
Solving Partial Assignment Problems Using Random Clique Complexes
(Supplementary)

1. Proofs

1.1. Upper Bound to Clique Size in a Random Graph. Let G(n, p) denote the Erdős-Rényi
random graph on n vertices, i.e., G(n, p) = {Gij |1 ≤ i < j ≤ n}, where Gij ∼ Ber(p) are i.i.d
Bernoulli random variables. We denote the number of k-cliques in the realization of G(n, p) as
Xn(k). By definition, a k-clique in a graph G is a subset A of k vertices, which induce a complete
subgraph of G. Additionally, no other vertex in G can be joined by edges to all vertices of A.
Therefore, we can represent Xn(k) as a sum of indicator random variables 1A, where

1A =

{
1 if A is a k-clique in G(n, p)

0 otherwise
(1)

It is clear that Xn(k) =
∑
|A|=k 1A. Hence, we get

E(Xn(k)) = E(
∑
|A|=k

1A) =
∑
|A|=k

E(1A) =

(
n

k

)
p(
k
2)

Using Stirling’s formula, we upper bound Xn(k) as
(
en
k

)k
, where e is the Euler’s number.

1.2. Quadratic Assignment Problem. We begin by defining the general quadratic assignment
problem (QAP) using the Koopman-Beckmann version. Let A = (avv′), B = (bvv′) ∈ Rn×n. Let
Π denote the set of all possible bijections (permutations) π : N → N , where N = {1, 2, . . . n}. We
define the QAP as:

minimize
∑
v,v′

bvv′aπ(v)π(v′)

subject to π ∈ Π

For now on, for ease of notation, we denote the cost function bvv′aπ(v)π(v′) as Cvv′ .

1.3. Asymptotic Analysis of Higher-order Clique Assignment (Proof of Theorem 3).
Given that the QAP is a combinatorial optimization problem, in the case of random symmetric
matrices, the subset of feasible solutions Sπ is of the form:

Sπ = {(π(v), π(v′) | v < v′, u, v = 1, . . . , n}

where, |Sπ| =
(
n+1

2

)
and |Π| = n!.

Recall that our cost function Cvv′ has expectation λe and variance λv. For notational convenience,
we set ε′ = λv − ε . Then, there exists a bijection π ∈ Π, for which the following holds by the
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definition of variance

P

 1

|Sπ|

∣∣∣∣∣∣
∑
v,v′∈π

(Cvv′ − λe)

∣∣∣∣∣∣ ≥ ε′


To proceed further with our proof, we make use of the following lemma by Renyi et. al. [7].

Lemma 1. Let X1, . . . , Xn be independent random variables with |Xk − E(Xk)| ≤ 1, k = 1, . . . , n.
Denote

D :=

√√√√ n∑
k=1

V(Xk)

and let µ be a positive real number with µ ≤ D. Then

P

{∣∣∣∣∣
n∑
k=1

(Xk − E(Xk))

∣∣∣∣∣ ≥ µD
}
≤ 2 exp

(
− µ2

2(1 + µ/2D)2

)
�

In order to apply Lemma 1, we change the form of the inequality as follows:

P

 1

|Sπ|

∣∣∣∣∣∣
∑
v,v′∈π

(Cvv′ − λe)

∣∣∣∣∣∣ ≥ ε′
 (2)

≤
∑
π∈Π

P

 1

|Sπ|

∣∣∣∣∣∣
∑
v,v′∈π

(Cvv′ − λe)

∣∣∣∣∣∣ ≥ ε′
 (3)

≤|Π|P

 1

|Sπ|

∣∣∣∣∣∣
∑
v,v′∈π

(Cvv′ − λe)

∣∣∣∣∣∣ ≥ ε′
 (4)

Before applying Lemma 1, we compute D as,

D =

√ ∑
v,v′∈π

λv =
√
|Sπ|λv

We can rewrite (4) as

|Π|P


( √

λv√
|Sπ|

)(
1√
|Sπ|λv

)∣∣∣∣∣∣
∑
v,v′∈π

(Cvv′ − λe)

∣∣∣∣∣∣ ≥ ε′


=|Π|P


∣∣∣∣∣∣
∑
v,v′∈π

(Cvv′ − λe)

∣∣∣∣∣∣ ≥
(
ε′
√
|Sπ|√
λv

)
︸ ︷︷ ︸

µ

(√
|Sπ|λv

)
︸ ︷︷ ︸

D


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Now, we make use of Lemma 1 and get

|Π|P


∣∣∣∣∣∣
∑
v,v′∈π

(Cvv′ − λe)

∣∣∣∣∣∣ ≥
(
ε′
√
|Sπ|√
λv

)(√
|Sπ|λv

)
≤2|Π| exp

−
(
ε′
√
|Sπ |√
λv

)2

2

(
1 +

ε′
√
|Sπ |√
λv

1

2
√
|Sπ |λv

)2


=2|Π| exp

(
−2|Sπ|

(
ε′
√
λv

ε′ + 2λv

)2
)

Equation 2 can now be written as

P

 1

|Sπ|

∣∣∣∣∣∣
∑
v,v′∈π

(Cvv′ − λe)

∣∣∣∣∣∣ ≤ ε′
 ≥ 1− 2|Π| exp

(
−2|Sπ|

(
ε′
√
λv

ε′ + 2λv

)2
)

It can easily be verified that the expression in the R.H.S. of the above inequality tends to 1 as
n→∞.

We know that for the expression
∣∣∣∑v,v′∈π(Cvv′ − λe)

∣∣∣ ≤ ε′|Sπ|, the following bounds hold.

|Sπ|(λe − ε′) ≤
∑
v,v′∈π

Cvv′ ≤ |Sπ|(λe + ε′)

It follows that

max
π∈Π

∑
vv′
Cvv′

min
π∈Π

∑
vv′
Cvv′

≤ |Sπ|(λe + ε′)

|Sπ|(λe − ε′)
≤ 1 + ε

This completes the proof. �

1.4. Eigenvalue Bounds on Lawler’s QAP Formulation on Random Matrices (Proof of
Theorem 2). As illustrated in [1], we will make use of Talagrand’s concentration inequality. We
provide a tighter bound in the case of our affinity matrix using the Rayleigh’s quotient.

Theorem 1. [8] Let Ω =
∏m
i=1 Ωi be a product space of probability spaces. Let A and At be subsets

of Ω and if for each y = (y1, . . . , ym) ∈ At, there exists a real vector α = (α1, . . . , αm), such that
for every x = (x1, . . . , xk) ∈ A, the following inequality holds

∑
i:xi 6=yi

|αi| ≤ t

(
m∑
i=1

α2
i

)1/2

Then,

P[A]P[Āt] ≤ e−t
2/4.
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Here, At denotes the set with Talagrand distance at most t fromA and Āt denotes the complement
of set At. �

Theorem 2. For a real symmetric matrix A = (aij) ∈ Rm×m and for positive constant t,

P[|λ1(A)−M| ≥ t] ≤ 4e−t
2/8,

where M is the median of λ1(A).

Proof. 1 Given a real symmetric matrix A = (aij) ∈ Rm×m and a non-zero vetor x, the Rayleigh
Quotient R(A, x) is defined as

R(A, x) =
xTAx

xTx

Given the eigenvalues of A in decreasing order as λ1(A) ≥ · · · ≥ λm(A), we know that R(A, x) ∈
[λm(A), λ1(a)]. It is well known that R(A, x) attains its maximum value at λ1(A) when x = v,
where v is the eigenvector corresponding to λ1(A). Therefore, we have

λ1(A) = R(A, v) =
vTAv

vT v
(5)

In our proof, we omit the constant factor vT v and normalize the eigenvector v, hence ‖v‖ = 1.
Consider the product space Ω of entries aij , 1 ≤ i ≤ j ≤ m. Let t,M be real numbers, where

t > 0 and M is the median of λ1(A). Let A be the set of matrices A = (aij) ∈ Ω, for which
λ1(A) ≤ M. By definition, P[A] ≥ 1/2. Additionally, let B be the set of matrices B = (bij) ∈ Ω,
for which λ1(B) ≥ M+ t. Using Rayleigh’s equation (5) for λ1(A), we rewrite it as a summation
of diagonal and off-diagonal terms

λ1(A) = R(A, v) = vTAv =
∑

1≤i<j≤m
(vTi vj + vTj vi)aij︸ ︷︷ ︸
off-diagonal

+

m∑
i=1

vTi viaii︸ ︷︷ ︸
diagonal

≤M (6)

and

λ1(B) = R(B, v) = vTBv =
∑

1≤i<j≤m
(vTi vj + vTj vi)bij︸ ︷︷ ︸
off-diagonal

+

m∑
i=1

vTi vibii︸ ︷︷ ︸
diagonal

≥M+ t (7)

In order to apply Talagrand’s inequality (Theorem 1), we set a real vector α = (αij)1≤i≤j≤m as
follows: For off-diagonal (1 ≤ i < j ≤ m) terms, we set

αij = (vTi vj + vTj vi)

For diagonal (1 ≤ i ≤ m) terms, we set

αii = vTi vi

We proceed by first proving two claims that will be used in this proof.

1Our proof technique follows the technique outlined in [1]
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Claim 1. ∑
1≤i≤j≤m

α2
ij ≤ 2

Proof. By definition,∑
1≤i≤j≤m

α2
ij =

m∑
i=1

(vTi vi)
2 +

∑
1≤i<j≤m

(vTi vj + vTj vi)
2

< 2

(
m∑
i=1

vTi
2

)(
m∑
i=1

vi
2

)
(by AM-GM inequality)

= 2 (since ‖v‖ = 1)

This completes the proof. �

Claim 2. For every A ∈ A, ∑
1≤i≤j≤m;aij 6=bij

|αij | ≥ t

Proof. Recall that for matrix A ∈ A, v is the eigenvector with unit-norm corresponding to λ1(A).
We know that,

vTAv ≤ λ1(A) ≤M (from set A)

while,

vTBv ≥ λ1(B) ≥M+ t (from set Āt)

We observe that the entries in affinity matrices A and B, are affinity scores in interval [0, 1].
Therefore, we have |bij − aij | ≤ 1, for all 1 ≤ i, j ≤ m. For ease of notation, let us denote by P ,
the set of ordered pairs ij with 1ı, j ≤ m where aij 6= bij . Then,

t ≤ vT (B −A)v =
∑
i,j∈P

(bij − aij)vTi vj

≤
∑
i,j∈P

|vTi ||vj | ≤
∑
i,j∈P

|αij |

This completes the proof. �

By the above two claims, we get the following form:

∑
xi 6=yi

|αi| ≥ t >
(

t√
2

) ∑
1≤i≤j≤m

α2
ij

1/2

Applying Talagrand’s inequality, we get

P[λ1(A) ≤M]P[λ1(B) ≥M+ t] ≤ e
−1
4

(
t√
2

)2

≤ e−t2/8
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Since M is the median of λ1(A), by definition P[λ1(A) ≤M] ≥ 1/2, then

P[λ1(A) ≥M+ t] ≤ 2e−t
2/8 (8)

Accordingly, we also have that,

P[λ1(A) ≤M− t] ≤ 2e−t
2/8 (9)

Combining results (8) and (9), we have

P[|λ1(A)−M| ≥ t] ≤ 4e−t
2/8 (10)

This completes the proof. �

1.5. Proof of Lemma 1. For ease of understanding, we drop the (A) as it is obvious from context.
Let λi be the i-th eigenvalue of A, and let xi 6= 0 be its corresponding eigenvector. From Axi = λixi,
we have

AXi = λiXi, where Xi :=
[
xi . . . xi

]
∈Mn \ {0}

It follows,

|λi||||Xi||||||Xi||| = |||λiXi||| = |||AXi||| ≤ |||A||||||Xi|||.
As |||X||| is non-negative, we get |λi| ≤ |||A|||. Thus, every eigenvalue of A is upper bounded by the

matrix norm |||A|||. Applying the triangle inequality, we get that δi(A) = |λi+1(A)−λi(A)| ≤ 2|||A|||,
which completes the proof. �

2. Example

Cliques Graph 1 (G1) Graph 2 (G2)
Clique Neighbours Clique Neighbours

3-Cliques {A,B,D} {A}, {B}, {D}, {A,B}, {A,D}, {B,D}, {B,D,E} {A,C,D} {A}, {C}, {D}, {A,C}, {A,D}, {C,D}, {B,D,E}
{B,D,E} {B}, {D}, {E}, {B,D}, {B,E}, {D,E}, {A,B,D} {B,D,E} {B}, {D}, {E}, {B,D}, {B,E}, {D,E}, {A,C,D}

2-Cliques {A,B} {A}, {B}, {A,B,D} {A,C} {A}, {C}, {A,C,D}
{A,C} {A}, {C} {A,D} {A}, {D}, {A,C,D}
{A,D} {A}, {D}, {A,B,D} {B,D} {B}, {D}, {B,D,E}
{B,D} {B}, {D}, {A,B,D}, {B,D,E} {B,E} {B}, {E}, {B,D,E}
{B,E} {B}, {E}, {B,D,E} {C,D} {C}, {D}, {A,C,D}
{D,E} {D}, {E}, {B,D,E} {D,E} {D}, {E}, {B,D,E}
{D,F} {D}, {F} {D,F} {D}, {F}

1-Cliques {A} {A,B}, {A,C}, {A,D}, {A,B,D} {A} {A,C}, {A,D}, {A,C,D}
{B} {A,B}, {B,D}, {B,E}, {A,B,D}, {B,D,E} {B} {B,D}, {B,E}, {B,D,E}
{C} {A,C} {C} {A,C}, {C,D}, {A,C,D}
{D} {A,D}, {B,D}, {D,E}, {D,F}, {A,B,D}, {D} {A,D}, {B,D}, {C,D}, {D,E}, {D,F}, {A,C,D},

{B,D,E} {B,D,E}
{E} {B,E}, {D,E}, {B,D,E} {E} {B,E}, {D,E}, {B,D,E}
{F} {D,F} {F} {D,F}

Table 1. Neighbourhood of 3, 2, 1-cliques of graphs G1 and G2 shown in Figure 1.

We explained our method with the help of an example shown in Figure 1, Table 1 and Table 2
for a better understanding. We consider two random graphs G1 and G2 with 6 vertices each in
Figure 1(a) for which we perform higher-order matching from 3-cliques 1(b) to 1-cliques 1(d). For
a higher-order matching, we take the neighbourhood of a barycenter of a clique as the barycenters
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(a) (b)

(c) (d)

Figure 1. Matching corresponding 3-clique, 2-cliques and 1-cliques (b)-(d) respec-
tively in a pair of (a) Erdős-Rényi graph.

Cliques Graph 1 (G1) Graph 2 (G2)

3-Cliques {B,D,E} → 1 {B,D,E} → 1
2-Cliques {A,C} → 1 {A,C} → 1

{A,D} → 2 {A,D} → 2
{B,D} → 5 {B,D} → 5
{B,E} → 6 {B,E} → 6
{D,E} → 7 {D,E} → 7
{D,F} → 8 {D,F} → 8

1-Cliques {A}, {B}, {C} {A}, {B}, {C}
{D}, {E}, {F} {D}, {E}, {F}

Table 2. Matchings of 3, 2, 1-cliques of graphs G1 and G2 shown in Figure 1.

of the other cliques it is connected to. Thus, we place additional nodes of different order in the
neighbourhood of each clique in addition to the same order cliques. This information would help
the cliques to have more accurate matches. The neighbours and matchings of 3-cliques, 2-cliques
and 1-cliques are mentioned in the Table 1 and Table 2 for both the graphs G1 and G2 respectively.
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And, the matchings shown in Figure 1(b), 1(c) and 1(d) are based on having the same labels for
each barycenter in graph G1 and G2.

3. Experiments

3.1. Setup. We compare the performance of our proposed method with various other matching
algorithms on synthetic and real world datasets. The real world datasets are categorized in Table 3.
Here, N is the total number of samples with n landmark points in each image to be matched. We
represent random graphs on images in Figure 2 for better understanding and visualization of random
graphs for our experiments. Matchings of two images for real world datasets (Table 3) are shown
in Figure 9.

Groups Dataset N × n

Video Frames
CMU House 111× 30
CMU Hotel 101× 30

Affine
Horse-Rot [2] 200× 35
Horse-Shear [2] 200× 35

Occluded
Books [6] 20× 34
Building [6] 16× 28

Non-Affine
Magazine [5] 30× 30
Butterfly [5] 30× 19

Object Matching
Car [3] 40× 10
Bike [3] 40× 10

Table 3. Datasets used, where N is the number of samples and n is the dimen-
sionality of each sample.

Random graph House 1 Random graph House 110

Correlation: 0.7267

(a)

Random graph Horse 1 Random graph Horse 100

Correlation: 0.8310

(b)

Building 7 Building 12

Correlation: 0.3823

(c)

Figure 2. Pair of Erdős-Rényi graphs on CMU House, Horse Rotate, and Building datasets.

3.2. Effect of Affine Transformation. We created a synthetic dataset from CMU House and
Hotel dataset by uniformly sampling 20% and 40% frames from a video sequence and performing
affine transformations like rotation, reflection, scaling, and shearing. We have explained the trans-
formations we considered for this experiment which is similar to Figure (2) and Table (1) in main
paper. Table(1) in main paper shows the results on the CMU House dataset. Affine transformations

http://vasc.ri.cmu.edu/idb/html/motion/house/index.html
http://vasc.ri.cmu.edu/idb/html/motion/hotel/index.html
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(a) (b) (c) (d) (e)

Figure 3. (a) Original Hotel frame, (b)–(e) four transformations on hotel frame:
rotation, reflection, scaling, and shear (green markers show true matching case with
the original frame (a)).

on Hotel frame are shown in Figure 3. Figure 4 shows the results of matching for the remaining
House (fig. 4(a) and 4(b)) and Hotel synthetic dataset for all the algorithms. We observe that
our method produces best results in all the cases, whereas the error for other algorithms either
remains stable or increases steeply with the increase in the percentage of transformed frames in the
sequence.

3.3. Effect of Occlusion. We considered two datasets with grave occlusions, mentioned in Table
3. Figures 9(i) and 9(j) show the matching of two images for both the datasets, although the
matching results are shown in Table (2) in the main paper. We also created a synthetic dataset
by removing 2, 4, 6, 8, and 10 (6.66%, 13.33%, 20%, 26.66%, and 33.33%) points out of total house
landmark points (i.e., 30 points) from 20% and 60% of frame sequences randomly. Figures 5(a) and
5(b) show the increase in error as we remove more points from images. We also note the difference
in both the results. Since we remove points from more percentage of frames in 5(b), there is more
gradual increase in the error. This experimental setup is similar to Figure (4) in our main paper.
It shows that affinity based methods like FGM and RRWM perform well but our method still
consistently outperforms all the algorithms.

3.4. Effect of Frame Separation. Figures 6(a) and 6(b) show the frame separation level result
of CMU House and Horse Rotate frame sequences. We select a pair of frames at a time with
increase in their frame separation (x-axis). Here, the House dataset consists of 3D rotations of
House whereas Horse Rotate dataset applies rotation with more degree of rotation as the frame
separation level increases. We see that most of the algorithms performs well for both the datasets
even with 0% error.

3.5. Effect of k-Nearest Neighbour. In Figures 7(a) and 7(b), error and computation time of
matching two frames of house are shown with different probability p and nearest neighbor k values.
We observe that as the value of p and k increases, the possibility of mismatching decreases which
leads to correct matching. On the other hand, the computation time increases since it increases
the number of edges in the underlying graph, which in turn leads to a larger number of d-cliques.
This also causes a marked increase in the matching algorithm’s runtime. The computation time
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Figure 4. Error(%) in matching when varying the percentage (20% and 40%) of
transformed images in the frame sequence of CMU House (a)-(b) and CMU Hotel
(c)-(i) . (a) 40◦ rotation, (b) 90◦ rotation, (c) 20◦ rotation, (d) 40◦ rotation, (e) 60◦

Degree rotation, (f) 90◦ rotation, (g) reflection, (h) scaling, and (i) shearing.
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Figure 5. Error (%) in matching when varying the number of missing landmarks
in (a) 20% and (b) 60% of the images in CMU House frame sequence.
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Figure 6. Error (%) in matching by various methods with different frame separa-
tion level for (a) CMU House and (b) Horse Rotate.

of our algorithm considers the time of the Kuhn-Munkres algorithm, which is used as a matching
algorithm to match two random clique complexes, which takes O(n3) running time.

The overall time increases as we increase the value of p and k, since it increases the probability
of an edge occurrence between two landmark points. As the number of edges increase in a random
graph, the number of d-cliques also increase. Due to this phenomenon, the runtime of the Kuhn-
Munkres algorithm also increases.

Figure 7(c) shows the computation time of matching two images with varying k-NN for different
n landmark points in the image. We can clearly see that the time increases with increasing k and
a larger number of landmark points. Here, 60 landmark points take maximum time for the highest
value of k. On the other hand, if we consider lower values of k, even 60 landmark points take a
reasonable amount of time to match, which is comparable to lower values of n. Thus, we set k
value as low as possible for matching, depending on the complexity of the dataset.
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Figure 7. (a) and (b) Error(%) and runtime of matching two frames of House with
varying p and k. Error decreases with p and k, whereas computation time increases.
(c) computation time of matching two images with varying k-NN for n = 10 − 60
landmark points. p is fixed as 0.6 here for all the cases.

3.6. Noise Model. We analyze the performance of our method over other pairwise algorithms for
two different noise models. We follow the noise model setup mentioned in [4]. We introduce noise

in one random graph G1 and generate a noisy version G̃ to be matched with G2. G1 is a random
graph here which is created as G1(n, p) with n nodes and p probability. We describe two noise
models as follows:

Noise Model I:
G̃ = G1 � (1−A) + (1−G1)�A (11)

G̃ is generated using the aforementioned equation where A is a binary random symmetric matrix,
whose entries are drawn from a Bernoulli distribution as A(n, q) with n nodes and q probability and
� represents the element-wise multiplication of matrices. This model flips the node-node adjacency
of G1 with probability q.

Noise Model II:
G̃ = G1 � (1−A) + (1−G1)�B (12)

Again, A and B are binary random symmetric matrices, whose entries are drawn from the Bernoulli
distribution as A(n, q) and B(n, r) with n nodes and q and r probabilities, respectively. This model
flips node-node adjacency of G1 with probability q, and in addition it also creates edges between
non-connected nodes with probability r.

Results of noise model I and II on CMU Hotel and Horse Shear for frame separation level is
shown in Figures 8(a), 8(c) and 8(b), 8(d) respectively. We observe that our method is robust to
noise for both the models as compared to other algorithms since there is a very small increase or
no increase in error (%) for all the cases.
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Figure 8. Error (%) in matching by various methods with different frame separa-
tion level for Noise Model (a) I, (b) II for CMU Hotel and (c) I, (d) II for Horse
Shear.
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CMU House Frame 1 and 110

(a)

CMU Hotel Frame 1 and 100
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Figure 9. Instances of matchings in (a) House, (b) Hotel, (c) Horse Rotate, (d)
Horse Shear frame sequences, (e) Car, (f) Bike, (g) Butterfly, (h) Magazine, (i)
Building and (j) Books dataset. Yellow/green lines show correct/incorrect matches
and isolated points show no matches.
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