.30 (0.06) -0.28 (0.04) -0.31 (0.03) -0.32 (0.04) -0.30 (0.05) -0.30 (0.04)
IMM-MEAN -0.00 (0.02) -0.14 (0.08) -0.21 (0.10) -0.22 (0.10) -0.25 (0.10) -0.26 (0.08) -0.27 (0.08) -0.28 (0.08) -0.29 (0.07) -0.30 (0.07)
IMM-MODE -0.00 (0.01) -0.14 (0.10) -0.21 (0.11) -0.23 (0.06) -0.25 (0.09) -0.23 (0.07) -0.26 (0.05) -0.27 (0.04) -0.25 (0.04) -0.25 (0.04)
PNN -0.26 (0.16) -0.26 (0.08) -0.25 (0.05) -0.23 (0.04) -0.22 (0.03) -0.23 (0.03) -0.22 (0.03) -0.21 (0.02) -0.21 (0.02) -0.21 (0.02)
EWC -0.00 (0.01) -0.13 (0.09) -0.15 (0.08) -0.16 (0.07) -0.17 (0.06) -0.18 (0.06) -0.19 (0.08) -0.18 (0.07) -0.18 (0.06) -0.18 (0.06)
HAT -0.03 (0.04) -0.05 (0.02) -0.05 (0.02) -0.06 (0.01) -0.06 (0.01) -0.07 (0.01) -0.07 (0.01) -0.08 (0.01) -0.08 (0.01) -0.09 (0.01)

C.2. Permuted MNIST

A common experiment is the one proposed by Srivastava et al. (2013), and later employed to evaluate catastrophic forgetting
by Goodfellow et al. (2014). It consists of taking random permutations of the pixels in the MNIST data set as tasks. Typically,
the average accuracy after sequentially training on 10 MNIST permutations is reported. To match the different number of
parameters used in the literature, we consider a small, medium, and a large network based on a two-layer fully-connected
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Figure 2. Average forgetting ratio ρ≤t for the incremental CIFAR task (average after 10 runs).

architecture as Zenke et al. (2017), with 100, 500, and 2000 hidden units, respectively. For the large network we set dropout
probabilities as Kirkpatrick et al. (2017). We use smax = 200 and c = 0.5 for the small network, and smax = 400 and
c = 0.5 for the medium and large networks. The results are available in Table 6.

C.3. Split MNIST

Another popular experiment is to split the MNIST data set into tasks and report the average accuracy after learning them
one after the other. We follow Lee et al. (2017) by splitting the data set using labels 0–4 and 5–9 as tasks and running the
experiment 10 times. We also match the base network architecture to the one used by Lee et al. (2017). We train HAT for
50 epochs with c = 0.1. Results are reported in Table 7. In preliminary experiments we observed that dropout could increase
accuracy by some percentage. However, to keep the same configuration as in the cited reference, we finally did not use it.

D. Variations to the Proposed Approach
In this section, we want to mention a number of alternatives we experimented with during the development of HAT. The
purpose of the section is not the report a formal set of results, but to inform the reader about potential different choices when
implementing HAT, or variations of it, and to give an intuition on the outcome of some of such choices.

D.1. Embedding Learning

When we realized that the embedding weights etl were not changing much and that their gradients were small compared to
the rest of the network due to the introduced annealing of s, we initially tackled the issue by using a different learning rate
for the embeddings. With that, we empirically found that factors of 10–50 times the original learning rate were leading to
performances that were almost as good as the final ones reported in the main paper. However, the use of a different learning
rate introduced an additional parameter that we could not conceptually relate to catastrophic forgetting and that could have
been tricky to tune for a generic setting.

We also studied the use of an adaptive optimizer such as Adagrad (Duchi et al., 2011) or Adam (Kingma & Ba, 2015) for
the embedding weights. The idea was that an adaptive optimizer would be able to automatically introduce an appropriate
scaling factor. We found that this option was effectively learning suitable values for etl . However, its performance was worse
than the constant-factor SGD boost explained in the previous paragraph. Noticeably, introducing an adaptive optimizer also
introduces a number of new hyperparameters: type of optimizer, another learning rate, possible weight decays, etc.
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Table 6. Accuracy on the permuted MNIST task (Srivastava et al., 2013), taking the average after training 10 tasks. The only exception is
the generative replay approach, whose performance was assessed after 5 tasks. Superscripts indicate results reported by (1) Nguyen et al.
(2017) and (2) He & Jaeger (2018). An asterisk after parameter count indicates that the approach presents some additional structure not
included in such parameter count (for instance, some memory module or an additional generative network).

APPROACH PARAMETERS A≤10

GEM (LOPEZ-PAZ & RANZATO, 2017) 0.1 M* 82.8%
SI (ZENKE ET AL., 2017)1 0.1 M 86.0%
EWC (KIRKPATRICK ET AL., 2017)2 0.1 M 88.2%
MBPA + EWC – 1000 EX. (SPRECHMANN ET AL., 2018) UNKNOWN* 89.7%
VCL (NGUYEN ET AL., 2017) 0.1 M* 90.0%
HAT – SMALL 0.1 M 91.6%
GENERATIVE REPLAY (SHIN ET AL., 2017) UNKNOWN* 94.9%
CAB (HE & JAEGER, 2018) 0.7 M 95.2%
EWC (KIRKPATRICK ET AL., 2017) 5.8 M 96.9%
SI (ZENKE ET AL., 2017) 5.8 M 97.1%
HAT – MEDIUM 0.7 M 97.4%
HAT – LARGE 5.8 M 98.6%

Table 7. Average accuracy on the split MNIST task, following the setup of Lee et al. (2017) using 10 runs (standard deviation into
parenthesis). Superscript (1) indicates results reported by Lee et al. (2017).

APPROACH PARAMETERS A≤2

SGD (GOODFELLOW ET AL., 2014)1 1.9 M 71.3% (1.5)
L2-TRANSFER (EVGENIOU & PONTIL, 2004)1 1.9 M 85.8% (0.5)
IMM-MEAN (LEE ET AL., 2017) 1.9 M 94.0% (0.2)
IMM-MODE (LEE ET AL., 2017) 1.9 M 94.1% (0.3)
CAB (HE & JAEGER, 2018) 1.9 M 94.9% (0.3)
HAT 1.9 M 99.0% (0.0)

D.2. Annealing

In our effort to further reduce the number of hyperparameters, we experimented for quite some time with the annealing

s = tan

(
π

4

(
1 +

b− 1

B − 1

))
or using variants of

s = α+ β tan

(
π

2

b− 1

B − 1

)
.

The rationale for the first expression is that one starts with a sigmoid σ(sx) that is equivalent to a straight line of 45 degrees
for b = 1 and x ≈ 0. Then, with b increasing, it linearly increases the angle towards 90 degrees at x = 0. The second
expression is a parametric evolution of the first one.

These annealing schedules have the (sometimes desirable) feature that the maximum s is infinite, yielding a true step
function in inference time. Therefore, we obtain truly binary attention vectors atl and no forgetting. In addition, if we use the
first expression, we are able to remove the smax hyperparameter. Nonetheless, we found the first expression to perform
worse than the solution proposed in the main paper. The introduction of the second expression with α = 1 and β < 1
improved the situation, but results were still not as good as the ones in the main paper and the tuning of β was a bit tricky.

To conclude this subsection, note that if smax is large, for instance smax > 100, one can use

s = smax
b− 1

B − 1
,

which is a much simpler annealing formula that closely approximates the one in the main paper. However, one needs then to
be careful with the denominator of the embedding gradient compensation when s = 0.
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D.3. Gate

We also studied the use of alternatives to the sigmoid gate. Apart from the rescaled tanh, an interesting alternative we
thought of was a clamped version of the linear function,

atl = max

(
0,min

(
1,
setl
r

+
1

2

))
,

where r defines the ‘valid’ range for the input of the gate. This gate yields a much simpler formulation for the gradient
compensation described in the main paper. However, it implies that we need to set r, which could be considered a
further hyperparameter. It also implies that embedding values that are far away from 0, the step transition point, receive a
proportionally similar gradient to the ones that are close to it. That is, values of etl that yield at

l that are very close to 0 or 1
(in the constant region of the pseudo-step function) are treated equal to the ones that are still undecided (in the transition
region of the pseudo-step function). We did not test this alternative gate quantitatively.

D.4. Cumulative Attention

In the most preliminary stages we used

a≤t
l = 1−

[(
1− at

l

)
�
(
1− a≤t−1

l

)]
for accumulating attention across tasks, but it was soon dismissed for the final max-based formula. The previous equation
could be interesting for online learning scenarios with limited model capacity, together with

a≤t
l = max

(
at
l , κ a≤t−1

l

)
,

where κ is a constant slightly lower than 1 (for instance κ = 0.9 or κ = 0.99).

D.5. Embedding Initialization

We ran a set of experiments using uniform initialization U(0, k1) for the embeddings etl instead of Gaussian N (0, 1). We
also experimented with N (k2, 1). The idea behind these alternative initializations was that, for sufficiently large smax, all
or almost all atl start with a value of 1, which has the effect of distributing the attention over all units for more time at the
beginning of training. Using values of k1 ∈ [1, 6] and k2 ∈ [0.5, 2] yielded competitive results, yet worse than the ones
using N (0, 1). Our intuition is that a uniform initialization like U(0, 2) is better for a purely compressive approach, as used
in the last experiment of the main paper.

D.6. Attention Regularization

We initially experimented with a normalized L1 regularization

R
(
At
)
=

∑L−1
l=1

∑Nl

i=1 a
t
l,i∑L−1

l=1 Nl

.

Results were a small percentage lower than the ones with the attention-weighted regularization of the main paper. We also
exchanged the previous L1 regularization with the L2-based regularization

R
(
At
)
=

∑L−1
l=1

∑Nl

i=1(a
t
l,i)

2∑L−1
l=1 Nl

.

With that, we observed similar accuracies as the L1 regularization, but under different values for the hyperparameter c.

D.7. Hard Attention to the Input

As mentioned in the main paper, no attention mask is used for the input (that is, there is no at0). We find this is a good
strategy for a general image classification problem and for first-layer convolutional filters in particular. However, if the input
consists of independent, isolated features, one may think of putting hard attention to the input as a kind of supervised feature
selection process. We performed a number of experiments using only fully-connected layers and the MNIST data as above,
and introduced additional hard attention vectors at

0 that directly multiplied the input of the network. The results suggested
that it could potentially be a viable option for feature selection and data compression (Fig. 3).
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Figure 3. Example of an input mask for MNIST data after training to convergence.

E. A Note on Binary Masks
After writing a first version of the paper, we realized that the idea of a binary mask that affects a given unit could be
potentially traced back to the “inhibitory synapses” of McCulloch & Pitts (1943). This idea of inhibitory synapses is quite
unconventional and rarely seen today (Wang & Raj, 2017) and, to the best of our knowledge, no specific way for learning
such inputs nor a specific function for them have been proposed. Weight-based binary masks are implicitly or explicitly
used by many catastrophic forgetting approaches, at least by Rusu et al. (2016); Fernando et al. (2017); Mallya & Lazebnik
(2017); Nguyen et al. (2017); Yoon et al. (2018). HAT is a bit different, as it learns unit-based attention masks with possible
(but not necessarily) binary values.
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