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Abstract
We initiate the study of differentially private hy-
pothesis testing in the local-model, under both
the standard (symmetric) randomized-response
mechanism (Warner, 1965; Kasiviswanathan
et al., 2008) and the newer (non-symmetric)
mechanisms (Bassily & Smith, 2015; Bassily
et al., 2017). First, we study the general frame-
work of mapping each user’s type into a sig-
nal and show that the problem of finding the
maximum-likelihood distribution over the sig-
nals is feasible. Then we discuss the randomized-
response mechanism and show that, in essence,
it maps the null- and alternative-hypotheses onto
new sets, an affine translation of the original sets.
We then give sample complexity bounds for iden-
tity and independence testing under randomized-
response. We then move to the newer non-
symmetric mechanisms and show that there too
the problem of finding the maximum-likelihood
distribution is feasible. Under the mechanism of
Bassily et al (2017) we give identity and inde-
pendence testers with better sample complexity
than the testers in the symmetric case, and we
also propose a χ2-based identity tester which we
investigate empirically.

1. Introduction
Differential privacy is a mathematically rigorous notion of
privacy that has become the de-facto gold-standard of pri-
vacy preserving data analysis. Informally, ε-differential
privacy bounds the affect of a single datapoint on any re-
sult of the computation by ε. In recent years the subject of
private hypothesis testing has been receiving increasing at-
tention (see Related Work below). However, by and large,
the focus of private hypothesis testing is in the centralized
model (or the curated model), where a single trusted entity
holds the sensitive details of n users and runs the private
hypothesis tester on the actual data.
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In contrast, the subject of this work is private hypothe-
sis testing in the local-model (or the distributed model),
where a ε-differentially private mechanism is applied in-
dependently to each datum. This model, which allevi-
ates trust (each user can run the mechanism independently
on her own and release the noisy signal from the mecha-
nism), has gained much popularity in recent years, espe-
cially since it was adopted by Google’s Rappor (Erlingsson
et al., 2014) and Apple (Apple, 2017). And yet, despite
its popularity, and the fact that recent works (Bassily &
Smith, 2015; Bassily et al., 2017) have shown the space of
possible locally-private mechanism is richer than what was
originally thought, little is known about private hypothesis
testing in the local-model.

1.1. Background: Local Differential Privacy

We view the local differentially private model as a signaling
scheme. Each datum / user has a type x taken from a pre-
defined and publicly known set of possible types X whose
size is T = |X |. The differentially private mechanism is
merely a randomized function M : ([n],X ) → S, map-
ping each possible type X of the i-th datum to some set of
possible signals S, which we assume to be ε-differentially
private: for any index i, any pair of types x, x′ ∈ X
and any signal s ∈ S it holds that Pr[M(i, x) = s] ≤
eε Pr[M(i, x′) = s].1 In our most general results (Theo-
rems 1 and 9), we ignore the fact thatM is ε-differentially
private, and just refer to any signaling scheme that trans-
forms one domain (namely, X ) into another (S). For ex-
ample, a surveyer might unify rarely occurring types under
the category of “other”, or perhaps users report their types
over noisy channels, etc.

We differentiate between two types of signaling schemes:
the symmetric (or index-oblivious) variety, and the non-
symmetric (index-aware) type. A local signaling mecha-
nism is called symmetric if it is independent of the in-
dex of the datum. Namely, if for any i 6= j we have
that M(i, x) = M(j, x)

def
= M(x). A classic exam-

1For simplicity, we assume S, the set of possible signals,
is discrete. Note that this doesn’t exclude mechanisms such as
adding Gaussian/Gamma noise to a point in Rd — such mecha-
nisms require X to be some bounded subset of Rd and use the
bound to set the noise appropriately. Therefore, the standard ap-
proach of discretizing X and projecting the noisy point to the clos-
est point in the grid yields a finite set of signals S.
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ple of such a mechanism is randomized-response — that
actually dates back to before differential privacy was de-
fined (Warner, 1965) and was first put to use in differ-
ential privacy in (Kasiviswanathan et al., 2008) — where
each user / datum x draws her own signal from the set
S = X skewing the probability ever-so-slightly in fa-
vor of the original type. I.e. if the user’s type is x then

M(x) =

{
x, w.p. eε

T−1+eε

x′, for any other x′ w.p. 1
T−1+eε

.

The utility of the above-mentioned symmetric mechanism
scales polynomially with T (or rather, with |S|), which mo-
tivated the question of designing local mechanisms with
error scaling logarithmically in T . This question was re-
cently answered in the affirmative by the works of Bassily
and Smith (2015) and Bassily et al (2017), whose mech-
anisms are not symmetric. In fact, both of them work
by presenting each user i with a mapping fi : X → S
(the mapping itself is chosen randomly, but it is public,
so we treat it as a given), and the user then runs the stan-
dard randomized response mechanism on the signals using
fi(x) as the more-likely signal. (In fact, in both schemes,
S = {1,−1}: in (Bassily & Smith, 2015) fi is merely
the j-th coordinate of a hashing of the types where j and
the hashing function are publicly known, and in (Bassily
et al., 2017) fi maps a u.a.r chosen subset of X to 1 and
its complementary to −1.2) So given fi, the user then
tosses her own private random coins to determine what sig-
nal she broadcasts. Therefore, each user’s mechanism can
be summarized in a |S| × |X |-matrix, where Mi(s, x) is
the probability a user of type x sends the signal s. For ex-
ample, using the mechanism of (Bassily et al., 2017), each
user whose type maps to 1 sends “signal 1” with probabil-
ity eε

1+eε and “signal −1” with probability 1
1+eε . Namely,

Mi(fi(x), x) = eε

1+eε andMi(−fi(x), x) = 1
1+eε , where

fi is the mapping X → {1,−1} set for user i.

1.2. Our Contribution and Organization

This work initiates (to the best of our knowledge) the the-
ory of differentially private hypothesis testing in the local
model. First we survey related work and preliminaries.
Then, in Section 3, we examine the symmetric case and
show that any mechanism (not necessarily a differentially
private one) yields a distribution on the signals for which
finding a maximum-likelihood hypothesis is feasible, as-
suming the set of possible hypotheses is convex. Then,
focusing on the classic randomized-response mechanism,
we show that the problem of maximizing the likelihood of
the observed signals is strongly-convex and thus simpler
than the original problem. More importantly, in essence

2In both works, much effort is put to first reducing T to the
most frequent

√
n types, and then run the counting algorithm.

Regardless, the end-counts / collection of users’ signals are the
ones we care for the sake of hypothesis testing.

we give a characterization of hypothesis testing under ran-
domized response: the symmetric locally-private mecha-
nism translates the original null hypothesis H0 (and the al-
ternative H1) by a known affine translation into a differ-
ent set ϕ(H0) (and resp. ϕ(H1)). Hence, hypothesis test-
ing under randomized-response boils to discerning between
two different (and considerably closer in total-variation dis-
tance) sets, but in the exact same model as in standard hy-
pothesis testing as all signals were drawn from the same
hypothesis in ϕ(H0). As an immediate corollary we give
bounds on identity-testing (Corollary 5) and independence-
testing (Theorem 6) under randomized-response. (The
latter requires some manipulations and far less straight-
forward than the former.) The sample complexity (under
certain simplifying assumptions) of both problems is pro-
portional to T 2.5.

In Section 4 we move to the non-symmetric local-model.
Again, we start with a general result showing that in
this case too, finding an hypothesis that maximizes the
likelihood of the observed signals is feasible when the
hypothesis-set is convex. We then focus on the mecha-
nism of Bassily et al (2017) and show that it also makes
the problem of finding a maximum-likelihood hypothesis
strongly-convex. We then give a simple identity tester un-
der this scheme whose sample complexity is proportional
to T 2, and is thus more efficient than any tester under
standard randomized-response. Similarly, we also give an
independence-tester with a similar sample complexity. In
Section 4.2 we empirically investigate alternative identity-
testing and independence-testing based on Pearson’s χ2-
test in this non-symmetric scheme, and identify a couple of
open problems in this regime.

1.3. Related Work

Several works have looked at the intersection of differential
privacy and statistics (Dwork & Lei, 2009; Smith, 2011;
Chaudhuri & Hsu, 2012; Duchi et al., 2013a; Dwork et al.,
2015) mostly focusing on robust statistics; but only a hand-
ful of works study rigorously the significance and power
of hypotheses testing under differential privacy. Vu and
Slavkovic (2009) looked at the sample size for privately
testing the bias of a coin. Johnson and Shmatikov (2013),
Uhler et al (2013) and Yu et al (2014) focused on the Pear-
son χ2-test (the simplest goodness of fit test), showing that
the noise added by differential privacy vanishes asymptoti-
cally as the number of datapoints goes to infinity, and pro-
pose a private χ2-based test which they study empirically.
Wang et al (2015) and Gaboardi et al (2016) who have no-
ticed the issues with both of these approaches, have revised
the statistical tests themselves to incorporate also the added
noise in the private computation. Cai et al (2017) give a pri-
vate identity tester based on noisy χ2-test over large bins,
Sheffet (2017) studies private Ordinary Least Squares us-
ing the JL transform, and Karwa and Vadhan (2018) give
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matching upper- and lower-bounds on the confidence inter-
vals for the mean of a population. All of these works how-
ever deal with the centralized-model of differential privacy.

Perhaps the closest to our work are the works of Duchi et
al (2013a; 2013b) who give matching upper- and lower-
bound on robust estimators in the local model. And while
their lower bounds do inform as to the sample complexity’s
dependency on ε−2, they do not ascertain the sample com-
plexity dependency on the size of the domain (T ) we get in
Section 3. Moreover, these works disregard independence
testing (and in fact (Duchi et al., 2013b) focus on mean es-
timation so they apply randomized-response to each feature
independently generating a product-distribution even when
the input isn’t sampled from a product-distribution). And
so, to the best of our knowledge, no work has focused on
hypothesis testing in the local model, let alone in the (rela-
tively new) non-symmetric local model. Lastly, developed
concurrently to our work, Gaboardi and Rogers (2018)
study the asymptotic power of a variety chi-squared based
hypothesis testing in the local model.

2. Preliminaries, Notation and Background

Notation. We user lower-case letters to denote scalars,
boldboldbold characters to denote vectors and CAPITAL letters
to denote matrices. So 1 denotes the number, 111 denotes
the all-1 vector, and 1X×X denotes the all-1 matrix over a
domain X . We use eeex to denote the standard basis vector
with a single 1 in coordinate corresponding to x. To denote
the x-coordinate of a vector vvv we use v(x), and to denote
the (x, x′)-coordinate of a matrix M we use M(x, x′). For
a given vector vvv, we use diag(vvv) to denote the matrix whose
diagonal entries are the coordinates of vvv. For any natural n,
we use [n] to denote the set {1, 2, ..., n}.

Distances and norms. Unless specified otherwise ‖vvv‖
refers to the L2-norm of vvv, whereas ‖vvv‖1 refers to the L1-

norm. We also denote ‖vvv‖ 2
3

=
(∑

i |vi|
2
3

) 3
2

. For a ma-
trix, ‖M‖1 denotes (as usual) the maximum absolute col-
umn sum. We identify a distribution ppp over a domain X
as a T -dimensional vector with non-negative entries that
sum to 1. This defines the total variation distance between
two distributions: dTV(ppp,qqq) = 1

2‖ppp − qqq‖1. (On occasion,
we will apply dTV to vectors that aren’t distributions, but
rather nearby estimations; in those cases we use the same
definition: the half of the L1-norm.) It is known that the
TV-distance is a metric overs distributions. We also use the
χ2-divergence to measure difference between two distribu-
tions: dχ2(ppp,qqq) =

∑
x

(p(x)−q(x))2

p(x) =
(∑

x
(q(x))2

p(x)

)
− 1.

The χ2-divergence is not symmetric and can be infinite,
however it is non-negative and zeros only when ppp = qqq. We
refer the reader to (Sason & Verdú, 2016) for more proper-
ties of the total-variance distance the χ2-divergence.

Differential Privacy. An algorithm A is called ε-
differentially private, if for any two datasets D and D′ that
differ only on the details of a single user and any set of out-
putsO, we have that Pr[A(D) ∈ O] ≤ eε Pr[A(D′) ∈ O].
The unacquainted reader is referred to the Dwork-Roth
monograph (Dwork & Roth, 2014) as an introduction to
the rapidly-growing field of differential privacy.

Hypothesis testing. The problem of hypothesis testing is
to test whether a given set of samples was drawn from a dis-
tribution satisfying the null-hypothesis or the alternative-
hypothesis. Thus, the null-hypothesis is merely a set of
possible distributions H0 and the alternative is disjoint
set H1. Hypothesis tests boils down to estimating a test-
statistic θ whose distribution has been estimated under the
null-hypothesis. We can thus reject the null-hypothesis
if the value of θ is highly unlikely, or accept the null-
hypothesis otherwise. We call an algorithm a tester if the
acceptance (in the completeness case) or rejection (in the
soundness case) happen with probability ≥ 2/3. Standard
amplification techniques (return the median of independent
tests) reduce the error probability from 1/3 to any β > 0
at the expense of increasing the sample complexity by a
factor of O(log(1/β)); hence we focus on achieving a con-
stant error probability. One of the most prevalent and ba-
sic tests is the identity-testing, where the null-hypothesis
is composed of a single distribution H0 = {ppp} and our
goal is to accept if the samples are drawn from ppp and re-
ject if they were drawn from any other α-far (in dTV) dis-
tribution. Another extremely common tester is for inde-
pendence when X is composed of several features (i.e.,
X = X 1 ×X 2 × ...×X d) and the null-hypothesis is com-
posed of all product distributions H0 = {ppp1 × ... × pppd}
where each pppj is a distribution on the jth feature X j .

Miscellaneous. We use M � 0 to denote that M is a pos-
itive semi-definite (PSD) matrix, and M � N to denote
that (M − N) � 0. We use M† to denote M ’s pseudo-
inverse. We emphasize that we made no effort to minimize
constants in our proofs, and only strived to obtain asymp-
totic bounds (O(·),Ω(·)).

3. Symmetric Signaling Scheme
Recall, in the symmetric signaling scheme, each user’s type
is mapped through a random functionM into a set of sig-
nals S. This mapping is index-oblivious — each user of
type x ∈ X , sends the signal s with the same probability
Pr[M(x) = s]. We denote the matrixG as the (|S|×|X |)-
matrix whose entries are Pr[M(x) = s], and its sth-row
by gggs. Note that all entries of G are non negative and that
for each x we have ‖Geeex‖1 = 1. By garbling each datum
i.i.d, we observe the new dataset (y1, y2, ..., yn) ∈ Sn.

Theorem 1. For any convex setH of hypotheses, the prob-
lem of finding the max-likelihood ppp ∈ H generating the
observed signals (y1, .., yn) is poly-time solvable.
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Proof. Since G(s, x) describes the probability that a user
of type x sends the signal s, any distribution ppp ∈ H
over the types in X yields a distribution on S where
Pr[user sends s] =

∑
x∈X G(s, x) · p(x) = gggTsppp. There-

fore, given signals (y1, ..., yn) summarized as a signals-
histogram 〈ns〉s∈S , the likelihood of these signals is given
by: L(ppp; y1, ..., yn) =

∏
i ggg

T
yippp =

∏
s∈S(gggTs p)

ns =

exp
(∑

s ns log(gggTsppp)
)
. Thus, the gradient of the negative

log-loss function is∇f = − 1
n

∑
s∈S

ns
gggTsppp
·gggs, and its Hes-

sian is given by the matrix 1
n

∑
s∈S

ns
(gggTsppp)

2gggsggg
T
s . Clearly,

as a non-negative sum of rank-1 matrices, the Hessian is a
PSD matrix.so our loss-function is convex. Known poly-
time algorithms for minimizing a convex function over a
convex set (e.g. (Zinkevich, 2003)) conclude the proof.

Unfortunately, in general the solution to this problem has
no closed form (to the best of our knowledge). However,
we can find a close-form solution under the assumption that
G isn’t just any linear transformation but rather one that
induces probability distribution over S, the assumption that
|S| ≤ |X | (in all applications we are aware of use fewer
signals than user-types) and one extra-condition.

Corollary 2. Let qqq∗ be the |S|-dimensional vector given
by 〈nsn 〉. Given that |S| ≤ |X |, that G is a full-rank matrix
satisfying ‖G‖1 = 1 and assuming that

(
G†qqq∗+ker(G)

)
∩

H 6= ∅, then any vector inH of the form ppp∗+uuu where ppp∗ =
G†qqq∗ and uuu ∈ ker(G) is an hypothesis that maximizes the
likelihood of the given signals (y1, ..., yn).
Proof deferred to the supplementary material, Section B.

3.1. Hypothesis Testing under Randomized-Response

We now aim to check the affect of a particular G, the one
given by the randomized-response mechanism. In this case
S = X and we denote G as the matrix whose entries are

G(x, x′) =

{
ρ+ γ , if x′ = x

ρ , otherwise
where ρ

def
= 1

T−1+eε

and γ
def
= eε−1

T−1+eε . We get that G = ρ · 1X×X + γI
(where 1X×X is the all-1 matrix). In particular, all vec-
tors gggs = gggx, which correspond to the rows of G, are of
the form: gggx = ρ111 + γeeex. It follows that for any probabil-
ity distribution ppp ∈ H we have that Pr[seeing signal x] =
gggTxppp = ρ+ γp(x). We have therefore translated any ppp ∈ H
(over X ) to an hypothesis qqq over S (which in this case
S = X ), using the affine transformation ϕ(ppp) = ρ111+γppp =
TρuuuX +γppp when uuuX denotes the uniform distribution over
X . (Indeed, γ = 1 − Tρ, an identity we will often apply.)
At the risk of overburdening notation, we use ϕ to denote
the same transformation over scalars, vectors and even sets
(applying ϕ to each vector in the set). Since ϕ is injective,
we have therefore discovered the following theorem.

Theorem 3. Under the classic randomized response mech-
anism, testing for any hypothesis H0 (or for comparing
H0 against the alternative H1) of the original distribution,

translates into testing for hypothesis ϕ(H0) (or ϕ(H0)
against ϕ(H1)) for generating the signals y1, ..., yn.
Theorem 3 seems very natural and simple, and yet (to the
best of our knowledge) it was never put to words.

Moreover, it is simple to see that under standard-
randomized response, our log-loss function is in fact
strongly-convex, and therefore finding ppp∗ becomes drasti-
cally more efficient (see, for example (Hazan et al., 2006)).

Claim 4. Given signals y1, ..., yn generated using standard
randomized response with parameter ε < 1, we have that
our log-loss function is Θ(ε2 · minx{nx}

n )-strongly convex.
Note that in expectation nx ≥ ρn, hence with overwhelm-
ing probability we have minx nx ≥ n/(2T ). The proof is
fairly straight-forward and is deferred to the supplementary
material, Section B.

A variety of corollaries follow from Theorem 3. In par-
ticular, a variety of detailing matching sample complexity
upper- and lower-bounds translate automatically into the
realm of making such hypothesis-tests over the outcomes
of the randomized-response mechanism. We focus here on
two of the most prevalent tests: identity testing and inde-
pendence testing.

Identity Testing. Perhaps the simplest of the all hypothe-
sis testing is to test whether a given sample was generated
according to a given distribution or not. Namely, the null
hypothesis is a single hypothesis H0 = {ppp}, and the al-
ternative is H1 = {qqq : dTV(ppp,qqq) ≥ α} for a given pa-
rameter α. The seminal work of Valiant and Valiant (2014)
discerns that (roughly) Θ(‖ppp‖ 2

3
/α2) samples are sufficient

and are necessary for correctly rejecting or accepting the
null-hypothesis w.p.≥ 2/3.3

Here, the problem of identity testing under standard ran-
domized response reduces to the problem of hypothesis
testing between ϕ(H0) = {ρ111 + γppp : ppp ∈ H0} and
ϕ(H1) = {ϕ(qqq) : qqq satisfying dTV(ppp,qqq) ≥ α}.
Corollary 5. In order to do identity testing under standard
randomized response with confidence and power ≥ 2/3, it
is necessary and sufficient that we get Θ( T

2.5

ε2α2 ) samples.
The proof uses the results of (Valiant & Valiant, 2014) as a
black-box and is mainly composed of calculations, so it is
deferred to supplementary material, Section B.

Independence Testing. Another prevalent hypothesis test-
ing over a domain X where each type is composed of
multiple feature is independence testing. Denoting X =
X 1 × X 2 × ... × X d as a domain with d possible features
(hence T = |X | =

∏
j |X j |

def
=
∏
j T

j), our goal is to dis-
cern whether an observed sample is drawn from a product
distribution or a distribution α-far from any product distri-

3For the sake of brevity, we ignore pathological examples
where by removing α probability mass from ppp we obtain a vector
of significantly smaller 2

3
-norm.
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bution. In particular, the null-hypothesis in this case is a
complex one: H0 = {p̄pp = ppp1×ppp2× ...×pppd} and the alter-
native is H1 = {qqq : minp̄pp∈H0

dTV(qqq, p̄pp) ≥ α}. To the best
of our knowledge, the (current) tester with smallest sam-
ple complexity is of Acharya et al (2015), which requires
Ω
(

(
√
T +

∑
j T

j)/α2
)

iid samples.

We now consider the problem of testing for independence
under standard randomized response. Our goal is to prove
the following theorem.
Theorem 6. There exists an algorithm that takes n =

Ω̃( T 2

α2ε2

(
d2(max

j
{T j})2 +

√
T

)
) signals generated by

applying standard randomized response (with ε < 1) on
n samples drawn from a distribution ppp and with proba-
bility ≥ 2/3 accepts if ppp ∈ H0, or rejects if ppp ∈ H1.
Moreover, no algorithm can achieve such guarantee using
n = o(T 5/2/(α2ε2)) signals.
Note there are at least two types per feature, so d ≤
log2(T ). Should all T js be equal we have (T j)2 ≤ T

2
d ,

making T 2.5/(α2ε2) the leading term in the above bound.

Proof. Theorem 3 implies we are comparing ϕ(H0) =
{ρ111X+γ(ppp1×...×pppd)} to ϕ(H1) = {ρ111X+γqqq : q ∈ H1}.
Note that ϕ(H0) is not a subset of product-distributions
over X but rather a convex combination (with publicly
known weights) of the uniform distribution and H0; so
we cannot run the independence tester of Acharya et al on
the signals as a black-box. Luckily it holds that ϕ(H1) is
far from all distributions in ϕ(H0): for each qqq ∈ H1 and
p̄pp ∈ H0 we have dTV(ϕ(qqq), ϕ(p̄pp)) ≥ γdTV(qqq, p̄pp) ≥ γα.
And so we leverage on the main result of Acharya et al
((2015), Theorem 2): we first find a distribution ρ111 + γz̄zz ∈
ϕ(H0) such that if the signals were generated by some
ρ111X + γp̄pp ∈ ϕ(H0) then dχ2(ϕ(z̄zz), ϕ(p̄pp)) ≤ γ2α2/500,
and then test if indeed the signals are likely to be gener-
ated by a distribution close to ϕ(z̄zz) using Acharya et al’s
algorithm. We now give our procedure for finding the
product-distribution z̄zz.

Per feature j, given the jth feature of the signals yj1, ..., y
j
n

where each xj ∈ X j appears nxj times, our procedure for
finding zzzj is as follows.

0. (Preprocessing:) Denote τ = α/(10d · T j). We call
any type xj where nxj

n ≤ 1−γ
T j + γτ as small and

otherwise we say type xj is large. Ignore all small
types, and learn zzzj only over large types. (For brevity,
we refer to n as the number of signals on large types
and T j as the number of large types.)

1. Set the distribution z̃zzj as the “add-1” estimator of Ka-
math et al (2015) for the signals: z̃zzj(xj) =

1+nxj
T j+n .

2. Compute zzzj = 1
γ

(
I − 1−γ

T j 1X j
)
z̃zzj .

Once zzzj is found for each feature j, set z̄zz = zzz1 × ... × zzzd
run the test of Acharya et al (2015) (Theorem 2) with ϕ(z̄zz)
looking only at the large types from each feature, setting

the distance parameter to αγ
2 and confidence 1

9 , to decide
whether to accept or reject.

In order to successfully apply the Acharya et al’s test, a
few conditions need to hold. First, the provided distribution
ϕ(z̄zz) should be close to ϕ(H0). This however hold trivially,
as z̄zz is a product-distribution. Secondly, we need that ϕ(z̄zz)
and ϕ(p̄pp) to be close in χ2-divergence, as we argue next.

Lemma 7. Suppose that n, the number of signals, is at
least Ω( d2

α2γ2 maxj{T j}). Then the above procedure cre-
ates distributions zzzj such that the product distribution z̄zz =
zzz1×zzz2× ...×zzzd satisfies the following property. If the sig-
nals y1, ..., yn were generated by ϕ(p̄pp) for some product-
distribution p̄pp = ppp1 × ... × pppd, then w.p. ≥ 8/9 we have
that dχ2(ϕ(z̄zz), ϕ(p̄pp)) ≤ γ2α2/1000.

We table the proof of Lemma 7 to Section B in the sup-
plementary material. Next, either completeness or sound-
ness must happen: either the signals were taken from
randomized-response on a product distribution, or they
were generated by a distribution γα/2-far from ϕ(H0).
If no type of any feature was deemed as “small”, this
condition clearly holds; but we need to argue this con-
tinues to hold even when we run our tester on a strict
subset of X composed only of large types in each fea-
ture. Completeness is straight-forward: since we remove
types feature by feature, the types now come from a prod-
uct distribution p̄pplarge = ppp1

large × ... × pppdlarge where each
pppjlarge is a restriction of pppj to the large types of feature
j. Soundness however is more intricate. We partition
X into two subsets: AllLarge = {(x1, x2, ..., xd) ∈
X : ∀j, xj is large} and Rest = X \AllLarge; and break
qqq into qqq = ηqqqRest + (1− η)qqqAllLarge, with η = Prqqq[Rest].
Claim 8 (proof deferred to the supplementary material) ar-
gues that η < α

2 . Therefore, dTV(qqq, qqqAllLarge) ≤ α
2 , im-

plying that dTV(ϕ(qqqAllLarge), ϕ(H0)) > α · γ− αγ
2 = αγ

2 .

Claim 8. Assume the underlying distribution of the sam-
ples is qqq and that the number of signals is at least n =

Ω(
d2(maxj T

j)2

α2γ2 log(dmaxj T
j)). Then w.p. ≥ 8/9 our

preprocessing step marks certain types each feature as
“small” such that the probability (under qqq) of sampling a
type (x1, x2, ..., xd) such that ∃j, xj is small is ≤ α/2.

So, given that both Lemma 7 and Claim 8 hold, we can use
the test of Acharya et al, which requires a sample of size
n = Ω(

√
T/(αγ)2). Recall that ε < 1 so γ = Θ(ε/T ),

and we get that the sample size required for the last test is
n = Ω( T

2.5

α2ε2 ). Moreover, for this last part, the lower bound
in Acharya et al (2015) still holds (for the same reason it
holds in the identity-testing case): the lower bound is de-
rived from the counter example of testing whether the sig-
nals were generated from the uniform distribution (which
clearly lies in ϕ(H0)) or any distribution from a collection
of perturbations which all belong to ϕ(H1) (See (Paninski,
2008) for more details). Each of distribution is thus γα-far
from ϕ(H0) and so any tester for this particular construc-
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tion requires
√
T/(αγ)2-many samples. This proves both

the upper- and lower-bounds of Theorem 6.

4. Non-Symmetric Signaling Schemes
Let us recall the non-symmetric signaling schemes
in (Bassily & Smith, 2015; Bassily et al., 2017). Each user,
with true type x ∈ X , is assigned her own mapping (the
mapping is broadcast and publicly known) fi : X → S .
This sets her inherent signal to fi(x), and then she runs
standard (symmetric) randomized response on the signals,
making the probability of sending her true signal fi(x) to
be eε-times greater than any other signal s 6= fi(x).

In fact, let us allow an even broader look. Each user is
given a mapping fi : X → S, and denoting (like before)
T = |X | and S = |S|, we identify this mapping with a
(S × T )-matrix Gi. The column gggxi = Gieeex is the prob-
ability distribution that a user of type x is going to use to
pick which signal she broadcasts. (And so the guarantee of
differential privacy is that for any signal s ∈ S and any two
types x 6= x′ we have that gxi (s) ≤ eεgx

′

i (s).) Therefore,
all entries in Gi are non-negative and ‖Gi‖1 = 1 for all is.

Similarly to the symmetric case, we first exhibit the fea-
sibility of finding a maximum-likelihood hypothesis given
the signals from the non-symmetric scheme. Since we view
which signal in S was sent, our likelihood mainly depends
on the row vectors gggsi . We prove the following theorem,
proof deferred to Section C in the supplementary material.

Theorem 9. For any convex set H , the problem of finding
the max-likelihood ppp ∈ H generating the observed non-
symmetric signals (y1, .., yn) is poly-time solvable.

4.1. Hypothesis Testing under Non-Symmetric
Locally-Private Mechanisms

Let us recap the differentially private scheme of Bassily
et al (2017). It this scheme, the mechanism uses solely
two signals S = {1,−1} (so S = 2). For every i the
mechanism sets Gi by picking u.a.r for each x ∈ X which
of the two signals in S is more likely; the chosen signal gets
a probability mass of eε

1+eε and the other get probability
mass of 1

1+eε . We denote η as the constant such that 1
2 +

η = eε

1+eε and 1
2 − η = 1

1+eε ; namely η = eε−1
2(eε+1) =

Θ(ε) when ε < 1. Thus, for every s ∈ {1,−1} the row
vector gggsi is chosen such that each coordinate is chosen iid
and uniformly from { 1

2 + η, 1
2 − η}. (Obviously, there’s

dependence between ggg1
i and ggg−1

i , as ggg1
i + ggg−1

i = 111, but the
distribution of ggg1

i is identical to the one of ggg−1
i .)

First we argue that for any distribution ppp, if n is sufficiently
large then w.h.p over the generation of theGis and over the
signals we view from each user, then finding p̂pp which max-
imizes the likelihood of the observed signals yields a good
approximation to ppp. To that end, it suffices to argue that the
function we optimize is Lipfshitz and strongly-convex.

Lemma 10. Fix δ > 0 and assume that the number of sig-
nals we observe is n = Ω(T 3 log(1/δ)). Then w.p.≥ 1− δ
it holds that the function f(ppp) we optimize (as given in

Equation (1)) is
(

3
√
T
)

-Lipfshitz and
(
η2

2

)
-strongly con-

vex over the subspace {xxx : xxxT111 = 0} (all vectors orthog-
onal to the all-1 vector).
The proof of Lemma 10 — which (in part) is hairy due to
the dependency between the matrix Gi and the signal yi —
is deferred to Section C in the supplementary material.

Identity Testing. Designing an Identity Test based solely
on the maximum-likelihood is feasible, due to results like
Cesa-Binachi et al (2002) which allow us to compare be-
tween the risk of the result p̃pp of a online gradient descent
algorithm to the original distribution ppp which generated
the signals. Through some manipulations one can (even-
tually) infer that |f(ppp) − f(p̃pp)| = O(1/

√
n). However,

since strong-convexity refers to the L2-norm squared of
‖ppp − p̃pp‖, we derive the resulting bound is ‖ppp − p̃pp‖21 ≤
T‖ppp− p̃pp‖22 = O( 1

η2
√
n

), which leads to a sample complex-
ity bound proportional to T 3/(αη)4. This bound is worse
than the bounds in Section 3.

We therefore design a different, simple, identity tester in
the local non-symmetric scheme, based on the estimator
given in (Bassily et al., 2017). The tester itself — which
takes as input a given distribution ppp, a distance parameter
α > 0 and the n signals — is quite simple.

1. Given the n matrices G1, ..., Gn and the n ob-
served signals y1, ..., yn, compute the estimator
θθθ = 1

n

∑
i

1
η

(
gggyii − 1

2111
)
.

2. If dTV( 1
2ηθθθ,ppp) ≤

α
2 then accept, else reject.

Theorem 11. Assume ε < 1. If we observe n = Ω(
(
T
αε

)2
)

signals generated by a distribution qqq then w.p. ≥ 2/3 over
the matrices Gi we generate and the signals we observe, it
holds that dTV( 1

2ηθθθ,qqq) ≤ α/2.
The correctness of the tester now follows from checking for
the two cases where either ppp = qqq or dTV(ppp,qqq) > α.

Proof. In the first part of the proof we assume the types
of the n users were already drawn and are now fixed. We
denote xi as the type of user i. We denote the frequency
vector fff = 〈nxn 〉x∈X , generated by counting the number of
users of type x and normalizing it by n.

Given fff , we examine the estimator θθθ. For each user i
we have that 1

η (gggyii − 1
2111) ∈ {−1, 1}T . Because xi,

the type of user i, is fixed, then for each coordinate
x′ 6= xi, the signal yi is independent of the x′-column
in Gi (yi depends solely on the entries in the xi-column).
We thus have that gyii (x′) is distributed uniformly among
{ 1

2 ± η} and so E[ 1
η (gyii (x′) − 1

2 )] = 0. In contrast,
Pr[ 1

η (gyii (xi) − 1
2 ) = 1 ]

=
∑
s∈{−1,1} Pr[ 1

η (gsi (xi) − 1
2 ) = 1 and yi = s]

= 2 · 1
2 · (

1
2 + η) = 1

2 +η. Therefore, E[ 1
η (gyii (xi)− 1

2 )] =
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( 1
2 + η)− ( 1

2 − η) = 2η. It follows that E[ 1
η (gggyii − 1

2111)] =

2ηeeexi and so E[θθθ] = 2ηfff .

Next we examine the variance of θθθ , and argue the following
(proof deferred to supplementary material).

Proposition 12. E[(θθθ − 2ηfff)(θθθ − 2ηfff)T] � 1
nI

So as a result, the expectedL2-difference E[‖θθθ − 2ηfff‖2] =
E[trace((θθθ− 2ηfff)(θθθ− 2ηfff)T)] = trace(E[(θθθ− 2ηfff)(θθθ−
2ηfff)T]) ≤ T

n . Chesbyshev’s inequality assures us that
therefore Pr[ 1

2η‖θθθ − 2ηfff‖ >
√

6T
2η
√
n

] ≤ T/n
6T/n = 1

6 .

So far we have assumed fff is fixed, and only looked at
the event that the coin-tosses of the mechanism yielded
an estimator far from its expected value. We now turn to
bounding the distance between fff and its expected value
qqq (the distribution that generated the types). Indeed, it
is clear to see that the expected value of fff = 1

n

∑
i eeexi

is E[fff ] = qqq. Moreover, it isn’t hard (and has been
computed before many times, e.g. Agresti (2003)) to see
that E[(fff − qqq)(fff − qqq)T] = 1

n

(
diag(qqq)− qqqqqqT

)
. Thus

E[‖fff −qqq‖2] = trace( 1
n

(
diag(qqq)− qqqqqqT

)
) = 1

n (1−‖qqq‖2).
Therefore, applying Chebyshev again, we get that w.p.
at most 1/6 over the choice of types by qqq, we have that
Pr[‖fff − qqq‖ >

√
6/n] ≤ 1/n

6/n = 1
6 .

Combining both results we get that w.p. ≥ 2/3

we have that ‖ 1
2ηθθθ − qqq‖1 ≤

√
T‖ 1

2ηθθθ − qqq‖ ≤
√
T
(
‖ 1

2ηθθθ − fff‖+ ‖fff − qqq‖
)
≤
√

6T 2

4η2n+
√

6T
n ≤ α since

we have n = Ω( T 2

η2α2 ). Recall that η = Θ(ε) and that
dTV(xxx,yyy) = 1

2‖xxx−yyy‖1, and the bound of α2 is proven.

Independence Testing. Similarly to the identity tester,
we propose a similar tester for independence. Recall that
in this case, X is composed of d features, hence X =
X 1 × X 2 × ... × X d, with our notation of T j = |X j |
for each j. Our tester should accept when the underly-
ing distribution over the types is some product distribution
ppp, and should reject when the underlying distribution
over the types is α-far from any product distribution. The
tester, whose input is the n signals and a distance parameter
α > 0, is as follows.

1. Given the n matrices G1, ..., Gn and the n ob-
served signals y1, ..., yn, compute the estimator
θθθ = 1

n

∑
i

1
η

(
gggyii − 1

2111
)
.

2. For each feature j compute θθθj — the jth marginal of
1
2ηθθθ (namely, for each xj ∈ X j sum all types whose
jth feature is xj). Denote θ̄θθ = θθθ1 × ...× θθθd.

3. If dTV( 1
2ηθθθ, θ̄θθ) ≤

α
2 then accept, else reject.

Theorem 13. Assume ε < 1. Given n =

Ω( T
α2ε2

(
T + d2

∑
j T

j
)

) iid drawn signals from the non-
symmetric locally-private mechanism under a dataset
whose types were drawn iid from some distribution qqq, then

w.p. ≥ 2/3 over the matrices Gi we generate and the types
in the dataset we have the following guarantee. If qqq is a
product distribution, then dTV( 1

2ηθθθ, θ̄θθ) ≤
α
2 , and if qqq is α-

far from any product distribution then dTV( 1
2ηθθθ, θ̄θθ) >

α
2 .

(Proof deferred to the supplementary material, Section C.)

Open Problems. (1) Is there a tester with a better sam-
ple complexity? The experiment in Section 4.2 leads us to
conjecture that there exists a tester with sample complexity
of T 1.5/(ηα)2. There could exist better testers, of smaller
sample complexity, which leads to the second question.
(2) Can one derive lower bounds for identity/independence
testing in this model, where each sample has its own dis-
tribution, related to the original distribution over types? In
Section D in the supplementary material we give more de-
tails as to possible venues to tackle both problems, relating
them to the problem of learning a mixture-model of product
distributions.

4.2. Experiment: Proposed χ2-Based Testers

Following the derivations in the proof of Theorem 11,
we can see that Var(θθθ) = 1

n

(
I − 4η2diag(fff2)

)
. As

ever, we assume ε is a small constant and as a result
the variance in 2ηfff (which is approximately 4η2

n diag(ppp))
is significantly smaller than the variance of θθθ. This al-
lows us to use the handwavey approximation fff ≈ ppp,
and argue that we have the approximation Var(θθθ) ≈
1
n

(
I − 4η2diag(ppp2)

) def
= 1

nM . Central Limit Theorem
thus give that

√
nM−1/2(θθθ − 2ηppp)

n→∞→ N (0, I). There-
fore, it stands to reason that the norm of the LHS is dis-
tributed like a χ2-distribution, namely,

P (θθθ)
def
= n

∑
x∈X

(θ(x)− 2η · p(x))2

1− 4η2p(x)2

n→∞→ χ2
T

Our experiment is aimed at determining whether P (θθθ) can
serve as a test statistic and assessing its sample complexity.

Setting and Default Values. We set a true ground distri-
bution on T possible types, ppp. We then pick a distribu-
tion qqq which is α-far from ppp using the counter example of
Paninski (2008): we pair the types and randomly move 2α

T
probability mess between each pair of matched types. We
then generate n samples according to qqq, and apply the non-
symmetric ε-differentially private mechanism of (Bassily
et al., 2017). Finally, we aggregate the suitable vectors to
obtain our estimator θθθ and compute P (θθθ). If we decide to
accept/reject we do so based on comparison of P to
the 2

3 -quantile of the χ2
T -distribution, so that in the limit we

reject only w.p. 1/3 under the null-hypothesis. We re-
peat this entire process t times. We have set the default val-
ues T = 10, ppp = uuuT (uniform on [T ]), α = 0.2, n = 1000,
ε = 0.25 and therefore η = 1

2
eε−1
eε+1 , and t = 10000.

Experiment 1: Convergence to the χ2-distribution in
the null case. First we ask ourself whether our approxi-
mation, denoting P (θθθ) ≈ χ2

T is correct when indeed ppp is
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the distribution generating the signals. To that end, we set
α = 0 (so the types are distributed according to ppp) and plot
the t empirical values of P we in our experiment, varying
both the sample size n ∈ {10, 100, 1000, 10000} and the
domain size T ∈ {10, 25, 50, 100}.
The results are consistent — P is distributed like a χ2

T -
distribution. Indeed, the mean of the t sample points is≈ T
(the mean of a χ2

T -distribution). The results themselves ap-
pear in Figure 2 in the supplementary material, Section D.

Experiment 2: Divergence from the χ2-distribution in
the alternate case. Secondly, we asked whether P can
serve as a good way to differentiate between the null hy-
pothesis (the distribution over the types is derived from
ppp) and the alternative hypothesis (the distribution over the
types if ≥ α-far from ppp). We therefore ran our experiment
while varying α (between 0.25 and 0.05) and increasing n.
Again, the results show that the distribution does shift to-
wards higher values as n increases. The results are given in
Figure 3 in the supplementary material, Section D.

Experiment 3: Sample Complexity. Next, we set to find
the required sample complexity for rejection. We fix the
α-far distribution from ppp, and first do binary search to hone
on an interval [nL, nU ] where the empirical rejection prob-
ability is between 30% − 35%; then we equipartition this
interval and return the n for which the empirical rejection
probability is the closest to 33%. We repeat this experi-
ment multiple times, each time varying just one of the 3
most important parameters, T , α and ε. We maintain two
parameters at default values, and vary just one parameter:
T ∈ {5, 10, 15, .., 100}, α ∈ {0.05, 0.1, 0.15, ..., 0.5},
ε ∈ {0.05, 0.1, 0.15, ..., 0.5}.
The results are shown in Figure 1, where next to each curve
we plot the curve of our conjecture in a dotted line.4 We
conjecture initially that n ∝ T cT · αcα · εcε . And so, for
any parameter ξ ∈ {T, α, ε}, if we compare two experi-
ments i, j that differ only on the value of this parameter and
resulted in two empirical estimations Ni, Nj of the sam-
ple complexity, then we get that cξ ≈ log(Ni/Nj)

log(ξi/ξj)
. And

so for any ξ ∈ {T, α, ε} we take the median over of all
pairs of i and j and we get the empirical estimations of
cε = −1.900793, cα = −1.930947 and cT = 1.486957.
This leads us to the conjecture that the actual sample com-
plexity according to this test is T 1.5

α2ε2 .

Open Problem. Perhaps even more interesting, is the ex-
periment we wish we could have run: a χ2-based indepen-
dence testing. Assuming the distribution of the type is a
product distribution p̄pp = ppp1 × ... × pppd, the proof of The-
orem 13 shows that for each feature j we have Var(θθθj −
pppj) ≈ 1

4η2n
T
T j IX j . Thus 4η2nT

j

T ‖θθθ
j − pppj‖2 n→∞→ χ2

T j .
However, the d estimators θθθj are not independent, so it is

4We plot the dependency on α and ε on the same plot, as both
took the same empirical values.

not true that
∑
j 4η2nT

j

T ‖θθθ
j − pppj‖2 n→∞→ χ2∑

j T
j . More-

over, even if the estimators of the marginals were indepen-
dent,5 we are still unable to determine the asymptotic dis-
tribution of ‖θ̄θθ−p̄pp‖2 (only a bound, scaled byO(maxj Tj),
using Proposition 17 in the supplementary material), let
alone the asymptotic distribution of ‖ 1

2ηθθθ − θ̄θθ‖
2.

Nonetheless, we did empirically measure the quantity

Q(θθθ)
def
= n

∑
x

(
1
2η θ(x)−θ̄(x))2

θ̄(x)
under the null (α = 0) and

the alternative (α = 0.25) hypothesis with n = 25, 000
samples in each experiment. The results (given in Figure 4
in the supplementary material) show that the distribution of
Q — albeit not resembling a χ2-distribution — is different
under the null- and the alternative-hypothesis, so we sus-
pect that there’s merit to using this quantity as a tester. We
thus leave the design of a χ2-based statistics for indepen-
dence in this model as an open problem.

Figure 1: Empirical sample-complexity to have the tester
reject w.p.∼ 2/3 under the alternative hypothesis.

5E.g. by assigning each example i to one of the d estimators,
costing only d = log(T ) factor in sample complexity
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