
Locally Private Hypothesis Testing — Supplementary Material

A. Additional Claims
Proposition 14. For any a, b > 0 we have (a + b)2/3 ≤
a2/3 + b2/3.

Proof. Let f(t)
def
= (t+1)2/3−t2/3−1. Clearly, f(0) = 0.

Moreover, f ′(t) = 2
3

(
(t+ 1)−1/3 − t1/3

)
. Since t + 1 >

t > 0 it follows that (t+ 1)−1/3 < t−1/3 and so f ′(t) < 0
for any t ∈ (0,∞). Therefore, for any t > 0 we have
f(t) < f(0) = 0. Fix a, b > 0 and now we have:

0 >
(
a
b + 1

)2/3 − (ab )2/3 − 1 =
(
a+b
b

)2/3 − (ab )2/3 − 1

hence a2/3 + b2/3 > (a+ b)2/3.

Proposition 15. For any a, b > 0 we have (a + b)3/2 =
Θ
(
a3/2 + b3/2

)
.

Proof. Clearly, due to the non-negativity of a and b we
have (a + b)3/2 ≤ (2 max{a, b})3/2 ≤

√
8(a3/2 + b3/2).

Similarly, a3/2 + b3/2 ≤ 2(a+ b)3/2.

Claim 16. Fix two constants 0 < η < µ < 1. Let
xxx1,xxx2, ...,xxxn be a collection of n vectors in Rd whose en-
tries are generated iid and uniformly among {µ−η, µ+η}.
If n = Ω(d

2 log2(d/δη)
η2 ) then for any unit-length vector

uuu ∈ Rd we have 1
n

∑
i(xxx

T
i uuu)2 > η2/3.

Proof. Denote yyy1, ..., yyyn the collection of n vectors
such that yyyi = 1

η (xxxi − µ111). Therefore, for each
yyyi, its coordinates are chosed iid an uniformly among
{−1, 1}. Therefore E[yyyi] = 000, and E[yyyiyyy

T
i ] =

Id×d. As a η

12
√
d

-cover of the unit-sphere in Rd

contain O(η−d log(d)) points (see Vershynin (2010) for
proof), standard Hoeffding-and-union bound yield that
Pr
[
∃uuu in the cover s.t.

∣∣∣( 1
n

∑
i yyyi
)T
uuu− 0

∣∣∣ > η

12
√
d

]
≤

( 1
η )100d log(d) ·2 exp(−2n η2

144d ) < δ
2 . The triangle inequal-

ity thus assures us that for any unit-length vector in Rd we
have

∣∣∣( 1
n

∑
i yyyi
)T
uuu
∣∣∣ ≤ η

6
√
d

. Moreover, standard matrix-
concentration results (Vershynin, 2010) on the spectrum of
the matrix 1

n

∑
i yyyiyyy

T
i give that w.p. 1− δ

2 we have that for
any unit-length vector uuu it holds that

uuuT

(
1
n

∑
i

yyyiyyy
T
i − I

)
uuu = O

(√
d+ log(1/δ)√

n

)
≤ 1

3

by our choice of n.

Assume both events hold. As for each i we have xxxi = µ111+
ηyyyi then it holds that 1

n

∑
i xxxixxx

T
i = µ21d×d+µη

n (
∑
i 111yyy

T
i +

yyyi111
T) + η2

n

∑
i yyyiyyy

T
i , thus for each unit-length uuu we have

1

n

∑
i

(xxxTi uuu)2 = µ2(111Tuuu)2 + 2µη(111Tuuu) ·

(
1
n

∑
i

yyyi

)T

uuu

+ η2uuuT

(
1
n

∑
i

yyyiyyy
T
i

)
uuu

≥ 0− 2 · 1 · η
√
d · η

6
√
d

+ η2 · 2
3 = η2/3

Proposition 17. Let ‖ · ‖ be any norm satisfying
‖uuu ⊗ vvv‖ = ‖uuu‖‖vvv‖ (such as the Lp-norm for any
p ≥ 1). Let xxx1,xxx2, yyy1, yyy2 be vectors whose norms are
all bounded by some c. Then ‖xxx1 ⊗ yyy1 − xxx2 ⊗ yyy2‖ ≤
c (‖xxx1 − xxx2‖+ ‖yyy1 − yyy2‖).

Proof.

‖xxx1 ⊗ yyy1 − xxx2 ⊗ yyy2‖
= ‖xxx1 ⊗ yyy1 − xxx1 ⊗ yyy2 + xxx1 ⊗ yyy2 − xxx2 ⊗ yyy2‖
≤ ‖xxx1 ⊗ yyy1 − xxx1 ⊗ yyy2‖+ ‖xxx1 ⊗ yyy2 − xxx2 ⊗ yyy2‖
= ‖xxx1‖ · ‖yyy1 − yyy2‖+ ‖yyy2‖ · ‖xxx1 − xxx2‖
≤ c (‖xxx1 − xxx2‖+ ‖yyy1 − yyy2‖)

B. Missing Proofs: Symmetric Scheme
Corollary 18 (Corollary 2 restated.). Let qqq∗ be the |S|-
dimensional vector given by 〈nsn 〉. Given that |S| ≤ |X |,
that G is a full-rank matrix satisfying ‖G‖1 = 1 and as-
suming that

(
G†qqq∗ + ker(G)

)
∩H 6= ∅, then any vector in

H of the form ppp∗ + uuu where ppp∗ = G†qqq∗ and uuu ∈ ker(G)
is an hypothesis that maximizes the likelihood of the given
signals (y1, ..., yn).

Proof. Our goal is to find some ppp ∈ H which minimizes
f(ppp). Denoting qqq as the |S|-dimensional vector such that
q(s) = gggTsppp, we note that G isn’t just any linear transfor-
mation, but rather one that induces probability over the sig-
nals, and so qqq is a non-negative vector that sums to 1. We
therefore convert the problem of minimizing our loss func-
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tion into the following optimization problem

minφ(ppp,qqq) = −
∑
s∈S

ns log(q(s))

subject to
∑
s

q(s) = 1

∀s, q(s) ≥ 0

qqq = Gppp

ppp ∈ H

Using Lagrange multipliers, it is easy to see that
∂φ
∂qqq = 〈−nsq(s) 〉s∈S and that ∂

∂qqq

(∑
s∈S q(s)− 1

)
= 111 =

∂
∂qqq (qqq −Gppp = 0) and so the minimizer is obtained when
qqq equates all ratios ns

q(s) = ns′
q(s′) for all s, s′, namely when

qqq = qqq∗. Since we assume G†qqq∗ + ker(G) has a non-empty
intersection with H , then let ppp be any hypothesis in H of
the form ppp∗ + uuu where uuu ∈ ker(G). We get that (ppp,qqq) is
the minimizer of φ satisfying all constraints. By assump-
tion, ppp ∈ H . Due to the fact that G is full-rank and that
|S| ≤ |X | we have that G(ppp∗ + u) = G · G†qqq∗ + 000 =
I · qqq∗ = qqq∗, and by definition, qqq∗ is a valid distribution
vector (non-negative that sums to 1).

Claim 19 (Claim 4). Given signals y1, ..., yn generated us-
ing standard randomized response with parameter ε < 1,
we have that our log-loss function is Θ(ε2 · minx{nx}

n )-
strongly convex.

Proof. Recall that for any x ∈ X we have gggTxppp =
ρ + γp(x). Hence, our log-loss function f(ppp) =
− 1
n

∑
x∈X nx log(ρ + γp(x)), whose gradient is the vec-

tor whose x-coordinate is ∂f
∂p(x) = −γnx

ρ+γp(x) . The Hessian
of f is therefore the diagonal matrix whose diagonal en-
tries are γ2nx

(ρ+γp(x))2 . Recall the definitions of γ and ρ: it is
easy to see that γ ≥ ερ, and since ε < 1 we also have that
eε − 1 ≤ 2ε, hence γ ≤ 2ε · ρ. And so:

∇2f � minx{nx}
n

· γ2

(ρ+ 2ερ · 1)2
I

� min
x
{nx} ·

ε2ρ2

ρ2(1 + 2ε)2
I � min

x
{nx} ·

ε2

(1 + 2ε)2
I

making f at least ( ε
2

9 ·
minx{nx}

n )-strongly convex.

Corollary 20 (Corollary 5 restated.). In order to do iden-
tity testing under standard randomized response with con-
fidence and power≥ 2/3, it is necessary and sufficient that
we get Θ( T

2.5

ε2α2 ) samples.

Proof. For any qqq ∈ H1 it follows that dTV(ϕ(ppp), ϕ(qqq)) =
1
2‖(ρ111+γppp)−(ρ111+γqqq)‖1 = γ

2 ‖ppp−qqq‖1 = γ ·dTV(ppp,qqq) ≥
γα. Recall that ρ = 1

T−1+eε and γ = eε−1
T−1+eε , and so, for

ε < 1 we have 1
T+2ε ≤ ρ ≤ 1

T and ε
T+2 ≤ γ ≤ 2ε

T ,

namely ρ = Θ(1/T ) and γ = Θ(ε/T ). Next, we bound
‖ρ111 + γppp‖ 2

3
:(

‖ρ111 + γppp‖ 2
3

)2/3

=
∑
x∈X

(ρ+ γp(x))
2
3

≥
∑
x∈X

max{ρ2/3, γ2/3p(x)2/3}

≥ max
{
Tρ2/3, γ2/3‖ppp‖2/32

3

}
Using the fact that (a+ b)2/3 ≤ a2/3 + b2/3 (See Proposi-
tion 14 in Section A) we also get∑

x∈X
(ρ+ γp(x))

2
3 ≤

∑
x∈X

ρ2/3 + γ2/3p(x)2/3

= Tρ2/3 + γ2/3‖ppp‖2/32
3

It follows that the necessary and sufficient number of sam-
ples required for identity-testing under standard random-
ized response is proportional to

Θ

(
‖ρ111 + γppp‖ 2

3

γ2α2

)
= Θ(

‖ρ111 + γppp‖2/32
3

γ4/3α4/3

3/2

)

= Θ(

T 1/3 + ε2/3

T 2/3 ‖ppp‖
2/3
2
3

ε4/3

T 4/3α4/3


3
2

)
(∗)
= Θ

(
T 2.5

ε2α2
+
T‖ppp‖ 2

3

εα2

)

where the derivation marked by (∗) follows Proposition 15
in Section A. For any T -dimensional vector xxx with L1-

norm of 1 we have ‖x‖ 2
3

=

(
T∑
i=1

x(i)
2
3

) 3
2

≤
√
T . Thus

‖p‖ ≤
√
T and therefore the first of the two terms in the

sum is the greater one. The required follows.

Comment: It is evident that the tester given by Valiant
and Valiant (2014) solves (w.p. ≥ 2/3) the problem of
identity-testing in the randomized response model using
Θ(T 2.5/ε2α2) samples. However, it is not a-priori clear
why their lower bounds hold for our problem. After all, the
set ϕ(H1) is only a subset of {qqq : dTV(ϕ(ppp), qqq) ≥ γα}.
Nonetheless, delving into the lower bound of Valiant and
Valiant, the collection of distributions which is hard to dif-
ferentiate from ppp given o

(
‖ppp‖ 2

3
α2
)

samples is given by
choosing suitable ∆(x) and then looking at the ensemble
of distributions given by {p(x) ± ∆(x)} for each x ∈ X .
Luckily, this ensemble is maintained under ϕ, mapping
each such distribution to {ρ+ γp(x)± γ∆(x)}. The lower
bound follows.

Lemma 21 (Lemma 7 restated.). Suppose that n, the
number of signals, is at least Ω( d2

α2γ2 maxj{T j}). Then
the above procedure creates distributions zzzj such that the
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product distribution z̄zz = zzz1×zzz2× ...×zzzd satisfies the fol-
lowing property. If the signals y1, ..., yn were generated by
ϕ(p̄pp) for some product-distribution p̄pp = ppp1 × ...× pppd, then
w.p. ≥ 8/9 we have that dχ2(ϕ(z̄zz), ϕ(p̄pp)) ≤ γ2α2/1000.

Proof. Fix feature j. Let pppj be the marginal distribution of
the distribution ppp which generated the samples (whether ppp
belongs toH0 orH1) on the jth feature. It follows that pro-
jecting the signals onto their jth feature yields yj1, y

j
2, ..., y

j
n

which were generated usingϕ(pppj) = (1−γ)uuuXj+γppp
j . Ka-

math et al (2015) have shown that w.p. ≥ 8/9 it holds that
dχ2(z̃zzj , ϕ(pppj)) ≤ 9(T j−1)

n+1 . We now apply the linear trans-
formation zzzj = 1

γ

(
I − 1−γ

T j 1X j
)
z̃zzj and similarly note that

pppj = 1
γ

(
I − 1−γ

T j 1X j
)
ϕ(pppj). We note that zzzj is a valid

probability distribution: for each xj ∈ X j we have that
z̃j(xj) > 1−γ

T j + γτ hence zj(xj) > τ > 0; and since∑
xj z̃

j(xj) = 1 then
∑
xj z

j(xj) = 1
γ

∑
xj z̃

j(xj) −
1−γ
T j = 1

γ (1 − (1 − γ)) = 1. We thus bound the χ2-
divergence between zzzj and pppj :

dχ2(zzzj , pppj) =
∑
xj

1
γ2

(
z̃j(xj)− 1−γ

T j − ϕ(pj(xj)) + 1−γ
T j

)2
1
γ

(
z̃j(xj)− 1−γ

T j

)
=

1

γ

∑
xj

(z̃j(xj)− ϕ(pj(xj)))2

z̃j(xj)− 1−γ
T j

(∗)
≤ 30d

αγ2

∑
xj

(z̃j(xj)− ϕ(pj(xj)))2

z̃j(xj)
≤ 270d

αγ2
· T

j − 1

n+ 1

where the inequality in (∗) follows from the fact that
z̃j(xj) − 1−γ

T j > γτ = αγ
10d ·

1
T j whereas z̃j(xj) ≤

1−γ
T j + γ · 1 ≤ 1+γT j

T j ≤ 1+γT
T j ≤

1+eε−1
T j ≤ 3

T j as ε < 1.

Next, we use the product lemma from (Reiss, 1989)
(Lemma 3.3.10) (similar argument was made in (Acharya
et al., 2015)). Assuming that

∑
j dχ2(zzzj , pppj) ≤ 1 we now

have that

dχ2(z̄zz, p̄pp) ≤ exp

∑
j

dχ2(zzzj , pppj)

− 1 ≤ 2
∑
j

dχ2(zzzj , pppj)

≤ 600d

αγ2
·
∑
j(T

j − 1)

n+ 1
≤ 600d2

αγ2
· maxj{T j}

n+ 1

Finally, we can obtain the bound we are after:

dχ2(ϕ(z̄zz), ϕ(p̄pp)) =
∑
x̄∈X

(ρ+ γz̄(x̄)− ρ− γp̄(x̄))2

ρ+ γz̄(x̄)

≤ γ2
∑
x̄∈X

z̄(x̄)− p̄(x̄))2

γz̄(x̄)
≤ 600d2

αγ
· maxj{T j}

n+ 1

setting n = Ω( d2

α2γ2 max
j
{T j}) gives the required bound

of dχ2(ϕ(z̄zz), ϕ(p̄pp)) ≤ αγ/1000.

Claim 22 (Claim 8 restated.). Assume the underlying dis-
tribution of the samples is qqq and that the number of sig-
nals is at least n = Ω(

d2(maxj T
j)2

α2γ2 log(dmaxj T
j)). Then

w.p. ≥ 8/9 our preprocessing step marks certain types
each feature as “small” such that the probability (under qqq)
of sampling a type (x1, x2, ..., xd) such that ∃j, xj is small
is ≤ α/2.

Proof. Fix qqq, the distribution that generated the samples.
Thus, the signals were generated using the distribution
ϕ(qqq). Fix a feature j and look at the marginal of qqq with
regards to the jth feature, qqqj . We call a type xj ∈ X j
infrequent if qj(xj) ≤ α

3d ·
1
T j . We now argue that w.p.

≥ 8/9 all types deemed as small by our preprocessing
step (for all d features) are also infrequent. This follows
immediately from the Hoeffding bound: If xj is frequent
then ϕ(qj(xj)) = 1−γ

T j + γqj(xj) ≥ 1−γ
T j + γα

3d ·
1
T j , but

as xj is deemed small the difference between nxj
n and its

expected value is at least αγ
5d

1
T j , so Hoeffding assures us

this event happens w.p. ≤ exp(−2nα
2γ2

25d2
1

(T j)2 ). Apply-
ing the union bound, the probability that any of

∑
j T

j

types that might be deemed as small is actually frequent
is thus upper bounded by

(∑
j T

j
)
· exp(−2nα

2γ2

25d2
1

(T j)2 ).

As n = Ω(
d2(maxj T

j)2

α2γ2 log(dmaxj T
j)) we infer that this

bad event happens with probability ≤ 1/9.

Now that we’ve established that all infrequent types
are also deemed small in our pre-processing, we bound
Prqqq[(x

1, .., xd) : ∃j s.t. xj is small] using the union
bound:∑

j

Pr
qqqj

[xj : xj is small] ≤
∑
j

Pr
qqqj

[xj : xj is infrequent]

=
∑
j

∑
xj infrequent

Pr
qqqj

[xj ] =
∑
j

∑
xj infrequent

α
3d ·

1
T j

≤
∑
j

α
3d = α

3

C. Missing Proofs: Non-Symmetric Scheme
Theorem 23 (9 restated.). For any convex set H , the prob-
lem of finding the max-likelihood ppp ∈ H generating the ob-
served non-symmetric signals (y1, .., yn) is poly-time solv-
able.

Proof. Fix any ppp ∈ H , a probability distri-
bution on X . Using the public Gi we in-
fer a distribution on S , as Pr[yi = s] =∑
x∈X

Pr[yi = s|yi picked using Gieeex] · Pr[user i has type x] =∑
x∈X eee

T
sGieeex · p(x) = eeeTsGi

(∑
x∈X p(x)eeex

)
=

eeeTsGippp
def
= gggsi

Tppp, with gggsi denoting the row of Gi
corresponding to signal s.
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Therefore, given the observed signals (y1, ..., yn) ∈ Sn,
the likelihood of any p is given by L(ppp; y1, ..., yn) =∏
i ggg
yi
i

T
ppp. Naturally, the function we minimize is the nega-

tion of the average log-likelihood, namely

f(ppp) = − 1

n

∑
i

log
(
gggyii

T
ppp
)

(1)

so the gradient of f is given by ∇f = − 1
n

∑
i

1

ggg
yi
i

T
ppp
gggyii ,

and thus, the Hessian of f is∇2f = 1
n

∑
i

1

(ggg
yi
i

T
ppp)2
gggyii ggg

yi
i

T.

As the Hessian of f is a non-negative sum of rank-1 PSD
matrices, we have that ∇2f is also a PSD, so f is convex.
The feasibility of the problem min

ppp∈H
f(ppp) for a convex set H

follows.

Lemma 24 (Lemma 10 restated.). Fix δ > 0 and as-
sume that the number of signals we observe is n =
Ω(T 3 log(1/δ)). Then w.p.≥ 1 − δ it holds that the
function f(ppp) we optimize (as given in Equation (1)) is(

3
√
T
)

-Lipfshitz and
(
η2

2

)
-strongly convex over the sub-

space {xxx : xxxT111 = 0} (all vectors orthogonal to the all-1
vector).

Proof. Once the Gis have been picked, we view the n sig-
nals and are face with the maximum-likelihood problem as
defined in Theorem 9. As a result of this particular con-
struction, it is fairly evident to argue that the function f
whose minimum we seek is Lipfshitz: the contribution of
each user to the gradient of f is (gggyii

T
ppp)−1gggyii . Since our

optimization problem is over the probability simplex, then
for each ppp we always have gggyii

T
ppp ≥ 1

2 − η >
1
4 , whereas

‖gggyii ‖ ≤ ( 1
2 +η)

√
T ≤ 3

4

√
T . Therefore, our function f(ppp)

is (3
√
T )-Lipfshitz.

The argument which is hairier to make is that f is also
Θ(η2)-strongly convex over the subspace orthogonal to
the all-1 vector; namely, we aim to show that for any
unit-length vector uuu such that uuuT111 = 0 we have that
uuu(∇2f)uuu ≥ η2

2 . Since each coordinate of each gggsi is non-
negative and upper bounded by 1

2 + η ≤ 1, then it is ev-
ident that for any probability distribution ppp and any unit-

length vector uuu we have uuuT(∇2f(ppp))uuu ≥ 1
n

∑
i

(ggg
yi
i

T
uuu)2

(ggg
yi
i

T
ppp)2
≥

1
n

∑
i(ggg

yi
i

T
uuu)2, it suffices to show that the least eigenvalue

of
(

1
n

∑
i ggg
yi
i ggg

yi
i

T
)

which is still orthogonal to 111 is at least

η2/2.

Let h(vvv1, ..., vvvn) be the function that maps n vectors in
{ 1

2 + η, 1
2 − η}T to the least-eigenvalue of the matrix

1
n

∑
i vvvivvv

T
i on U = {xxx ∈ RT : xxxT111 = 0}. As ever, our

goal is to argue that w.h.p we have that h(gggy11 , ...., ggg
yn
n ) ≈

Egggyii
[h(gggy11 , ...., ggg

yn
n )]. However, it is unclear what is

Egggyii
[h(gggy11 , ...., ggg

yn
n )], and the reason for this difficulty lies

in the fact that at each day i we pick either the “1”-signal or
the “-1”-signal based on the choice of ggg1

i and ggg−1
i . Namely,

for each user i, the user’s type x is chosen according to ppp
and that is independent of Gi. However, once Gi is popu-
lated, the choice of the signal is determined by the column
corresponding to type x. Had it been the case that each
user’s signal is fixed, or even independent of the entries of
Gi, then it would be simple to argue that w.h.p. the value
of h is≥ η2/3. However, the dependence between that two
row vectors we choose for users and the signal sent by the
user makes arguing about the expected value more tricky.

So let us look at
∑
i ggg
yi
i ggg

yi
i

T. The key to unraveling the
dependence between the vectors ggg1

i , ggg
−1
i and the signal yi

is by fixing the types of the n users in advance. After all,
their type is chosen by ppp independently of the matrices Gi.
Now, once we know user i is of type xi then the signal yi is
solely a function of the xi-column of Gi, but the rest of the
columns are independent of yi. Therefore, every coordinate
gyii (x′) for any x′ 6= xi is still distributed uniformly over
{ 1

2 + η, 1
2 − η}, and simple calculation shows that

Pr[gyii (xi) = 1
2 + η]

=
∑

s∈{1,−1}

Pr[gsi (xi) = 1
2 + η and yi = s]

=
∑

s∈{1,−1}

Pr[yi = s|gsi (xi) = 1
2 + η] Pr[gsi (xi) = 1

2 + η]

= 2 · 1
2 ( 1

2 + η) = 1
2 + η

hence, Pr[gyii (xi) = 1
2 − η] = 1

2 − η and so E[gyii (xi)] =

( 1
2 + η)2 + ( 1

2 − η)2 = 2 1
4 + 2η2 = 1

2 + 2η2. We thus have
that E[gggyii ] = 1

2111 + 2η2eeexi .

Note that E[(gyii (xi) − 1
2 )2] = η2 as we always have

that gyii (xi) − 1
2 ∈ {−η, η}. Thus, E[(gggyii − 1

2111)(gggyii −
1
2111)T] = η2I . It follows that E[gggyii ggg

yi
i

T
] = η2I −

( 1
2 )21X×X + 1

2

(
E[gggyii ]111T + 111E[gggyii ]T

)
= ( 1

2 )21X×X +

η2I + η2
(
eeexi111

T + 111eeeTxi
)
.

We therefore have that for any unit length uuu which is or-
thogonal to 111 we have E[uuuT

∑
i ggg
yi
i ggg

yi
i

T
uuu] = η2n, or in

other words: E[PU ( 1
n

∑
i ggg
yi
i ggg

yi
i

T
)] = η2I (with PU denot-

ing the projection onto the subspace U). The concentration
bound for any unit-lengthuuu ∈ U follows from standard Ho-
effding and Union bounds on a 1

4 -cover of the unit-sphere
in U . The argument is standard and we bring it here for
completion.

Let uuu1, ...,uuum be a 1
8 -cover of the unit-sphere in U . Stan-

dard arguments (see Vershynin (2010) Lemma 5.2) give
that m = O(20T ). Moreover, for any matrix M , suppose
we know that for each uuuj it holds that 3

4η
2 < uuuTjMuuuj ≤

‖Muuuj‖. Then let uuu be the unit-length uuu ∈ U on which
uuuTMuuu is minimized (we denote the value atuuu as σmin(M))
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and let uuuj its vector in the cover. Then we get

σmin(M) = uuuTMuuu

= uuuTjMuuuj − uuuTjM(uuuj − uuu) + (uuuj − uuu)TMuuu

≥ 3
4η

2 − ‖Muuuj‖ · 1
8 −

1
8σmin(M)

⇒ 9
8σmin(M) ≥ 5

8η
2

so σmin(M) > η2/2. We therefore argue that for each uuuj
it holds that Pr[uuuTj

(
1
n

∑
i ggg
yi
i ggg

yi
i

T
)
uuuj <

3
4η

2] < δ/20T

and then by the union-bound the required will hold.

Well, as shown, E[uuuTj

(
1
n

∑
i ggg
yi
i ggg

yi
i

T
)
uuuj ] = η2. Denote

Xi as the random variable (uuuTj ggg
yi
i )2 and note that due to

orthogonality to 111 we have that

0 ≤ Xi = (uuuTj (gggyii − 1
2111))2 ≤ ‖uuuj‖2 · ‖gggyii − 1

2111‖2 = η2T

The Hoeffding bound now assures us that
Pr[uuuTj

(
1
n

∑
i ggg
yi
i ggg

yi
i

T
)
uuuj < 3

4η
2] =

Pr[uuuTj

(
1
n

∑
i ggg
yi
i ggg

yi
i

T
)
uuuj − E[uuuTj

(
1
n

∑
i ggg
yi
i ggg

yi
i

T
)
uuuj ] <

− 1
4η

2] ≤ exp(−2n2η4/16
n·η4T 2 ) = exp(−n/8T 2) ≤ δ/20T for

n = Ω(T 3 ln(1/δ)).

Proposition 25 (Proposition 12 restated.).

E[(θθθ − 2ηfff)(θθθ − 2ηfff)T] � 1
nI

Proof. The columns of each Gi are chosen independently,
and moreover, the signal yi depends only on a single col-
umn. Therefore, it is clear that for each x 6= x′ we have
that E [(θ(x)− 2ηf(x))(θ(x′)− 2ηf(x′))] = E[θ(x) −
2ηf(x)]·E[θ(x′)−2ηf(x′)] = 0, so all the off-diagonal en-
tries of the variance-matrix are 0. And for each type x ∈ X
we have that

E[(θ(x)− 2ηf(x))2]

= 1
n2

∑
i,i′

E[
(

1
η (gyii (x)− 1

2 )− 2ηf(x)
)(

1
η (g

yi′
i′ (x)− 1

2 )− 2ηf(x)
)

]

(∗)
= 1

n2

∑
i

E[
(

1
η (gyii (x)− 1

2 )− 2ηf(x)
)2

]

= 1
n2

∑
i

E[
(

1
η (gyii (x)− 1

2 )
)2

]− 4ηf(x) · E[ 1
η (gyii (x)− 1

2 )] + 4η2f(x)2

(∗∗)
= 1

n2

(∑
i

1− 4ηf(x) · 2η
∑
i

exi(x) +
∑
i

4η2f(x)2

)
= 1

n −
8
nη

2f(x)2 + 4
nη

2f(x)2 = 1−4η2f(x)2

n ≤ 1
n

where (∗) follows from the independence of the ith and
the i′th sample, and (∗∗) holds because 1

η (gyii (x) − 1
2 ) ∈

{1,−1}.

Theorem 26 (Theorem 13 restated.). Assume ε < 1. Given
n = Ω( T

α2ε2

(
T + d2

∑
j T

j
)

) iid drawn signals from the
non-symmetric locally-private mechanism under a dataset
whose types were drawn iid from some distribution qqq, then
w.p. ≥ 2/3 over the matrices Gi we generate and the types
in the dataset we have the following guarantee. If qqq is a
product distribution, then dTV( 1

2ηθθθ, θ̄θθ) ≤
α
2 , and if qqq is α-

far from any product distribution then dTV( 1
2ηθθθ, θ̄θθ) >

α
2 .

Proof. The proof follows the derivations made at the proof
of Theorem 11. For the time being, we assume the types
of the n users are fixed and denote the frequency vec-
tor fff = 〈nxn 〉T . Moreover, for each feature j we denote
the marginal frequency vector as fff j . Recall that we have
shown that E[ 1

2ηθθθ] = fff and that E[( 1
2ηθθθ−fff)( 1

2ηθθθ−fff)T] �
1

4η2nI .

Fix a feature j. The way we obtain θθθj is by summing the
entries of 1

2ηθθθ for each type xj ∈ X j . This can be viewed
as a linear operator M j , of dimension T j × T , where the
xj-row of M j has 1 for each x ∈ X whose j-th feature is
xj and 0 anywhere else. Since each column has a single
1, it follows that for every two distinct types xj and yj ,
the dot-product of the xj-row and the yj-row of M j is 0.
Thus, since each row has exactly

∏
j′ 6=j

T j
′

= T
T j ones, we

have that (M j)(M j)T = T
T j IX j×X j .

And so, for each feature j we have that E[θθθj ] =
E[M j( 1

ηθθθ)] = M jfff = fff j . Moreover, we also have

E[(θθθj−fff j)(θθθj−fff j)] = E[M j( 1
2ηθθθ−fff)( 1

2ηθθθ−fff)TM jT] �
T

4η2nT j I . As a result, E[‖θθθj − fff j‖2] ≤ trace( T
4η2nT j I) =

T
4η2n , and the Union-bound together with Chebyshev in-

equality gives that Pr[∃ j, s.t. ‖pppj − fff j‖ > 1
2η

√
12dT
n ] <∑d

j=1
1

12d = 1
12 .

We now consider the randomness in fff . For ev-
ery j we denote qqqj as the marginal of qqq on the
jth feature. Not surprisingly we have that E[fff ] =
qqq and that for each feature E[fff j ] = M jE[fff ] =
qqqj . Moreover, some calculations give that E[(fff j −
qqqj)(fff j − qqqj)T] = 1

nM
j
(
diag(qqq)− qqqqqqT

)
(M j)T =

1
n

(
diag(qqqj)− (qqqj)(qqqj)T

)
. As a result, for each j we

have E[‖fff j − qqqj‖2] = 1
n (1 − ‖qqqj‖2) ≤ 1

n . Again,
the union-bound and the Chebyshev inequality give that

Pr[∃j, s.t. ‖fff j − qqqj‖ >
√

12dT
n ] < d

12d = 1
12 .

And so, w.p. ≥ 5/6 we get that for each features j we have

‖θθθj − qqqj‖1 ≤
√
T j‖θθθj − qqqj‖ ≤

√
T j(1 + 1

2η )
√

12dT
n ≤

√
T j ·

√
12dT
η2n , where in the last step we used the fact that

η < 1
2 hence (1 + 1

2η ) < 1
η . We set n large enough to

have ‖θθθj − qqqj‖1 ≤ 1, and in particular it implies that for
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any j we also have ‖θθθj‖ ≤ 2. We thus apply the bound on
the product of the θθθjs to derive that (Proposition 17 in the
supplementary material) ‖θθθ1× ...×θθθd−qqq1× ...×qqqd‖1 ≤
2
∑
j

√
T j
√

12dT
η2n ≤ 2

√
d ·
√∑

j T
j
√

12dT
η2n .

Moreover, in the proof of Theorem 11 we have shown that

Pr[‖ 1
2ηθθθ − qqq‖1 >

√
12T 2

η2n ] < 1
6 . In conclusion, setting

n = Ω( T
α2η2

(
T + d2

∑
j T

j
)

) we have that w.p. ≥ 2/3

both of the following relations holds:

‖θ̄θθ − qqq1 × ...× qqqd‖1 ≤ 1
2α

‖ 1
2ηθθθ − qqq‖1 ≤

1
2α

Now, if qqq is a product distribution that we have that qqq =
qqq1 × ... × qqqd and hence ‖ 1

2ηθθθ − θ̄θθ‖1 ≤ α. In contrast,
if qqq is α-far (in total-variation distance, and so (2α)-far in
L1-norm) from any product distribution, then in particular
‖qqq − qqq1 × ... × qqqd‖1 ≥ 2α and we get that ‖ 1

2ηθθθ − θ̄θθ‖1 ≥
‖qqq−qqq1×...×qqqd‖1−‖θ̄θθ−qqq1×...×qqqd‖1−‖ 1

2ηθθθ−qqq‖1 ≥ α.

D. Additional Figures
For completion, we bring here the results of our experi-
ments.

Figure 2 details the empirical distribution of P (θθθ) we get
under the null-hypothesis, under different sample complex-
ities (n = {10, 100, 1000, 10000}) for different sizes of do-
mains (T = {10, 25, 50, 100}). Next to the curves we also
draw the curve of the χT -distribution. Since all curves are
essentially on top of one another, it illustrates our point:
the distribution of P (θθθ) under the null-hypothesis is (very
close) to the χ2

T -distribution.

Figure 3 details the empirical distribution of P (θθθ) we get
under the alternative-hypothesis, under different sample
complexities (n = {2500, 5000, 7500, 10000, 200000})
for different TV-distances from the null-hypothesis (α =
{0.25, 0.2, 0.15, 0.1}). The results show the same pattern,
as n increases, the distribution of P (θθθ) shifts away from the
χ2
T -distribution. This is clearly visible in the case where the

total-variation distance is 0.25, and becomes less apparent
as we move closer to the null-hypothesis.

Open Problems. The results of our experiment, together
with the empirical results of the 3rd experiment (shown in
Figure 1) give rise to the conjecture that the testers in Sec-
tion 4.1 are not optimal. In particular, we suspect that the
χ2-based test we experiment with is indeed a valid tester of
sample complexity T 1.5/(ηα)2. Furthermore, there could
be other testers of even better sample complexity. Both the
improved upper-bound and finding a lower-bound are two
important open problem for this setting. We suspect that
the way to tackle this problem is similar to the approach of

Acharya et al (2015); however following their approach is
difficult for two reasons. First, one would technically need
to give a bound on the χ2-divergence between 1

2ηθθθ and qqq
(or fff ). Secondly, and even more challenging, one would
need to design a tester to determine whether the observed
collection of random vectors in {1,−1}T is likely to come
from the mechanism operating on a distribution close to
1
2ηθθθ. This distribution over vectors is a mixture model of
product-distributions (but not a product distribution by it-
self); and while each product-distribution is known (essen-
tially each of the T product distributions is a product of ran-
dom {1,−1} bits except for the x-coordinate which equals
1 w.p. 1

2 +η) it is the weights of the distributions that are ei-
ther ppp or α-far from ppp. Thus one route to derive an efficient
tester can go through learning mixture models — and we
suspect that is also a route for deriving lower bounds on the
tester. A different route could be to follow the maximum-
likelihood (or the loss-function f from Equation (1)), with
improved convexity bounds proven directly on theL1/L∞-
norms.

As explained in Section 4.2, we could not establish that

Q(θθθ)
def
= n

∑
x

( 1
2η θ(x)− θ̄(x))2

θ̄(x)

can serve as a test quantity, since we could not assess its
asymptotic distribution. Nonetheless, we do believe it be a
test quantity, as the following empirical results. We empir-

ically measure the quantity Q(θθθ)
def
= n

∑
x

(
1
2η θ(x)−θ̄(x))2

θ̄(x)

under the null (α = 0) and the alternative (α = 0.25) hy-
pothesis with n = 25, 000 samples in each experiment.
The results under a variety of bin sizes are given in Fig-
ure 4. The results point to three facts: (1) the empirical
distribution of Q under the null hypothesis is not a χ2-
distribution (it is not as centered around the mean and the
tail is longer). (2) there is a noticeable gap between the
distribution of Q(θθθ) under the null-hypothesis and under
the alternative-hypothesis. Indeed, the gap becomes less
and less clear under 25, 000 samples as the size of the do-
main increases, but it is present. (3) The empirical sample
complexity required to differentiate between the null- and
the alternative-hypothesis is quite large. Even for modest-
size domains, 25, 000 samples weren’t enough to create a
substantial differentiation between the two scenarios. De-
signing a tester based on the quantityQ(θθθ) is thus left as an
open problem.
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(a) #Types = 10 (b) #Types = 25

(c) #Types = 50 (d) #Types = 100

Figure 2: The empirical distribution of our test quantity under the null-hypothesis.
(Best seen in color) We ran our χ2-based test under the null-hypothesis. Not surprisingly, the results we get seem
to be taken from a χ2-distribution (also plotted in a dotted black line). In all of the experiments we set ε = 0.25.
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(a) TV-dist = 0.25 (b) TV-dist = 0.2

(c) TV-dist = 0.15 (d) TV-dist = 0.1

Figure 3: The empirical distribution of our test quantity under the alternative-hypothesis.
(Best seen in color) We ran our χ2-based test under the alternative-hypothesis with various choices
of TV-distance. As the number of samples increases, the empirical distribution of the test-quantity
becomes further away from the χ2-distribution. In all of the experiments, the number of types is 10
and ε = 0.25.
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(a) Small Domain (between 6-10 types)

(b) Mid-Size Domain (12-16 types)

(c) Large Domain (25-36 types)

(d) 2-Dimensional Domains (12-30 types)

(e) 3-Dimensional Domains (8-48 types)

(f) Powers of 2 Size-Domains shown in log-scale (4-64 types)

Figure 4: The empirical distribution of Q(θθθ) for domains of multiple size, under the null- and the
alternative-hypothesis.
(Best seen in color) We measured Q(θθθ) under both the null-hypothesis (solid line) and the alternative-
hypothesis (dotted line) with various choices of domain sizes. As the size of the domain increases, it
is evident the 25, 000 samples aren’t enough to differentiate between the null and the alternative. In
all of the experiments ε = 0.25 and the alternative hypothesis is 0.25-far in TV-dist from a product
distribution.


