Locally Private Hypothesis Testing — Supplementary Material

A. Additional Claims

Proposition 14. For any a,b > 0 we have (a + b)?/3 <
a3 + b?/3,

Proof. Let f(t) (t+1)2/3 t2/3 1. Clearly, f(0) = 0.
Moreover, f/(t) = 2 ((t+1)7'/3 — ¢1/3). Since t + 1 >
t > 0 it follows that (t + 1)~/3 < ¢+=1/3 and so f'(t) < 0
for any t € (0,00). Therefore, for any ¢ > 0 we have
f(t) < f(0) = 0. Fix a,b > 0 and now we have:

a 2/3 a\2/3 a+b)2/3 a\2/3
0> (¢+1)" = ()" —1=()"" = (§)" —1

hence a?/% + b?/3 > (a + b)?/3. O

Proposition 15. For any a,b > 0 we have (a + b)*/? =
O (a¥/2 1 1/2),

Proof. Clearly, due to the non-negativity of a and b we
have (a + b)%/? < (2max{a, b})?/? < V/8(a®/? + b*/?).
Similarly, a®/2 4 v%/2 < 2(a + b)3/2. O

Claim 16. Fix two constants 0 < n < p < 1. Let
X1,%9, ..., T, be a collection of n vectors in R whose en-
tries are generated iid and uniformly among {—n, p+n}.

Ifn = Q(%) then for any unit-length vector

u € R we have 1 3 (xfw)? > n?/3.

Proof. Denote y1,...,4, the collection of n vectors
such that y; = %(zl — pl).  Therefore, for each
Y;, its coordinates are chosed iid an uniformly among
{-1,1}.  Therefore Ely;] = 0, and E[y;y]] =
Tixd. As a W-cover of the unit-sphere in R¢

contain O(n~%°8(d)) points (see Vershynin (2010) for
proof), standard Hoeffding-and-union bound yield that

Pr [El'u, in the cover s.t. ’(l Z,yi)Tu - 0‘ > %\/E] <

2
(;)100 log(d).2 exp(—2n1L) < 3. The triangle inequal-
ity thus assures us that for any unit-length vector in R? we

have (% > yz)Tu‘ < GTIW' Moreover, standard matrix-
concentration results (Vershynin 2010) on the spectrum of
the matrix = Z yzyZ give that w.p. 1 — § we have that for

any unlt-length vector u it holds that

T<,£Zyiy3—f>u_o<‘/z”l‘)g(1/5)> <1

NG =3
by our choice of n.

Assume both events hold As for each i we have z; = pl+
ny; then it holds that 2 3 zix] = p*1laxa+22 (3, 1y] +

ylh)+ L ZZ y;y] , thus for each umt-length u we have

%Z(%TU)2= Tu)? + 2um(17w) < Zy> u

T (i Zny> u

>0-2-1-gVd- o0 5 =1 /3

O

Proposition 17. Let || - || be any norm satisfying
le @ v lu||[[v]] (such as the L,-norm for any
p > 1). Let x1,25,Y1,Yy2 be vectors whose norms are
all bounded by some c. Then |1 ® y1 — T2 Q Y| <

c(lz1 — 22l + llyr — y2l))-

Proof.

lz1 ®y1 — x2 @ Y2
=z QY1 —T1 QY2+ T1 VY2 — T2 D Y2
<z @y —z1 Q2|+ |21 ®y2 — 22 @ Y2
= [lzall - lyr — yall + llyzll - [l — 22|
< c(lley — 22 + [lyr — y2l)) O

B. Missing Proofs: Symmetric Scheme

Corollary 18 (Corollary [2] restated.). Let q* be the |S \
dlmenszonal vector given by (D= )

1 =1 and as-
suming that (GTq* + ker(G)) N H # (), then any vector in
H of the form p* + u where p* = G'q* and u € ker(G)
is an hypothesis that maximizes the likelihood of the given
signals (Y1, ..., Yn)-

Proof. Our goal is to find some p € H which minimizes
f(p). Denoting q as the |S|-dimensional vector such that
q(s) = gIp, we note that G isn’t just any linear transfor-
mation, but rather one that induces probability over the sig-
nals, and so ¢ is a non-negative vector that sums to 1. We
therefore convert the problem of minimizing our loss func-



Locally Private Hypothesis Testing

tion into the following optimization problem

~ 3 nglog(g(s))

ses
subject to Z q(s) =

Vs, q(s) >0
q=Gp
peH

min ¢(pa q) -

Iajsing Lagrange multipliers, it is easy to see that
(‘TZ) = ((s})ses and that 8% (Yeesals)—1) =1 =
6% (g — Gp =0) and so the minimizer is obtained when

q equates all ratios q( 5= q(g ea) for all s, s’, namely when

q = q*. Since we assume GTq* + ker(G) has a non-empty
intersection with H, then let p be any hypothesis in H of
the form p* + u where u € ker(G). We get that (p,q) is
the minimizer of ¢ satisfying all constraints. By assump-
tion, p € H. Due to the fact that G is full-rank and that

|S| < |X| we have that G(p* + u) = G - GTg* +0 =
I -q* = q*, and by definition, ¢* is a valid distribution
vector (non-negative that sums to 1). L]

Claim 19 (Claim{). Given signals y., ..., y,, generated us-

ing standard randomized response with parameter € < 1,

2 . ming{n,} )_

we have that our log-loss function is ©(e
n

strongly convex.

Proof. Recall that for any € X we have glp =

P + ~vp(xz). Hence, our log-loss function f(p) =

— L3 exnalog(p + yp(x )), whose gradient is the vec-

tor whose z-coordinate is —T22 - The Hessian
3 i 8p(m) p+w(r)

of f is therefore the diagonal matrix whose diagonal en-

tries are W Recall the definitions of  and p: it is

easy to see that v > ep, and since € < 1 we also have that
e — 1 < 2¢ hence v < 2¢ - p. And so:

: 2
V- ming {n,} v
n (p+2ep-1)°
€22 2
= min{ng} - ————— I >min{n,} - —— 1T
= min{n, } 2(1+2e2 = min{n. } (1 + 2¢)2
making f at least (% : min””T{"“”})-strongly convex. O

Corollary 20 (Corollary [5|restated.). In order to do iden-
tity testing under standard randomized response with con-
fidence and power > > 2/3, it is necessary and sufficient that

we get O(% 2) samples.

Proof. For any q € H; it follows that drv (¢ (), ¢(q)) =
3ll(p1+p) — (W1+99) 1 = 5lp—gll = 7-drv(p.g) >
~a. Recall that p = and v = m, and so, for

1 2e
T <7_T9

T— 1+e6

e<1wehavem<p< and

T+2

namely p = O(1/7T) and v = ©(e/T). Next, we bound

1 + pl|2:

(o2 +~yp||%)2/3 =3 (p+w@)’

reX

> ) max{p*/?,4*/3p(2)*/*}

reX
> max { T2, 4*|pl|* }
3

Using the fact that (a 4 b)%/% < a?/? 4 b*/3 (See Proposi-
tion[T4]in Section[A)) we also get

3
> (p+ap@): <> P+ Pp(a)??
zeX x€EX

2/3
=T +9*CplY

It follows that the necessary and sufficient number of sam-
ples required for identity-testing under standard random-
ized response is proportional to

1 +yp| 2
© (W = O

3
£2/3 2/3\ 2
TV + farllpll RER T2.5+T||p||%
N €202 ea?

3/2
ot +9pl3°

4/3a4/3

/S A3
T4/3

where the derivation marked by (x) follows Proposition
in Section For any T-dimensional vector x with L;-
3
T 2
norm of 1 we have [z 2 = (Z x(l)§> < V/T. Thus
i=1
ol < VT and therefore the first of the two terms in the
sum is the greater one. The required follows.

Comment: It is evident that the tester given by Valiant
and Valiant (2014) solves (w.p. > 2/3) the problem of
identity-testing in the randomized response model using

O(T?%%/e?a?) samples. However, it is not a-priori clear
why their lower bounds hold for our problem. After all, the
set ¢(H1) is only a subset of {q : drv(¢(p),q) > ~al}.
Nonetheless, delving into the lower bound of Valiant and
Valiant, the collection of distributions which is hard to dif-
ferentiate from p given o (||p||§a2) samples is given by
choosing suitable A(z) and then looking at the ensemble
of distributions given by {p(z) £ A(x)} for each z € X.
Luckily, this ensemble is maintained under ¢, mapping
each such distribution to {p + yp(x) £ vA(x)}. The lower
bound follows. O

Lemma 21 (Lemma [7] restated.). Suppose that n, the
Then
the above procedure creates dlstrlbutlons 27 such that the

number of signals, is at least (7 222 max;{T7}).
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product distribution z = 2" x 2% x ... x z¢ satisfies the fol-
lowing property. If the signals y1, ..., y, were generated by
©(p) for some product-distribution p = p* x ... x p?, then
w.p. > 8/9 we have that d,»(p(2), ¢(p)) < v*a?/1000.

Proof. Fix feature j. Let p’ be the marginal distribution of
the distribution p which generated the samples (whether p
belongs to Hy or H1) on the jth feature. It follows that pro—
jecting the signals onto their jth feature yields 37, y3, e Y3
which were generated using ¢ (p’) = (1—7)ux,+yp’. Ka-
math et al (2015)) have shown that w.p. > 8/9 it holds that

(@, o(p)) < 220,
format1on 2 = ( 1 21 XJ) %/ and similarly note that
p=(1- i) <p(p7) We note that 27 is a valid
probability distribution: for each 2/ € X7 we have that
Z(a?) > 17?;’ + 7 hence 27 (x7) > 7 > 0; and since
= %(1 -1 - ’y)) = 1. We thus bound the -
divergence between 27 and p7:

We now apply the linear trans-

(P (=

% (F) - 7 N+

dy2(27,p7) = . 1 (35 i—
(27,p7) %: (55 (9) — T
1 ) — o) ()
Z x]) 1;;7
) 800 <~ () — (P ) _ 2100 T 1
~ ay? ~ Z3(ad) ~ay? n+1

where the inequality in () follows from the fact that

éj(xj) — 1T7 >y = &L L whereas F(x) <
1+’yTJ < 1—5"’;T < 1+;J—1 § 3 ase < 1.

Next, we use the product lemma from (Reiss, [1989)
(Lemma 3.3.10) (similar argument was made in (Acharya
et al.,2015)). Assuming that Zj dy»> (27,p7) < 1 we now
have that

dy2(2,p) < exp | Y _dya(2),p))
j

_ 600d > (T7 1) -

n+1 -

—1<2) dpe(d,p
J

max; {T7}
n+1

600d?
ay?

a72

Finally, we can obtain the bound we are after:

o (p+72(&) — p — 7p(z))?
dx2((),()):§ C_
PEeRD = 2, p+%(T)
Z i’ 2 2 max;{T7
<7’ = 6?’3 . n]—i:{711}

TeEX

setting n = Q( 22 max{TJ}) gives the required bound
of dy2 ((2), () < a7/1000. O

Claim 22 (Claim [§| restated.). Assume the underlying dis-
tribution of the samples is q and that the number of sig-

nals is at least n = Q(% log(dmax; T7)). Then
w.p. > 8/9 our preprocessing step marks certain types
each feature as “small” such that the probability (under q)
of sampling a type (x*, 22, ..., ) such that 35,27 is small
is < af2.

Proof. Fix q, the distribution that generated the samples.
Thus, the signals were generated using the distribution
©(q). Fix a feature j and look at the marginal of ¢ with
regards to the jth feature, qj We call a type 2/ € X7
infrequent if ¢7 (z7) < & - 7. We now argue that w.p.
> 8/9 all types deemed as small by our preprocessing
step (for all d features) are also infrequent. This follows
immediately from the Hoeffding bound: If 27 is frequent
then p(¢7 (27)) = *= +7¢7 (¢7) > 257 + 35 - 75, but
as 27 is deemed small the difference between 1’ and its

expected value is at least £7 le, SO Hoeffdmg assures us

this event happens w.p. < exp(—2ngT> (T])2 ). Apply-

ing the union bound, the probability that any of j T7
types that might be deemed as small is actually frequent

is thus upper bounded by (Za Tj) . exp(—Qn% ﬁ)

Asn = Q(dg(m;#” log(d max; T7)) we infer that this

bad event happens with probability < 1/9.

Now that we’ve established that all infrequent types
are also deemed small in our pre-processing, we bound
Prg[(z?, .., 2%) 3j s.t. 27 is small] using the union

bound:
< J . pdiqi
Zl;r[x < Zl;r[x : 27 is infrequent]
j j

Y Y =Y Y &b

j xJ infrequent j I infrequent

<D =% =
J

. 27 is small]

C. Missing Proofs: Non-Symmetric Scheme

Theorem 23 (9restated.). For any convex set H, the prob-
lem of finding the max-likelihood p € H generating the ob-
served non-symmetric signals (y1, .., Yn) is poly-time solv-
able.

Proof. Fix any p € H, a probability distri-

bution on X. Using the public G; we in-
fer a distribution on S, as Prly; = s =
> Pr[y; = s|y; picked using G;e,] - Prluser ¢ has type z] =
reX

ZZL’GX sGea: : p(.’L‘) = e:eri (ZxGXp(x)ea:) =
elGip o g;Tp, with g5 denoting the row of G

corresponding to signal s.
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Therefore, given the observed signals (y1,...,y,) € S™,
the likelihood of any p is given by L(p; y1,...,Yn) =

IL g; "Tp. Naturally, the function we minimize is the nega-
tion of the average log-likelihood, namely

p) = —% > log (977p) (1)

so the gradient of f is given by Vf = fﬁ
and thus, the Hessian of fis V2f = 1 3

n

1
zg:/LT gz 4

¢ (ylep)Zg’ 9"

As the Hessian of f is a non-negative sum of rank-1 PSD
matrices, we have that V2 f is also a PSD, so f is convex.
The feasibility of the problem Ir,réilgl f(p) for a convex set H

follows. O

Lemma 24 (Lemma restated.). Fix 6 > 0 and as-
sume that the number of signals we observe is n =
Q(T31og(1/5)). Then wp.> 1 — 6 it holds that the
function f(p) we optimize (as given in Equation (1)) is

(3\/T ) -Lipfshitz and (%) -strongly convex over the sub-

space {x : =1 = 0} (all vectors orthogonal to the all-1

vector).

Proof. Once the G;s have been picked, we view the n sig-
nals and are face with the maximum-likelihood problem as
defined in Theorem [9} As a result of this particular con-
struction, it is fairly evident to argue that the function f
whose minimum we seek is Lipfshitz: the contribution of
each user to the gradient of f is (gi“Tp) 1g¥'. Since our
optimization problem is over the probablhty s1mplex, then
for each p we always have g; 'iTp > % -—n > %, whereas
9"l < (3+n)VT < 2V/T. Therefore, our function f(p)

is (3v/T)-Lipfshitz.

The argument which is hairier to make is that f is also
©(n?)-strongly convex over the subspace orthogonal to
the all-1 vector; namely, we aim to show that for any
unit-length vector u such that "1 = 0 we have that
u(V2f)u > é Since each coordinate of each g; is non-
negative and upper bounded by % +n < 1, then it is ev-
ident that for any probability distribution p and any unit-

2
length vector u we have u' (V? f(p))u > & s e u)

P (g’
i Zz(gi’T )2, it suffices to show that the least elgenvalue
of (1 ¥, 9Vg"

/2.

Let h(vy,...,v,) be the function that maps n vectors in
{3 + 1,3 — n}7 to the least-eigenvalue of the matrix
Ly vwl onld = {z € R : "1 = 0}. As ever, our
goal is to argue that w.h.p we have that h(g{", ....,g¥") =
Egvs [h(g¥",....,g%")]. However, it is unclear what is
Egvi[h(g{", ..., g%")], and the reason for this difficulty lies

) which is still orthogonal to 1 is at least

in the fact that at each day 7 we pick either the “1”-signal or
the “-17-signal based on the choice of g; and g; ! Namely,
for each user ¢, the user’s type x is chosen according to p
and that is independent of GG;. However, once G is popu-
lated, the choice of the signal is determined by the column
corresponding to type x. Had it been the case that each
user’s signal is fixed, or even independent of the entries of
G, then it would be simple to argue that w.h.p. the value
of his > 772 /3. However, the dependence between that two
row vectors we choose for users and the signal sent by the
user makes arguing about the expected value more tricky.

So let us look at . g7 g; T The key to unraveling the
dependence between the vectors g7, g; ! and the signal y;
is by fixing the types of the n users in advance. After all,
their type is chosen by p independently of the matrices G;.
Now, once we know user ¢ is of type x; then the signal y; is
solely a function of the x;-column of G, but the rest of the
columns are independent of y;. Therefore, every coordinate
g?'(«") for any x’ # x; is still distributed uniformly over
{2 +n,% —n}, and simple calculation shows that

Prlg!" (i) = § + 1]
= Y Prlgiw) = §tnandy =3
sef{1,—1}
= Y Prlyi=slgi(x:) = § + 0] Prlg; (z;) = § +7]
se{1,—1}

=2 5(z+n)=35+n

hence, Prg!* (z;) = 5 —n] = % - 77 and so E[g" (z;)] =
(% _;_,7)24_(% —n)? = 2 +2772 3 L+ 212, We thus have
that E[g?'] = 31 4 2n? exz

Note that E[(¢!"(z;) — 3)?] = n? as we always have

that g/ (z;) — 5 € {-n,n}. Thus, E[(g}" — 31)(g}" —
1T = 2L 1t follows that Elg¥'g¥ '] = 02l —
(3)%1xxx + 3 (Elg) 1T +1E[g)]") = (5)*1axx +
n?I +n* (e;, 17 +1e] ).

We therefore have that for any unit 1ength u which is or-

thogonal to 1 we have Efu" Z 9/'g! u] = n%n, or in

other words: E[P, (L Y. g¥'g¥ 1] = n2I (with Py denot-
ing the projection onto the subspace {{f). The concentration
bound for any unit-lengthu € U follows from standard Ho-
effding and Union bounds on a %—cover of the unit-sphere
in Y. The argument is standard and we bring it here for

completion.

Letuy,...,u,, be a %—cover of the unit-sphere in /. Stan-
dard arguments (see Vershynin (2010) Lemma 5.2) give
that m = O(207). Moreover, for any matrix M, suppose
we know that for each u; it holds that 77 < 'u,TMuj <
||Mu,||. Then let u be the unit-length u € U on which

" Mu is minimized (we denote the value at u as Omin(M))
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and let u; its vector in the cover. Then we get

Omin(M) =u' Mu
—uTMuj —u] M (u;
> 40 = | Muy| - § —
= %amin(M) > %772

—u) + (u; —u)" Mu

%O—min (M)

S0 Omin(M) > 1?/2. We therefore argue that for each U,
it holds that Pr{u] (% S, glghT 82 < 5/207
and then by the union-bound the required will hold.

)’U,j<

Well, as shown, E[’u,JT (% S.9Yg lyT) u;] = 2. Denote

X; as the random variable (uTgff

orthogonality to 1 we have that

)2 and note that due to

0<X; = (uj (97" — 51))° < llu;|1*-llg?" — 31I1° = 0T

The Hoeffding bound now assures wus that
T

Priu] (13,979 ") u; < ] =

s T o oy T
Priuf (130,979 ") w; — Elu] (33,0700 )uj] <

~ 1) < exp(Z21/1%) — exp(—n/8T2) < 6/207 for
n=Q(T%In(1/5)). O

Proposition 25 (Proposition [12]restated.).
E[(0 —2nf)(6 — 2nf)"] < +1

Proof. The columns of each G; are chosen independently,
and moreover, the signal y; depends only on a single col-
umn. Therefore, it is clear that for each z # x’ we have

that E [(0(z) — 2nf(2))(0(z") — 2nf(2"))] = E[6(z) -
2nf(z))-E[0(z")—2nf(z")] = 0, so all the off-diagonal en-
tries of the variance-matrix are 0. And for each type x € X
we have that

E[(0(z) — 2nf(x))’]
=5 Y El(3r @ -3 - 20f@) (el @) - 1) - 20/ (@))]

© ZE[(%(gfi () = 3) - 2nf(:c>)2]
_ %Z E(3(6% ()~ )]~ tnf(a) - BLL(

21—47”” 2772% +Z4n2f(w)2>

— :l/‘2
(0 + o oy = A

=)+ 4 f(x)?

) 1
n2

—

IA

1 1
n n

where (x) follows from the independence of the ith and

the 7/th sample, and (*x*) holds because 7(gl () — 3) €

{1’_1}' O]

Theorem 26 (Theorem[I3|restated.). Assume € < 1. Given
n = Q(% (T + d? > Tj>) iid drawn signals from the
non-symmetric locally-private mechanism under a dataset
whose types were drawn iid from some distribution q, then
w.p. > 2/3 over the matrices G; we generate and the types
in the dataset we have the followmg guarantee Ifqisa
product distribution, then drv (3 .0 .0) < 2, and lfq is a-

far from any product distribution then dTv( 0.,0) >

Proof. The proof follows the derivations made at the proof
of Theorem [T} For the time being, we assume the types
of the n users are fixed and denote the frequency vec-
tor f = (“=)7. Moreover, for each feature j we denote
the marginal frequency vector as f7. Recall that we have

shown thatE[—;nH] = fand thatE[(—21770—f)(—21n0—f)T] =
1
I
4n2n

Fix a feature j. The way we obtain 67 is by summing the
entries of ﬁO for each type 2/ € X7, This can be viewed
as a linear operator M7, of dimension T7 x T, where the
27 -row of M7 has 1 for each z € X whose j-th feature is
27 and 0 anywhere else. Since each column has a single
1, it follows that for every two distinct types 7 and 37,
the dot-product of the x7-row and the y7-row of M7 is 0.
Thus, since each row has exactly [] TV = TTJ ones, we
J'#J

have that (M7)(M3)T = L Lyiy xi.

And so, for each feature j we have that E[§/] =
E[M/(;0)] = M/f = f/. Moreover, we also have
E[(67—£7)(67—£7)] = E[M? (50— £)(:0-)TM7T] <
4n o7 1. As aresult, E[[|67 ffJH | < trace(4n s l) =

477—” and the Union-bound together with Chebyshev in-

equality gives that Pr[3j, s.t. |[p? — f7| > %\/%] <
d 1 _ 1

2j=1Tod = 1z°

We now consider the randomness in I For ev-

ery j we denote ¢’ as the marginal of ¢ on the

jth feature. Not surprisingly we have that E[f] =

q and that for each feature E[f/] = MJE[f] =
¢’.  Moreover, some calculations give that E[(f/ —
¢)f — @) = LM (dinglg) —qq") (M?)T =
1 (diag(q?) — (¢7)(¢")"). As a result, for each j we
have E[[lf/ — ¢/[I’] = (1 - [lg|?) < 5. Again,
the union-bound and the Chebyshev inequality give that
Pr(3j, st [|f7 — ¢ > /2] < L = L.

And so, w.p. > 5/6 we get that for each features j we have
167 *qul S VIO — || < VTI(1+ 55) /B <
VTi 12515, where in the last step we used the fact that
n < §hence(1+ﬁ) < %
have ||/ — ¢’||; < 1, and in particular it implies that for

We set n large enough to
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any j we also have ||6/]| < 2. We thus apply the bound on
the product of the s to derive that (Proposition |17|in the
supplementary material) |8 x ... x 8% —q' x ... x ¢¢||; <

QEj\/ﬁ %SQVEM\/%

Moreover, in the proof of Theorem E] we have shown that
Prll| L0 — gl > /2] < 1.
n = Q((XZTT]2 (T +d*Y, Tj)) we have that w.p. > 2/3
both of the following relations holds:

In conclusion, setting

10 —gq' x ... x gL < 3a
126 — gl < La

Now, if q is a product distribution that we have that ¢ =
' x ... x g* and hence [5-0 — 8[|, < . In contrast,
if q is a-far (in total-variation distance, and so (2«)-far in
L1-norm) from any product distribution, then in particular
llg — ' x ... x ¢%||1 > 2a and we get that ||#0 — 0|, >

lg—a" x...xq L~ 0—g" x...xq"|l1 ~ 5,0 —all >
O

D. Additional Figures

For completion, we bring here the results of our experi-
ments.

Figure [2| details the empirical distribution of P(8) we get
under the null-hypothesis, under different sample complex-
ities (n = {10, 100, 1000, 10000} ) for different sizes of do-
mains (7' = {10, 25,50, 100}). Next to the curves we also
draw the curve of the x”-distribution. Since all curves are
essentially on top of one another, it illustrates our point:
the distribution of P(6) under the null-hypothesis is (very
close) to the x2-distribution.

Figure |3| details the empirical distribution of P(6) we get
under the alternative-hypothesis, under different sample
complexities (n = {2500, 5000, 7500, 10000, 200000})
for different TV-distances from the null-hypothesis (o =
{0.25,0.2,0.15,0.1}). The results show the same pattern,
as n increases, the distribution of P(0) shifts away from the
X%-distribution. This is clearly visible in the case where the
total-variation distance is 0.25, and becomes less apparent
as we move closer to the null-hypothesis.

Open Problems. The results of our experiment, together
with the empirical results of the 3rd experiment (shown in
Figure (1)) give rise to the conjecture that the testers in Sec-
tion [4.1] are not optimal. In particular, we suspect that the
x2-based test we experiment with is indeed a valid tester of
sample complexity T° /(na)?. Furthermore, there could
be other testers of even better sample complexity. Both the
improved upper-bound and finding a lower-bound are two
important open problem for this setting. We suspect that
the way to tackle this problem is similar to the approach of

Acharya et al (2015); however following their approach is
difficult for two reasons. First, one would technically need
to give a bound on the y2-divergence between ﬁO and q
(or f). Secondly, and even more challenging, one would
need to design a tester to determine whether the observed
collection of random vectors in {1, —1}7" is likely to come
from the mechanism operating on a distribution close to
2—17]0. This distribution over vectors is a mixture model of
product-distributions (but not a product distribution by it-
self); and while each product-distribution is known (essen-
tially each of the 7" product distributions is a product of ran-
dom {1, —1} bits except for the z-coordinate which equals
1 w.p. % +n) itis the weights of the distributions that are ei-
ther p or a-far from p. Thus one route to derive an efficient
tester can go through learning mixture models — and we
suspect that is also a route for deriving lower bounds on the
tester. A different route could be to follow the maximum-
likelihood (or the loss-function f from Equation (T))), with
improved convexity bounds proven directly on the L /L -
norms.

As explained in Section we could not establish that

der = (370(@) = ()
QO) = n Z 7

can serve as a test quantity, since we could not assess its
asymptotic distribution. Nonetheless, we do believe it be a
test quantity, as the following empirical resulti. We empir-

0 2
ically measure the quantity Q(8) f >ow W
under the null (a = 0) and the alternative (o = 0.25) hy-
pothesis with n = 25,000 samples in each experiment.
The results under a variety of bin sizes are given in Fig-
ure [d] The results point to three facts: (1) the empirical
distribution of () under the null hypothesis is not a x2-
distribution (it is not as centered around the mean and the
tail is longer). (2) there is a noticeable gap between the
distribution of )(6) under the null-hypothesis and under
the alternative-hypothesis. Indeed, the gap becomes less
and less clear under 25, 000 samples as the size of the do-
main increases, but it is present. (3) The empirical sample
complexity required to differentiate between the null- and
the alternative-hypothesis is quite large. Even for modest-
size domains, 25,000 samples weren’t enough to create a
substantial differentiation between the two scenarios. De-
signing a tester based on the quantity () is thus left as an
open problem.
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Figure 2: The empirical distribution of our test quantity under the null-hypothesis.
(Best seen in color) We ran our y?-based test under the null-hypothesis. Not surprisingly, the results we get seem
to be taken from a y2-distribution (also plotted in a dotted black line). In all of the experiments we set € = 0.25.
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Figure 3: The empirical distribution of our test quantity under the alternative-hypothesis.

(Best seen in color) We ran our y2-based test under the alternative-hypothesis with various choices
of TV-distance. As the number of samples increases, the empirical distribution of the test-quantity
becomes further away from the x2-distribution. In all of the experiments, the number of types is 10
and € = 0.25.
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Figure 4: The empirical distribution of (@) for domains of multiple size, under the null- and the
alternative-hypothesis.

(Best seen in color) We measured )(6) under both the null-hypothesis (solid line) and the alternative-
hypothesis (dotted line) with various choices of domain sizes. As the size of the domain increases, it
is evident the 25, 000 samples aren’t enough to differentiate between the null and the alternative. In
all of the experiments e = 0.25 and the alternative hypothesis is 0.25-far in TV-dist from a product
distribution.



