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Abstract
Catastrophic forgetting occurs when a neural net-
work loses the information learned in a previous
task after training on subsequent tasks. This prob-
lem remains a hurdle for artificial intelligence
systems with sequential learning capabilities. In
this paper, we propose a task-based hard attention
mechanism that preserves previous tasks’ informa-
tion without affecting the current task’s learning.
A hard attention mask is learned concurrently to
every task, through stochastic gradient descent,
and previous masks are exploited to condition
such learning. We show that the proposed mecha-
nism is effective for reducing catastrophic forget-
ting, cutting current rates by 45 to 80%. We also
show that it is robust to different hyperparameter
choices, and that it offers a number of monitoring
capabilities. The approach features the possibility
to control both the stability and compactness of
the learned knowledge, which we believe makes
it also attractive for online learning or network
compression applications.

1. Introduction
With the renewed interest in neural networks, old problems
re-emerge, specially if the solution is still open. That is
the case with the so-called catastrophic forgetting or catas-
trophic interference problem (McCloskey & Cohen, 1989;
Ratcliff, 1990). In essence, catastrophic forgetting corre-
sponds to the tendency of a neural network to forget what
it learned upon learning from new or different information.
For instance, when a network is first trained to convergence
on one task, and then trained on a second task, it forgets
how to perform the first task.

Overcoming catastrophic forgetting is an important step
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in the advancement towards more general artificial intel-
ligence systems (Legg & Hutter, 2007). Such systems
should be able to seamlessly remember different tasks, and
to learn them sequentially, following a lifelong learning
paradigm (Thrun & Mitchell, 1995). Apart from being more
biologically plausible (Clegg et al., 1998), there are many
practical situations which require a sequential learning sys-
tem (cf. Thrun & Mitchell, 1995). For instance, it may be
unattainable for a robot to retrain from scratch its under-
lying model upon encountering a new object/task. After
accumulating a large number of objects/tasks and their cor-
responding information, performing concurrent or multitask
learning at scale may be too costly.

Storing previous information and using it to retrain the
model was among the earliest attempts to overcome catas-
trophic forgetting; a strategy named “rehearsal” (Robins,
1995). The use of memory modules in this context has
been a subject of research until today (Rebuffi et al., 2017;
Lopez-Paz & Ranzato, 2017). However, due to efficiency
and capacity constrains, memory-free approaches were also
introduced, starting with what was termed as “pseudo-
rehearsal” (Robins, 1995). This approach has found some
success in transfer learning situations where one needs to
maintain a certain accuracy on the source task after learning
the target task (Jung et al., 2016; Li & Hoiem, 2017). Within
the pseudo-rehearsal category, we could also consider recent
approaches that substitute the memory module by a gener-
ative network (Venkatesan et al., 2017; Shin et al., 2017;
Nguyen et al., 2017). Besides the difficulty of training a
generative network for a sequence of tasks or certain types
of data, both rehearsal and pseudo-rehearsal approaches
imply some form of concurrent learning, that is, having to
re-process ‘old’ instances for learning a new task.

The other popular strategy to overcome catastrophic forget-
ting is to reduce representational overlap (French, 1991).
This can be done at the output, intermediate, and also input
levels (Gutsein & Stump, 2015; He & Jaeger, 2018). A
clean way of doing that in a soft manner is through so-called
“structural regularization” (Zenke et al., 2017), either present
in the loss function (Kirkpatrick et al., 2017; Zenke et al.,
2017) or at a separate merging step (Lee et al., 2017). With
these strategies, one seeks to prevent major changes in the
weights that were important for previous tasks. Dedicating
specific sub-parts of the network for each task is another
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way of reducing representational overlap (Rusu et al., 2016;
Fernando et al., 2017; Yoon et al., 2018). The main trade-
off in representational overlap is to effectively distribute
the capacity of the network across tasks while maintaining
important weights and reusing previous knowledge.

In this paper, we propose a task-based hard attention mech-
anism that maintains the information from previous tasks
without affecting the learning of a new task. Concurrently
to learning a task, we also learn almost-binary attention
vectors through gated task embeddings, using backpropaga-
tion and minibatch stochastic gradient descent (SGD). The
attention vectors of previous tasks are used to define a mask
and constrain the updates of the network’s weights on cur-
rent tasks. Since masks are almost binary, a portion of the
weights remains static while the rest adapt to the new task.
We call our approach hard attention to the task (HAT). We
evaluate HAT in the context of image classification, using
what we believe is a high-standard evaluation protocol: we
consider random sequences of 8 publicly-available data sets
representing different tasks, and compare with a dozen of
recent competitive approaches. We show favorable results in
4 different experimental setups, cutting current rates by 45
to 80%. We also show robustness with respect to hyperpa-
rameters and illustrate a number of monitoring capabilities.
We make our code publicly-available1.

2. Putting Hard Attention to the Task
2.1. Motivation

The primary observation that drives the proposed approach
is that the task definition or, more pragmatically, its iden-
tifier, is crucial for the operation of the network. Consider
the task of discriminating between bird and dog images.
When training the network to do so, it may learn some
set of intermediate features. If the second task is to dis-
criminate between brown and black animals using the same
data (assuming it only contained birds and dogs that were
either brown or black), the network may learn a new set
of features, some of them with not much overlap with the
first ones. Thus, if training data is the same in both tasks,
one important difference should be the task description or
identifier. Our intention is to learn to use the task identifier
to condition every layer, and to later exploit this learned
conditioning to prevent forgetting previous tasks.

2.2. Architecture

To condition to the current task t, we employ a layer-wise at-
tention mechanism (Fig. 1). Given the output of the units2 of

1https://github.com/joansj/hat
2In the remaining of the paper, we will use ‘units’ to refer to

both linear units (or fully-connected neurons) and convolutional
filters. HAT can be extended to other parametric layers.

Figure 1. Schematic diagram of the proposed approach: forward
(top) and backward (bottom) passes.

layer l, hl, we element-wise multiply h′l = atl�hl. However,
an important difference with common attention mechanisms
is that, instead of forming a probability distribution, atl is a
gated version of a single-layer task embedding etl ,

atl = σ
(
setl
)
, (1)

where σ(x) ∈ [0, 1] is a gate function and s is a positive
scaling parameter. We use a sigmoid gate in our experiments,
but note that other gating mechanisms could be used. All
layers l = 1, . . . L− 1 operate equally except the last one,
layer L, where atL is binary hard-coded. The operation
of layer L is equivalent to a multi-head output (Bakker &
Heskes, 2003), which is routinely employed in the context
of catastrophic forgetting (for example Rusu et al., 2016; Li
& Hoiem, 2017; Nguyen et al., 2017).

The idea behind the gating mechanism of Eq. 1 is to form
hard, possibly binary attention masks which, act as “in-
hibitory synapses” (McCulloch & Pitts, 1943), and can thus
activate or deactivate the output of the units of every layer.
In this way, and similar to PathNet (Fernando et al., 2017),
we dynamically create and destroy paths across layers that
can be later preserved when learning a new task. However,
unlike PathNet, the paths in HAT are not based on modules,
but on single units. Therefore, we do not need to pre-assign
a module size nor to set a maximum number of modules
per task. Given some network architecture, HAT learns
and automatically dimensions individual-unit paths, which
ultimately affect individual layer weights. Furthermore, in-
stead of learning paths in a separate stage using genetic
algorithms, HAT learns them together with the rest of the
network, using backpropagation and SGD.

https://github.com/joansj/hat
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2.3. Network Training

To preserve the information learned in previous tasks upon
learning a new task, we condition the gradients according
to the cumulative attention from all the previous tasks. To
obtain a cumulative attention vector, after learning task t
and obtaining atl , we recursively compute

a≤tl = max
(

atl , a
≤t−1
l

)
,

using element-wise maximum and the all-zero vector for
a≤0l . This preserves the attention values for units that were
important for previous tasks, allowing them to condition the
training of future tasks.

To condition the training of task t+ 1, we modify the gra-
dient gl,ij at layer l with the reverse of the minimum of the
cumulative attention in the current and previous layers:

g′l,ij =
[
1−min

(
a≤tl,i , a

≤t
l−1,j

)]
gl,ij , (2)

where the unit indices i and j correspond to the output (l)
and input (l − 1) layers, respectively. In other words, we
expand the vectors a≤tl and a≤tl−1 to match the dimensions
of the gradient tensor of layer l, and then perform a element-
wise minimum, subtraction, and multiplication (Fig. 1). We
do not compute any attention over the input data if this
consists of complex signals like images or audio. However,
in the case such data consisted of separate or independent
features, one could also consider them as the output of some
layer and apply the same methodology.

Note that, with Eq. 2, we create masks to prevent large up-
dates to the weights that were important for previous tasks.
This is similar to the approach of PackNet (Mallya & Lazeb-
nik, 2017), which was made public during the development
of HAT. In PackNet, after an heuristic selection and retrain-
ing, a binary mask is found and later applied to freeze the
corresponding network weights. In this regard, HAT differs
from PackNet in three important aspects. Firstly, our mask
is unit-based, with weight-based masks automatically de-
rived from those. Therefore, HAT also stores and maintains
a lightweight structure. Secondly, our mask is learned, in-
stead of heuristically- or rule-driven. Therefore, HAT does
not need to pre-assign compression ratios nor to determine
parameter importance through a post-training step. Thirdly,
our mask is not necessarily binary, allowing intermediate
values between 0 and 1. This can be useful if we want to
reuse weights for learning other tasks, at the expense of
some forgetting, or we want to work in a more online mode,
forgetting the oldest tasks to remember new ones.

2.4. Hard Attention Training

To obtain a totally binary attention vector atl , one could use
a unit step function as gate. However, since we want to

train the embeddings etl with backpropagation (Fig. 1), we
prefer a differentiable function. To construct a pseudo-step
function that allows the gradient to flow, we use a sigmoid
with a positive scaling parameter s (Eq. 1). This scaling
is introduced to control the polarization, or ‘hardness’, of
the pseudo-step function and the resulting output atl . Our
strategy is to anneal s during training, inducing a gradient
flow, and set s = smax during testing, using smax � 1
such that Eq. 1 approximates a unit step function. Notice
that when s → ∞ we get atl,i → {0, 1}, and that when
s → 0 we get atl,i → 1/2. We will use the latter to start a
training epoch with all network units being equally active,
and progressively polarize them within the epoch.

During a training epoch, we incrementally linearly anneal
the value of s by

s =
1

smax
+

(
smax −

1

smax

)
b− 1

B − 1
, (3)

where b = 1, . . . B is the batch index and B is the total
number of batches in an epoch. The hyperparameter smax ≥
1 controls the stability of the learned tasks or, in other words
the plasticity of the network’s units. If smax is close to
1, the gating mechanism operates like a regular sigmoid
function, without particularly enforcing the binarization of
atl . This provides plasticity to the units, with the model being
able to forget previous tasks at the backpropagation stage
(Sec. 2.3). If, alternatively, smax is a larger number, the
gating mechanism starts operating as a unit step function.
This provides stability with regard to previously learned
tasks, preventing changes in the corresponding weights at
the backpropagation stage.

2.5. Embedding Gradient Compensation

In preliminary analysis, we empirically observed that em-
beddings etl were not changing much, and that the magnitude
of the gradient was weak on those weights. After some in-
vestigation, we realized that the major part of the problem
was due to the introduced annealing scheme (Eq. 3). To
illustrate the effect of the annealing scheme on the gradients
of etl , consider a uniformly distributed embedding etl,i across
the active range of a standard sigmoid, etl,i ∈ [−6, 6]. If we
do not perform any annealing and set s = 1, we obtain a cu-
mulative gradient after one epoch that has a bell-like shape
and spans the whole sigmoid range (Fig. 2). Contrastingly, if
we set s = smax, we obtain a much larger magnitude, but in
a much lower range (etl,i ∈ [−1, 1] in Fig. 2). The annealed
version of s yields a distribution in-between, with a lower
range than s = 1 and a lower magnitude than s = smax.
A desirable situation would be to have a wide range, ide-
ally spanning the range of s = 1, and a large cumulative
magnitude, ideally proportional to the one in the active re-
gion when s = smax. To achieve that, we apply a gradient
compensation before updating etl .
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Figure 2. Illustration of the effect that annealing s has on the gra-
dients q of et.

In essence, the idea of the embedding gradient compensa-
tion is to remove the effects of the annealed sigmoid and
to artificially impose the desired range and magnitude mo-
tivated in the previous paragraph. To do so, we divide the
gradient ql,i by the derivative of the annealed sigmoid, and
multiply by the desired compensation,

q′l,i =
smaxσ

(
etl,i

) [
1− σ

(
etl,i

)]
sσ
(
setl,i

) [
1− σ

(
setl,i

)] ql,i,

which, after operating, yields

q′l,i =
smax

[
cosh

(
setl,i

)
+ 1
]

s
[
cosh

(
etl,i

)
+ 1
] ql,i.

For numerical stability, we clamp |setl,i| ≤ 50 and constrain
etl,i to remain within the active range of the standard sigmoid,
etl,i ∈ [−6, 6]. In any case, however, ql,i → 0 when we hit
those limits. That is, we are in the constant regions of
the pseudo-step function. Notice also that, by Eq. 3, the
minimum s is never equal to 0.

2.6. Promoting Low Capacity Usage

It is important to realize that the hard attention values
atl,i that are ‘active’, that is, atl,i → 1, directly deter-
mine the units that will be dedicated to task t. There-
fore, in order to have some model capacity reserved for
future tasks, we promote sparsity on the set of attention
vectors At = {at1, . . . atL−1}. To do so, we add a regular-
ization term to the loss function L that takes into account
the set of cumulative attention vectors up to task t − 1,
A<t = {a<t1 , . . . a<tL−1}:

L′
(
y, ŷ,At,A<t

)
= L (y, ŷ) + cR

(
At,A<t

)
, (4)

where c is the regularization constant,

R
(
At,A<t

)
=

∑L−1
l=1

∑Nl

i=1 a
t
l,i

(
1− a<tl,i

)
∑L−1
l=1

∑Nl

i=1 1− a
<t
l,i

(5)

is the regularization term, and Nl corresponds to the num-
ber of units in layer l. Notice that Eq. 5 corresponds to a
weighted and normalized L1 regularization over At. Cumu-
lative attentions over the past tasks A<t define a weight for
the current task, such that if a<tl,i → 1 then atl,i receives a
weight close to 0 and vice versa. This excludes the units
that were attended in previous tasks from regularization,
unconstraining their reuse in the current task. The hyper-
parameter c ≥ 0 controls the capacity spent on each task
(Eq. 4). In a sense, it can be thought of as a compressibility
constant, affecting the compactness of the learned models:
the higher the c, the lower the number of active attention
values atl,i and the more sparse the resulting network is. We
set c globally for all tasks and let HAT adapt to the best
compression for each individual task.

The use of L1 regularization to promote network sparsity
in the context of catastrophic forgetting has also been con-
sidered by Yoon et al. (2018) with dynamically expandable
networks (DEN), which were introduced while developing
HAT. In DEN, plain L1 regularization is combined with a
considerable set of heuristics such as L2-transfer, thresh-
olding, and a measure of “semantic drift”, and is applied
to all network weights in the so-called “selective retraining”
phase. In HAT, we use an attention-weighted L1 regulariza-
tion over attention values, which is an independent part of
the single training phase of the approach. Instead of consid-
ering network weights, HAT focuses on unit attention.

3. Related Work
We compare the proposed approach with the conceptually
closest works, some of which appeared concurrently to the
development of HAT. A more general overview of related
work has been done in Sec. 1. A qualitative comparison
with three of the most related strategies has been done along
Sec. 2. A quantitative comparison with these and other
approaches is done in Sec. 4 and Supplementary Materials.

Both elastic weight consolidation (EWC; Kirkpatrick et al.,
2017) and synaptic intelligence (SI; Zenke et al., 2017) ap-
proaches add a ‘soft’ structural regularization term to the
loss function in order to discourage changes to weights that
are important for previous tasks. HAT uses a ‘hard’ struc-
tural regularization, and does it both at the loss function
and gradient magnitudes explicitly. EWC measures weights’
importance after network training, while SI and HAT com-
pute weights’ importance concurrently to network training.
EWC and SI use specific formulation while HAT learns
attention masks. Incremental moment matching (IMM; Lee
et al., 2017) is an evolution of EWC, performing a separate
model-merging step after learning a new task.

Progressive neural networks (PNNs; Rusu et al., 2016) dis-
tribute the network weights in a column-wise fashion, pre-
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assigning a column width per task. They employ so-called
adapters to reuse knowledge from previous columns/tasks,
leading to a progressive increase of the number of weights
assigned to future tasks. Instead of blindly pre-assigning
column widths, HAT learns such ‘widths’ per layer, together
with the network weights, and adapts them to the difficulty
of the current task. PathNet (Fernando et al., 2017) also
pre-assigns some amount of network capacity per task but,
in contrast to PNNs, avoids network columns and adapters.
It uses an evolutionary approach to learn paths between a
constant number of so-called modules (layer subsets) that
interconnect between themselves. HAT does not maintain a
population of solutions, entirely trains with backpropagation
and SGD, and does not rely on a constant set of modules.

Together with PNNs and PathNet, PackNet (Mallya &
Lazebnik, 2017) also employs a binary mask to constrain the
network. However, such constrain is not based on columns
nor layer modules, but on network weights. Therefore, it
allows for a potentially better use of the network’s capac-
ity. PackNet is based on heuristic weight pruning, with
pre-assigned pruning ratios. HAT also focuses on network
weights, but uses unit-based masks to constrain those, which
also results in a lightweight structure. It avoids any absolute
or pre-assigned pruning ratio, although it uses the com-
pressibility parameter c to influence the compactness of the
learned models. Another difference between HAT and the
previous three approaches is that it does not use purely bi-
nary masks. Instead, the stability parameter smax controls
the degree of binarization.

Dynamically expandable networks (DEN; Yoon et al., 2018)
also assign network capacity depending on the task at hand.
However, they do so in a separate stage called “selective
retraining”. A complex mixture of heuristics and hyper-
parameters is used to identify “drifting” units, which are
duplicated and retrained in another stage. L1 regulariza-
tion and L2-transfer are employed to condition learning,
together with the corresponding regularization constants
and an additional set of thresholds. HAT strives for simplic-
ity, restricting the number of hyperparameters to two that
have a straightforward conceptual interpretation. Instead
of plain L1 regularization over network weights, HAT em-
ploys an attention-weighted L1 regularization over attention
masks. Attention masks are a lightweight structure that can
be plugged in without the need of introducing important
changes to a pre-existing network.

4. Experiments
Setups — Common setups to evaluate catastrophic forget-
ting in a classification context are based on permutations
of the MNIST data (Srivastava et al., 2013), label splits
of the MNIST data (Lee et al., 2017), incrementally learn-
ing classes of the CIFAR data sets (Lopez-Paz & Ranzato,

2017), or two-task transfer learning setups where accuracy
is measured on both source and target tasks (Li & Hoiem,
2017). However, there are some limitations with these se-
tups. Firstly, performing permutations of the MNIST data
has been suggested to favor certain approaches, yielding mis-
leading results3 in the context of catastrophic forgetting (Lee
et al., 2017). Secondly, using only the MNIST data may
not be very representative of modern computer vision tasks,
nor particularly challenging (Xiao et al., 2017). Thirdly,
incrementally adding classes or groups of classes implies
the assumption that all data comes from the same joint distri-
bution, which is unrealistic for a real-world setting. Finally,
evaluating catastrophic forgetting with only two tasks biases
the conclusions towards transfer learning setups, and pre-
vents the analysis of truly sequential learning with more than
two tasks. In this paper, we consider the aforementioned
MNIST and CIFAR setups (Sec. 4.2). Nonetheless, we pri-
marily evaluate on a sequence of multiple tasks formed by
different classification data sets (Sec. 4.1).

To obtain a generic estimate, we weigh a number of tasks
and uniformly randomize their order. After training task t,
we compute the accuracies on all testing sets of tasks τ ≤ t.
We repeat 10 times this sequential train/test procedure with
10 different seed numbers, which are also used in the rest of
randomizations and initializations (see below). To compare
between different task accuracies, and in order to obtain
a general measurement of the amount of forgetting, we
introduce the forgetting ratio

ρτ≤t =
Aτ≤t −AτR
Aτ≤tJ −AτR

− 1, (6)

where Aτ≤t is the accuracy measured on task τ after se-
quentially learning task t, AτR is the accuracy of a random
stratified classifier using the class information of task τ ,
and Aτ≤tJ is the accuracy measured on task τ after jointly
learning t tasks in a multitask fashion. Note that ρ ≈ −1
and ρ ≈ 0 correspond to performances close to the ones of
the random and multitask classifiers, respectively. To report
a single number after learning t tasks, we take the average

ρ≤t =
1

t

t∑
τ=1

ρτ≤t.

Data — We consider 8 common image classification data
sets and adapt them, if necessary, to an input size of
32 × 32 × 3 pixels. The number of classes goes from
10 to 100, training set sizes from 16,853 to 73,257, and
test set sizes from 1,873 to 26,032. For each task, we ran-

3Essentially, the MNIST data contains many values close to
0 that allow for an easier identification of the important units or
weights which, if permuted, can then be easily frozen without
overlapping with the ones of the other tasks (see Lee et al., 2017).
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domly split 15% of the training set and keep it for valida-
tion purposes. The considered data sets are: CIFAR10 and
CIFAR100 (Krizhevsky, 2009), FaceScrub (Ng & Winkler,
2014), FashionMNIST (Xiao et al., 2017), NotMNIST (Bu-
latov, 2011), MNIST (LeCun et al., 1998), SVHN (Netzer
et al., 2011), and TrafficSigns (Stallkamp et al., 2011). For
further details on data we refer to Supplementary Materials.

Baselines — We consider 2 reference approaches plus
9 recent and competitive ones: standard SGD with
dropout (Goodfellow et al., 2014), SGD freezing all lay-
ers except the last one (SGD-F), EWC, IMM (Mean and
Mode variants), learning without forgetting (LWF; Li &
Hoiem, 2017), less-forgetting learning (LFL; Jung et al.,
2016), PathNet, and PNNs. To find the best hyperparameter
combination for each approach, we perform a grid search us-
ing a task sequence determined by a single seed. To compute
the forgetting ratio ρ (Eq. 6), we also run the aforementioned
random and multitask classifiers.

Network — Unless stated otherwise, we employ an
AlexNet-like architecture (Krizhevsky et al., 2012) with
3 convolutional layers of 64, 128, and 256 filters with 4× 4,
3× 3, and 2× 2 kernel sizes, respectively, plus two fully-
connected layers of 2048 units each. We use rectified linear
units as activations, and 2 × 2 max-pooling after the con-
volutional layers. We also use a dropout of 0.2 for the
first two layers and of 0.5 for the rest. A fully-connected
layer with a softmax output is used as a final layer, together
with categorical cross entropy loss. All layers are randomly
initialized with Xavier uniform initialization (Glorot & Ben-
gio, 2010) except the embedding layers, for which we use a
Gaussian distribution N (0, 1). Unless stated otherwise, our
code uses PyTorch’s defaults for version 0.2.0 (Paszke et al.,
2017). We adapt the same base architecture to all baseline
approaches and match their number of parameters to 7.1 M.

Training — We train all models with backpropagation and
plain SGD, using a learning rate of 0.05, and decaying it by
a factor of 3 if there is no improvement in the validation loss
for 5 consecutive epochs. We stop training when we reach
a learning rate lower than 10−4 or we have iterated over
200 epochs (we made sure that all considered approaches
reached a stable solution before 200 epochs). Batch size is
set to 64. All methods use the same task sequence, data split,
batch shuffle, and weight initialization for a given seed.

4.1. Results

We first look at the average forgetting ratio ρ≤t after learning
task t (Fig. 3). A first thing to note is that not all the consid-
ered baselines perform better than the SGD references. That
is the case of LWF and LFL. For LWF, we observe it is still
competitive in the two-task setup for which it was designed,
t = 2. However, its performance rapidly degrades for t > 2,
indicating that the approach has difficulties in extending

1 2 3 4 5 6 7 8
t
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Figure 3. Average forgetting ratio ρ≤t for the considered ap-
proaches (10 runs).

Table 1. Average forgetting ratio after the second (ρ≤2) and the
last (ρ≤8) task for the considered approaches (10 runs, standard
deviation into parenthesis).

APPROACH ρ≤2 ρ≤8

LFL -0.73 (0.29) -0.92 (0.08)
LWF -0.14 (0.13) -0.80 (0.06)
SGD -0.20 (0.08) -0.66 (0.03)
IMM-MODE -0.11 (0.08) -0.49 (0.05)
SGD-F -0.20 (0.15) -0.44 (0.06)
IMM-MEAN -0.12 (0.10) -0.42 (0.04)
EWC -0.08 (0.06) -0.25 (0.03)
PATHNET -0.09 (0.16) -0.17 (0.23)
PNN -0.11 (0.10) -0.11 (0.01)
HAT -0.02 (0.03) -0.06 (0.01)

beyond a transfer learning setup. We find LFL extremely
sensitive to the configuration of its hyperparameter, to the
point that what is a good value for one seed, turns out to
be a bad choice for another seed. Hence the poor average
performance for 10 seeds. The highest standard deviations
are obtained by LFL and PathNet (Table 1), which suggests
a high sensitivity with respect to hyperparameters, initial-
izations, or data sets. Another thing to note is that the IMM
approaches only perform similarly or slightly better than
the SGD-F reference. We believe this is due to both the
different nature of the tasks’ data and the consideration of
more than two tasks, which complicates the choice of the
mixing hyperparameter.

The best performing baselines are EWC, PathNet, and PNN.
PathNet and PNN present contrasting behaviors. Both, by
construction, never forget; therefore, the important differ-
ence is in their learning capability. PathNet starts by cor-
rectly learning the first task and progressively exhibits dif-
ficulties to do so for t ≥ 2. Contrastingly, PNNs exhibits
difficulty in the first tasks and becomes better as t increases.
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These contrasting behaviors are due to the way the two ap-
proaches allocate the network capacity. As mentioned, they
cannot do it dynamically, and therefore need to pre-assign
a number of network weights per task. When having more
tasks but the same network capacity, this pre-assignment
increasingly harms the performance of these baselines, low-
ering the corresponding curves in Fig. 3.

We now move to the HAT results. First of all, we observe
that HAT consistently performs better than all considered
baselines for all t ≥ 2 (Fig. 3). For the case of t = 2, it
obtains an average forgetting ratio ρ≤2 = −0.02, while the
best baseline is EWC with ρ≤2 = −0.08 (Table 1). For
the case of t = 8, HAT obtains ρ≤8 = −0.06, while the
best baseline is PNN with ρ≤8 = −0.11. This implies
a reduction in forgetting of 75% for t = 2 and 45% for
t = 8. Notice that the standard deviation of HAT is lower
than the ones obtained by the big majority of the baselines
(Table 1). This denotes a certain stability of HAT with
respect to different task sequences, data sets, data splits, and
network initializations.

Given the slightly increasing tendency of PNN with t
(Fig. 3), one could speculate that PNN would score above
HAT for t > 8. However, our empirical analyzes suggest
that that is not the case (presumably due to the capacity
pre-assignment and parameter increase problems underlined
in Sec. 3 and above). In particular, we observe a gradual
lowering of PathNet and PNN curves with increasing se-
quences from t = 2 to 8. In addition, we observe PathNet
and PNN obtaining worse performances than EWC in the
case of t = 10 for the incremental class setup (see below
and Supplementary Materials). In general, none of the base-
line methods consistently outperforms the rest across setups
and for all t, a situation that we do observe with HAT.

4.2. Additional Results

To broaden the strength of our results, we additionally ex-
periment with three common alternative setups. First, we
consider an incremental class learning scenario, similar
to Lopez-Paz & Ranzato (2017), using class subsets of both
CIFAR10 and CIFAR100 data. In this setup, the best base-
line after t ≥ 3 is EWC, with ρ≤10 = −0.18. HAT scores
ρ≤10 = −0.09 (55% forgetting reduction). Next, we con-
sider the permuted MNIST sequence of tasks (Srivastava
et al., 2013). In this setup, the best result we could find in the
literature was from SI, with A≤10 = 97.1%. HAT scores
A≤10 = 98.6% (52% error rate reduction). Finally, we also
consider the split MNIST task of Lee et al. (2017). In this
setup, the best result from the literature corresponds to the
conceptor-aided backpropagation approach (He & Jaeger,
2018), with A≤2 = 94.9%. HAT scores A≤2 = 99.0%
(80% error rate reduction). The detail for all these setups
and results can be found in Supplementary Materials.
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Figure 4. Effect of hyperparameters smax and c on average forget-
ting ratio ρ≤8. Results for seed 0.

4.3. Hyperparameters

In any machine learning algorithm, it is important to assess
the sensitivity with respect to the hyperparameters. HAT
has two: the stability parameter smax and the compressibil-
ity parameter c (Secs. 2.4 and 2.6). A low smax provides
plasticity to the units and capacity of adaptation, but the
network may easily forget what it learned. A high smax

prevents forgetting, but the network may have difficulties in
adapting to new tasks. A low c allows to use almost all of
the network’s capacity for a given task, potentially spending
too much in the current task. A high c forces it to learn
a very compact model, at the expense of not reaching the
accuracy that the original network could have reached. We
empirically found good operation ranges smax ∈ [25, 800]
and c ∈ [0.1, 2.5]. As we can see, any variation within these
ranges results in reasonable performance (Fig. 4). Unless
stated otherwise, we use smax = 400 and c = 0.75.

4.4. Monitoring and Network Pruning

It is interesting to note that the hard attention mechanism in-
troduced in Sec. 2 offers a number of possibilities to monitor
the behavior of our models. For instance, by computing the
conditioning mask in Eq. 2 from the hard attention vectors
a≤tl , we can assess which weights obtain a high attention
value, binarize it, and compute an estimate of the instanta-
neous network capacity usage (Fig. 5). We may also inform
ourselves of the amount of active weights per layer and task
(Supplementary Materials). Another facet we can monitor
is the weight reuse across tasks. By a similar procedure,
comparing the conditioning masks between tasks ti and tj ,
j > i, we can asses the percentage of weights of task ti that
are later reused in task tj (Fig. 6).

Another by-product of hard attention masks is that we can
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use them to assess which of the network’s weights are impor-
tant, and then prune the most irrelevant ones (LeCun et al.,
1990). This way, we can compress the network for further
deployment in low-resource devices or time-constrained
environments (cf. Han et al., 2016). If we want to focus
on such compression task, we can set c to a higher value
than the one used for catastrophic forgetting and start with
a positive random initialization of the embeddings el. The
former will promote more compression while the latter will
ensure we start learning the model by putting attention to all
weights in the first epochs (full capacity). We empirically
found that using c = 1.5 and U(0, 2) yields a reasonable
trade-off between accuracy and compression for a single
task (Fig. 7). With that, we can compress the network to
sizes between 1 and 21% of its original size, depending
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Figure 7. Validation accuracy A1 as a function of compression
percentage. Every dot corresponds to an epoch and triangles match
the accuracy of the SGD approach (no compression).

on the task (Supplementary Materials). Comparing these
numbers with the compression rates used by PackNet (25 or
50%), we see that HAT generally uses a much more com-
pact model. Comparing with DEN on the specific MNIST
and CIFAR100 tasks (18 and 52%), we observe that HAT
compresses to 1 and 21%, respectively. Interestingly, and
in contrast to these and the majority of network pruning
approaches, HAT learns to prune network weights through
backpropagation and SGD, and at the same time as the
network weights themselves.

5. Conclusion
We introduce HAT, a hard attention mechanism that, by
focusing on a task embedding, is able to protect the infor-
mation of previous tasks while learning new tasks. This
hard attention mechanism is lightweight, in the sense that
it adds a small fraction of weights to the base network,
and is trained together with the main model, with negligi-
ble overhead using backpropagation and vanilla SGD. We
demonstrate the effectiveness of the approach to control
catastrophic forgetting in the image classification context by
running a series of experiments with multiple data sets and
state-of-the-art approaches. HAT has only two hyperparame-
ters, which intuitively refer to the stability and compactness
of the learned knowledge, and whose tuning we demonstrate
is not crucial for obtaining good performance. In addition,
HAT offers the possibility to monitor the used network ca-
pacity across tasks and layers, the unit reuse across tasks,
and the compressibility of a model trained for a given task.
We hope that our approach may be also useful in online
learning or network compression contexts, and that the hard
attention mechanism presented here may also find some
applicability beyond the catastrophic forgetting problem.
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