Learning in Integer Latent Variable Models
with Nested Automatic Differentiation

Daniel Sheldon !> Kevin Winner' Debora Sujono !

Abstract

We develop nested automatic differentiation (AD)
algorithms for exact inference and learning in
integer latent variable models. Recently, Win-
ner, Sujono, and Sheldon showed how to reduce
marginalization in a class of integer latent vari-
able models to evaluating a probability generating
function which contains many levels of nested
high-order derivatives. We contribute faster and
more stable AD algorithms for this challenging
problem and a novel algorithm to compute exact
gradients for learning. These contributions lead
to significantly faster and more accurate learn-
ing algorithms, and are the first AD algorithms
whose running time is polynomial in the number
of levels of nesting.

1. Introduction

In a recent line of work, Winner & Sheldon (2016) and
Winner et al. (2017) developed the first exact inference algo-
rithms for a class of hidden Markov models (HMMs) with
integer latent variables. Such models are used to model
populations that change over time in ecology or epidemi-
ology (Dail & Madsen, 2011; Heathcote, 1965). Standard
inference techniques do not apply to these models because
marginalization would require summing over the infinite
support of the latent variables. Instead, they showed how to
reformulate the forward algorithm for HMMs to use proba-
bility generating functions (PGFs) as its internal representa-
tion of probability distributions and messages. These PGFs
can be represented compactly and encode all the informa-
tion about the infinite-support distributions. Inference tasks
such as computing the likelihood are reduced to evaluating
PGFs and their derivatives.
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Figure 1. Function with nested high-order derivatives.

However, the PGFs are complex functions that are defined
recursively in terms of high-order derivatives of other PGFs.
Figure 1 illustrates such a function. The function f, on
input z, first computes a value u, then computes the pth
derivative of f;_; with respect to u, and then uses the re-
sult to compute its own output value y. The function f;_1
itself involves nested derivatives of f_o, and so on, with k
total levels of nesting. The goal is to compute the function
fx(x), and possibly derivatives thereof. It is natural to con-
sider automatic differentiation (AD) techniques for this task.
However, this is a very difficult setting for AD. There are
many levels of nesting and the total order of differentation
may number in the hundreds or thousands.

In this paper we subtantially improve AD algorithms for
inference in integer latent variable models, and develop
new AD algorithms to support learning. For inference, we
conceptually simplify the AD techniques of (Winner et al.,
2017) and root them more firmly in the AD literature. We
show that nested derivatives of univariate functions can be
handled by an extension to the basic AD computation model
that allows nested derivative nodes, which are just deriva-
tives of another function defined by a computation graph
(e.g., the “node” 2= f,_1(u) in Figure 1). The AD algo-
rithm needs only a thin adapter to handle the change of scope
between the inner and outer functions. For the inference
application, this places nearly all of the complexity in the
general-purpose AD toolkit and simplifies the application.

We also make substantial stability and speed improvements
to the AD algorithms. We show that implementing core
AD operations using the logarithmic number system (LNS)
to accurately represent signed real numbers with high dy-
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namic range allows the algorithms to scale to very high
order derivatives—something which is not possible with a
standard floating point representation. We also adopt fast
power series composition for core AD operations (Brent
& Kung, 1978), which are asympotically faster than those
used in (Winner et al., 2017).

Finally, we contribute new AD algorithms to compute exact
gradients of the log-likelihood in integer HMMs by extend-
ing (higher-order) forward-over-reverse AD to handle nested
derivatives. This allows us to compute gradients a% f(x,0)
of functions like the one in Figure 1, where 6 is a vector of
parameters for the entire nested computation. We show ex-
perimentally that our new LNS-based AD algorithms are the
only inference algorithms for integer latent variable models
that are simultaneously accurate, fast, and stable, and that
our novel algorithms for computing exact gradients lead to
significantly faster and more accurate parameter estimation.

2. Model and Problem Statement

We consider the integer hidden Markov model (HMM)
from (Winner et al., 2017), an HMM with integer latent
variables nq, . . ., nx representing a population that changes
over time through the processes of immigration, reproduc-
tion, and mortality, and which is partially observed at each
time step. The model is:

NE—1

ng = Z 2k T My (L
i=1

yr ~ Binomial(ng, py) 2

with the initial condition ny = 0. The variable ny is the
population size at the kth time step, and yy, is the observed
number, assuming that each indvidual is observed with prob-
ability pg. The population size nj depends on an offspring
process and an immigration process. First, each individ-
ual present at time k£ — 1 contributes zj, ; individuals to the
present time step, where {z ;} are iid random variables
from the offspring distribution. The “offspring” of one
individual can include (or not include) itself, immediate
offspring, or descendants of more than one generation, de-
pending on the choices of the modeler. In particular, this
distribution is used to model both survival and reproduc-
tion. Additionally, m; individuals enter the population,
where my, is drawn from the immigration distribution. The
offspring and immigration distributions can be arbitrary
count-valued distributions, and will be specified through
their PGFs as described below.

Problem Statement. The application goal is usually to
estimate a parameter vector 6 controlling the offspring and
immigration distributions given some number of observa-
tions of this process (Dail & Madsen, 2011). We will focus
on computing the log-likelihood and its gradient, which to-

gether will enable optimization routines to find maximum
likelihood estimates. Let K be the total number of time
steps and let y1.x = (y1,...,yx) (similar notation will
be used throughout the paper). Our goal is to compute
log p(y1.x; 0) and £ log p(y.x; 6).

Inference via PGFs. Standard HMM inference algo-
rithms such as the forward algorithm (Rabiner, 1989) do
not apply here because the latent variables are unbounded.
Hence, the messages have infinite length, and marginal-
ization of any variable involves an infinite sum. Winner
& Sheldon (2016) and Winner et al. (2017) showed how
the forward algorithm can be reformulated to use PGFs to
represent messages. Standard inference tasks, such as com-
puting the likelihood, are then converted to the problem of
evaluating recursively-defined PGFs.

Definition 1. The PGF of a (not necessarily normalized)
probability distribution q(n) is the power series F(s) =
>0 o q(n)s™ with probability values as coefficients.

To formulate the forward algorithm using PGFs, define
ar(nk) = p(nk,yik) and yi(ng) = p(ng, yre—1)-
These are the “messages” that are recursively computed
within the standard forward algorithm. The PGFs of a4
and v are defined (using the corresponding capital let-
ters) as Ag(sr) = Yo _gan(ng)sy® and Ty(ug) =
ZZ‘Z:O Y (nr)uy*. The utility of switching to a PGF rep-
resentation is summarized in the following proposition.
Proposition 1 (Winner & Sheldon 2016; Winner et al.
2017). Let F(u) and G(u) be the PGF's for the offspring
and immigration distributions, respectively. The PGFs I'y,
and Ay, satisfy the following recurrence:

Ti(ug) = Ap—1 (F(ur)) - Glus) 3)
Ak(sk) = (Skyp:')yk . Fl(cyk) (Sk(l — pk)) (4)

with the base case Ag(so) = 1. The likelihood can be
recovered from the final PGFs as p(y1.x) = Ax(1).

Equation (3) follows from the model definition and standard
manipulations of PGFs, and is well known in the literature
on branching processes (Heathcote, 1965). Equation (4)
may appear surprising. It includes the yth derivative of the
function I';, from Equation (3). The derivatives are related
to the selection of particular terms in the joint PGF of n
and yy, corresponding to the observed value of yy.

Proposition 1 gives a recipe to compute the exact log-
likelihood and its gradient. =~ We need to compute
log Ak (1;0) and 2 log Ak (1;0), where Ay is defined
in terms of the prior PGFs through Equations (3) and (4),
and we have introduced the parameter vector 6, which in-
cludes the detection probabilities pi and any parameters of
F and G. Despite the somewhat complex appearance of
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the recurrence, it implies a well-defined feed-forward com-
putation to calculate Ak (1) from the constituent functions
F(-), G(-) and Ay(-). The key complication is the fact that
this function contains deeply nested high-order derivatives:
Ag calls T\") which calls Ag_;, which calls TY* "),
and so on. Winner et al. (2017) developed a method based
on automatic differentation to efficiently compute Ak (1),
which we will extend in this paper to be more robust and
efficient, and to compute gradients.

3. Autodiff Approach

Our problem is to compute f(z,6) and a% (x,0) for the
function f(z,0) = log A(x,#), which includes nested high-
order derivatives. To set up the proper recursion we will
generalize this to the following:

P
Problem 1: compute @f(:a 0) and %@f(x, 0)

Now we will abstract away from the particular f from the
previous section and consider any f : R™*1 — R defined
according to a particular computation model, where z € R
will be called the input and the vector § € R™ will be called
the parameters. We will first describe how to solve both
parts of Problem 1 in a basic computation model, and then
extend the model to handle nested derivatives.

3.1. Computation Model and Dual Numbers

The basic computation model for f is shown in Algorithm 1,
following (Griewank & Walther, 2008). In Line 3, the
function ¢; is a primitive operation that operates on the
variables v, where A; C {0,...,j — 1} is the set of pre-
decessors of j, and v4; = (vi)ica, is the subvector of .y,
corresponding to index set A;. The predecessor relationship
defines the computation graph G, a directed acyclic graph
(DAG) with edges from i to j for all ¢ € A;.

Partial computations and dual numbers. We wish to ex-
press derivatives %U)f of a variable v, with respect to a pre-
ceding variable v;. To make this precise, for i < ¢, we
denote the partial computation from 4 to £ as f;¢(vo.;).
This is defined as the function that maps from fixed values
of vg.; to the value of vy obtained by executing the proce-
dure above starting with the assignment to v;4; and ending
with the assignment to vy. A formal recurrence for f;_,; is
given in the supplement. We can now define precisely the
derivative of v, with respect to v;:

dv
dvf = %fi—)f(vo:i)-
Definition 2. For i < /¢, a generalized dual number
(vg, dvi>p is the sequence of derivatives of v, with respect
to v; up to order p:

a1 P
(ve, dvi),, = <8U¢_1fi—>1?(1)0:i))

q=0

Algorithm 1 Basic computation model
Input: z € R, § € R™, Output: f(z,0)
1: Setvg ==
2: Setv; =0;forj=1,...m
3: Setv; = @j(va,)forj=m+1,....,n
4: Output v,

We say that (ve, dv;), is a dual number of order p with
respect to v;. We will commonly write dual numbers as:

<s,du)p = (s, j—z,...,%)

in which case it is understood that s = vy and u = v; for
some 0 < 1 < ¢, and f;_(-) will be clear from context.

This definition generalizes standard (higher-order) dual num-
bers by explicitly tracking the variable v; with respect to
which we differentiate. In standard forward-mode autodiff,
this would always be x. The generalization is important for
nested differentation, where we will instantiate intermediate
dual numbers with respect to different variables.

Remark 1 (Dual numbers as Taylor series coefficients). A
dual number can be viewed as holding Taylor series coeffi-
cients. In particular, the dual number (vy, dx) p encodes the
first p coefficients of the Taylor series of fo_.¢ about x:

o ¢(q)
fooe@+e) = 71”0(’_%'(@ e
=0 T

Most forward AD methods store and propagate dual num-
bers as truncated Taylor series (Griewank & Walther, 2008;
Pearlmutter & Siskind, 2007).

3.2. Higher-Order Forward Mode

‘We now discuss how to solve the first part of Problem 1—
computing 35; f(x,0) in the basic computation model—
using forward AD. Higher-order forward mode works by
propagating dual numbers instead of real numbers through
the computation. For this to work, each local computation
must be “lifted” to accept dual numbers as inputs and to

output a dual number.

Definition 3 (Lifted Function). Let ¢ : R* — R be
a function of variables uq,...,ur. The lifted function
L is the function that accepts as input dual numbers
(u,dx), ..., (uk,dz), and returns the dual number

<(,0(’LL17 e ,Uk), d:c>p

We defer the details of how a function is lifted for the mo-
ment. If we are able to lift each primitive operation in the
original procedure, we can execute it using dual numbers
(with respect to x) in place of real numbers. The procedure
is shown in Algorithm 2. The output v,, is a dual number
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Algorithm 2 Higher-Order Forward AD

Input: z,0 Output: % (z,0)

1: Set 9y = <x,d:c>p = (z,1,0,...,0)

2: Setﬁjzejforjzl,...,m
3: Setd; = Li;(Da,) forj=m+1,...,n
4

: Extract and return the pth derivative from .,

Algorithm 3 Forward-Over-Reverse AD
Input: z,6 Output: %aa—;f(x, 0)
1: Run forward AD (Algorithm 2) to compute vy, . . ., Uy,
2: Initialize v, = (1,dz), = (1,0,...,0)
3: Initialize v; = (0, dz), = (0,0,...,0) fori <n
4: For j =ndowntom + 1 and foralli € A;:

0 -
Ty <—@i+@j~£%¢j(u/,j)

5. Extract and return the pth derivatives from vy, . .., Up,.

with respect to z, from which we can extract the derivatives
% = aa—;q (z,0) forqg = 0,...,p. Note that in Line 2,
we did not write the parameter values as dual numbers; we
will allow in our notation a real number 6 to be used as an
input to a lifted operation L, with the understanding that:
(1) 6 does not depend on z, and (2) § will be promoted to

the dual number (6, dx>p =(0,0,...,0).
It is well known how to lift basic mathematical operations:

Proposition 2 (Griewank & Walther 2008). The arithmetic
operations © + cy, x x y, x/y, x", viewed as functions of
x and y, and the mathematical functions In(x), exp(z),
sin(x), cos(x) can be lifted to operate on dual numbers of
order p. In each case, the lifted function runs in O(p?) time.

As a result, forward-mode autodiff can compute the first p
derivatives of any function f that uses only these primitive
operations in time O(p?) times the running time of f.

3.3. Forward-Over-Reverse AD

For the purpose of learning, we need to solve the second
part of Problem 1 and compute the gradient % % f(z,0).
This can be accomplished using “forward-over-reverse” AD,
which is based on the relatively simple observation that we
can switch the order of differentation to see that

o o* oY 0

which reveals that what we want is also the higher-order
derivative of g(z,0) := %f(x7 ) with respect to x. The
well-known reverse mode of autodiff (or backpropagation)

provides a procedure to compute g(x;6). Then, by exe-
cuting reverse mode using dual numbers instead of real
numbers, we can obtain % g(z; 0). Forward-over-reverse
AD is shown in Algorithm 3. It incrementally computes the
adjoint:
P
Uy 1= %%fi—nm(v&i)v

for all 7 in a reverse sweep through the computation graph.
The final adjoint values are dual numbers, from which the
derivatives with respect to x of the parameter gradients
can be extracted. As in the forward mode, we need to
lift the primitive operations of the procedure. In this case
the primitive operations are those that compute the partial
derivatives of ¢; with respect to its own inputs. When ¢;
is a simple mathematical operation (+, X, /, exp, log, sin,
etc.), these partial derivatives are also simple and can be
lifted by standard techniques (cf. Proposition 2).

3.4. Forward Mode with Nested Derivatives

We now extend the forward AD algorithms to handle nested
derivatives within the computation procedure. For the most
part, we use ideas that were present in (Winner et al., 2017).
However, we simplify the conceptual framework consider-
ably, so that all we need to do is lift a function ¢; that takes
the derivative of another function, which leads to a con-
ceptual improvement of the AD techniques and a dramatic
simplification of the inference application.

Extended computation model: nested derivative nodes.
Although the functions (; are usually conceptualized as sim-
ple “primitive” operations, they may be arbitrarily complex
as long as we know how to lift them—i.e., modify them to
propagate dual numbers. So, assume now that one or more
of the y; functions is a nested derivative node, which takes
the derivative of some other function g with respect to one
of its inputs:
o1
#3(04,) = g 9(on. ) 5)

Here we consider m = v4,\;, to be “parameters” of the
nested computation. We need to reason about how to lift ¢;
to propagate dual numbers with respect to . We will make
the following restriction on ;, with which we can reason
about the sensitivity of ¢; to = through v, alone:

Assumption 1. There is no path in G from x to .

Lifting a univariate primitive via composition of Taylor
series. We wish to lift a nested derivative node ¢ (v, 7).
To do so, we will discuss the general procedure to lift a uni-
variate function ¢, (vy). We may temporarily suppress the
parameters 7 from notation because they are constant with
respect to . Here is the general setting. We have completed
the partial computation to compute the first p derivatives
of v, = fo k() with respect to . We wish to compute
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Algorithm 4 COMPOSE ( (u, dv), , (v, dz), )

Algorithm 6 Lifted Nested Derivative Lo = L 881—; g(-,m)

1d'u
il dv?

1: Unpack dual numbers to Taylor coefficients g; =

_ 1d%
and r; = 597

for ¢ = 1 to p, and scalar value u

2 Let Q(7) = Y0, ¢ + O(rPT1)

3: Let R(e) = >0 riet + O(eP™1)

4: Compute the first p coefficients sq,..., s, of € in the
power series S(€) = Q(R(¢)) using a power series
composition algorithm.

5: Return (u, dx>p = (u, 11s1,2!s9,...,p!sp)

Algorithm 5 DIFF, ( (y, dv) iy )

dy datPy
1: Return <@, ce dv‘l+P)

// shift left ¢ positions

the first p derivatives of v; = ¢;(vi) = ¢;(fomr(z)) =
fo—j(x). This can be done by composing the Taylor series
of ©j and foﬁk.
Proposition 3. Suppose ¢; and fo_,), are analytic. Let
0i(vk+7) =vj+ 3oy ;T = vj + Q(7) be the Taylor
series expansion of @; about vy, and let fo_i(z + €) =
Ui+ Yoy i€ := vy, + R(€) be the Taylor series expansion
of fo—r about x. Then the Taylor series expansion of fo;
about x is:

fosi(x+¢€) =v; + Q(R(€)).
The first p coefficients of € in Q(R(€)) encode the first p
derivatives of fo—,;, and can be computed by power series
composition algorithms from the first p coefficients of the
power series () and R.

Proposition 3 (proved in the supplement) is the foundation
of higher-order forward mode. The input to L¢; is the dual
number (v, dx),,, which gives us the first p coefficients of

R(e), ie., r; = % - 4% The function ¢; is typically a
simple mathematical primitive (e.g., log, exp, sin), which
will have a very special Taylor series Q(7). The goal is
to compute the first p coefficients of Q(R(€)). In most
cases of “true” primitive operations, specialized routines
exist to do this in O(p?) or O(plog p) time (Griewank &
Walther, 2008; Brent & Kung, 1978). For general ¢, Brent
& Kung (1978) describe fast algorithms to compute the first
p coefficients of Q(R(¢)) from the first p coefficients of Q
and R. The compose operation we implement will run in
O(p*®) time—see Section 4.

Algorithm 4 shows the COMPOSE operation for two dual
numbers (u,dv),, and (v, dz),, which extracts Taylor co-
efficients from the dual numbers and then performs power
series composition to compute (u, dx),,.

Lifting a nested derivative node. We now return to the
specifics of lifting a nested derivative node ¢(v,7) =

Input: Function g(v,7), dual number (v,dz) , and T,

which does not depend on =

p’

1: Unpack scalar v from (v, dx) p and initialize a new dual

number (v, dv), ., for the inner scope of ¢;

2: Let (y,dv),,, = Lg((v,dv),,,, ) be the result of
the lifted version of g on the newly initialized dual
number (recursively apply forward-mode autodiff to g)

3: Let (u,dv), = DIFF, ( (y, dv>q+p)

4: Return COMPOSE ( (u, dv),, , (v, dx>p)

% g(v, ) to propagate dual numbers with respect to
(we temporarily drop subscripts without ambiguity). Note
that the semantics of the partial differentiation operation
6‘9—; would be simple if we were propagating dual numbers
with respect to v: we would just shift all derivatives in the
sequence lower by ¢ positions (see the DIFF operator in
Algorithm 5). So, our solution to nested derivatives will be
to temporarily instantiate a new dual number with respect
to v within the scope of Ly, propagate this through Lg to
compute the derivatives of g with respect to v, apply the
DIFF operator to the result, and then apply the COMPOSE
operation to convert back to a dual number with respect to

x. The whole procedure is detailed in Algorithm 6.

By using this procedure to lift nested derivative nodes, we
can now run forward AD in the extended computation model.
Furthermore, because we lift the nested function by recur-
sively applying forward AD to it, we can handle recursively
nested derivatives (of univariate functions, i.e., subject to
Assumption 1). One can prove inductively that the running
time increases by a modest factor, regardless of the num-
ber of levels of nested derivatives. Specifically, let d be
the maximum order of differentiation, which, for a nested
derivative node, is equal to its own order plus that of the
calling procedure. In the lifted procedure, each operation
takes O(T'(d)) times its original running time, where 7'(d)
is the maximum time of an operation on dual numbers of
order d, which in our models is the COMPOSE operation.

Proposition 4. Higher-order forward AD can be extended
to handle nested univariate derivatives by recursively call-
ing forward AD using Algorithm 6. The running time is
bounded by O(T'(d)) times the number of primitive opera-
tions, where d is the maximum order of differentiation, and
T'(d) is the time to compose two power series of order d.

3.5. Nested Forward-Over-Reverse

We now wish to extend forward-over-reverse AD to the
computation model in which ¢; can be a nested derivative
node. By examining Algorithm 3, we see in Line 4 that
we will need to lift a function of the form S%i‘pj (va,) =
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% 38—; g(vk, 7). By again switching the order of differenti-
v k
ation, the function to be lifted is:

o7 \ v, 7\E T

where B%i g(vk, ) is the scalar-valued function that com-
putes the partial derivative of g(v, 7) with respect to v;.
Observe that this is just another nested derivative node—
for the function that computes the partial derivative of g
—which we can lift using Algorithm 6. In practice, we
don’t need to apply Algorithm 6 separately for each partial
derivative. We can compute % B%i g(vk, ) for all i simul-

taneously by (recursively) applying forward-over-reverse
AD to g, within a procedure similar to Algorithm 6 (details
omitted). This will be more efficient because it only needs
one forward and reverse sweep through the computation
graph for g. In summary:

Proposition 5. Forward-over-reverse AD can also be ex-
tended to handle nested derivative nodes by recursively
calling forward-over-reverse AD using Algorithm 6 (or a
more efficient variant). The running time is O(T'(d)) times
that of the original computation.

4. Application and Implementation

We now return to inference and learning in integer HMMs.
The log-likelihood f(z,0) = log Ak (x;0) (Equation 3)
clearly fits within the extended computation model: it in-
volves only basic mathematical primitives and a nested
derivative of I'. Therefore, we can apply the nested
forward-over-reverse AD algorithms from Section 3 to com-
pute the log-likelihood and its gradient. Observe that the
total number of levels of nesting is K and the maximum
order of differentiation is d = ), yx.

This is a unique application of AD. The total order d may
number in the hundreds or thousands with ten or more lev-
els of nesting. For comparison, typical values of d, even
in high-order applications, are single digits (Griewank &
Walther, 2008). Applications of nested AD are rare; re-
ported examples involve only one level of nesting (Siskind
& Pearlmutter, 2008; Foo et al., 2008; Maclaurin et al., 2015;
Domke, 2012). Because of the very high order and nesting,
we faced significant implementation challenges related to
two interrelated issues: numerical stability and asymptotic
efficiency of power series operations. We describe in this
section the steps needed to overcome these.

4.1. Numerical Stability: Logarithmic Number System

The core computations in our approach are lifted primitive
operations for dual numbers (Proposition 2), and the COM-
POSE operation. Both operate on Taylor series coefficients

of the form r; = %g;’{ for i from 0 to d. Due to the &

factor in each coefficient and the fact that the derivatives
themselves may have high dynamic range, overflow and
underflow are significant problems and unavoidable for d
greater than a few hundred if coefficients are stored directly
in floating point. Such problems are familiar in probabilistic
inference, where a standard solution is to log transform all
values and use stable operations such as logsumexp when-
ever this transformation needs to be undone.

Our solution is similar, but more difficult for several reasons.
To see why, it is helpful to see the nature of algorithms to
lift primitive operations, which use convolutions or related
recurrences (Griewank & Walther, 2008). As an example,
here is the recurrence for the division operation to compute
the Taylor coefficients {s;} of the function 1/v(x) given
the Taylor coefficients {r;} of v(x):

i—1

ST
S; = — Iy — SiTi—4
To J J

J=0

Observe that we must handle subtraction and negative val-
ues, unlike standard probabilistic inference. Also, both mul-
tiplication and addition are required in the innermost loop
of the algorithm (the right hand side includes multiplication
and addition of the most recently computed value s;_1) so
it is not possible to batch multiplications and additions, with
transformation to and from log-space only between batches.

Our solution, which generalizes the “log-space trick” for
probabilistic inference, is to store coefficients using a loga-
rithmic number system (LNS, Swartzlander & Alexopoulos
1975), and implement core power series operations in LNS.
In LNS, a real number is represented as X = s - b* where
s = sign(X) is the sign bit and = = log, (| X|) is the log
of the magnitude of X, stored in fixed precision. The mul-
tiplication, division, and power operations are simple and
efficient in LNS, while addition and subtraction require
more effort. For example, if X and Y are both positive, then
logy,(X +Y) = z + log, (1 4+ b¥~*). We implemented
LNS in C using a floating-point instead of fixed point in-
ternal representation to interface more easily with existing
mathematical functions. Addition and subtraction use the C
standard library’s 1oglp function, and are much more ex-
pensive than floating point operations, despite the fact they
are, in principle, single “arithmetic operations”, and could
be comparable to floating point operations with appropriate
hardware (Coleman et al., 2000).

4.2. Fast and Accurate Power Series Operations

The lifting procedures for primitive operations that we de-
scribe above all take O(d?) time and have recurrences
that resemble convolutions. Multiplication can be done
in O(dlogd) time using FFT-based convolution, and
O(dlog d) algorithms for most other primitives can be also
be derived using the FFT (Brent & Kung, 1978). Although
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our application certainly reaches the regime where FFT is
faster than direct convolution, existing FFT implementa-
tions require that we transform coefficients out of LNS into
floating point, which led to inaccurate results and numerical
problems when we tried this. Similar observations have
been made in previous applications of FFT for probabilistic
inference (Wilson & Keich, 2016). A possible future rem-
edy is to implement the FFT in LNS (Swartzlander et al.,
1983), however, our current implementation uses the direct
O(d?) algorithms.

The COMPOSE operation is a bottleneck and should be
implemented as efficiently as possible. Winner et al. (2017)
used a naive O(d®) composition algorithm. Brent & Kung
(1978) present two fast algorithms—BK 2.1 and BK 2.2—
for power series composition. BK 2.2 has the fastest known
running time of O ((dlog d)*-%) with FFT convolution, but
may be slower in practice (Johansson, 2015) and we have
already ruled out FFT convolution. Instead, we use BK 2.1,
which, in our setting, runs in O(d*®) time and achieves
substantial speedups over the naive O(d*) algorithm.

S. Experiments

We conducted experiments on the accuracy, speed, and sta-
bility of AD inference algorithms for integer HMMs, and of
parameter estimation using AD gradient algorithms.

Inference: Accuracy, Speed, Stability. We evaluated
four methods for inference in integer HMMSs. TRUNC and
TRUNC-FFT are variants of a truncated forward algorithm,
which is currently used in practice in ecological applica-
tions (Dail & Madsen, 2011). These place an a priori upper
bound N on the values of the hidden variables and then
apply the standard forward algorithm for discrete HMMs.
They require a convolution of the offspring and immigration
distributions to compute the transition probabilities (details
are given in the supplement), and take O(K N?) time with
direct convolution and O(K N?log N) time with FFT con-
volution. They can be implemented in log-space easily, but
FFT convolutions must be done in linear space, which can
lead to accuracy loss (Wilson & Keich, 2016). Selecting N
in the truncated algorithms is a challenge. A too-small value
will cut off some of the probability mass and lead to the
wrong result, and a too-large value will lead to high running
time. For these experiments, we iteratively doubled NV until
the log-likelihood converged (to a precision of 5 decimal
places) or until N reached an absolute limit of 2500, and
only measured the running time of the final iteration. Note
that this is a conservative comparison that hides the cost of
tuning this value in practice.

The AD and AD-LNS methods use nested AD to compute
log Ak (1;0), with the latter storing coefficients in LNS.
With our conceptual simplification of nested AD, these algo-
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Figure 2. Accuracy, stability, and running time of inference. Top:
running time vs. immigration parameter A (population size). Bot-
tom: Log-likelihood vs offspring parameter §. Left: Bernoulli
offspring. Right: Poisson offspring.

rithms are now nearly a direct translation of Equations (3)
and (4), with all of work done by the AD routines. We show
the full 15-line Python implementation in the supplementary
material. AD and AD-LNS both have O(KY ?-%) running
time, where Y = >, ys.

We generated data from integer HMMs, performed infer-
ence with each algorithm, and compared the resulting values
and running times. In Figure 2, top, we scaled the popula-
tion size by generating data with immigration distribution
my, ~ Poisson(A) for increasing A, and fixed offspring
distributions zj ; ~ Bernoulli(0.5) or 2 ; ~ Poisson(0.5).
Here, A controls the immigration rate, and the expectation
of all variables scales in proportion to A, as do the parame-
ters IV and Y controlling the running time of the algorithms.
We ran inference using the true parameters. The plots show
running time on a log scale. AD and AD-LNS are the
fastest algorithms, but AD is unstable (due to overflow)
and does not compute a result for A > 100. TRUNC-FFT
is somewhat slower than the AD algorithms. AD-LNS is
especially fast for Bernoulli offspring because the Bernoulli
PGF is linear, which leads to many zero power series coeffi-
cients, and LNS addition of zero is a very fast special case.
The Poisson results should be considered the general case.

Figure 2, bottom, compares the accuracy of different
methods. Here, we generated data from a model with
pr = 0.5, immigration my, ~ Poisson(\) for A5 =
(12.5,55,105,75,20), and offspring distributions zj ; ~
Bernoulli(d) and 2 ; ~ Poisson(d) with § = 0.5. We per-
formed inference for different values of §. This simulates
the situation encountered during estimation when an opti-
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Figure 3. MLE running time vs number of time steps K. Left:
with just one parameter, exact and numerical gradients are similar.
Right: with K parameters, optimization with exact gradients is
much faster. See text for experiment details.
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Figure 4. Objective trace of optimizer with different gradients on
same problem. Left: a case where iterates are identical. Right: a
case where exact gradients lead to a better solution.

mizer queries the log-likelihood at an unlikely parameter
setting; it is important that the methods are robust in this
case. We see that as § increases from the true value of 0.5,
TRUNC-FFT (in both models) and AD (in Bernoulli) de-
viate from the correct answer. This is likely due to loss of
numerical precision in floating point operations, either in
the FFT algorithm or in power series algorithms.

Overall, AD-LNS is the only one of the four inference algo-
rithms that is fast, stable (does not overflow or underflow),
and accurate over a wide range of parameter settings.

Learning: Speed and Accuracy. We now evaluate the
speed and accuracy of learning. We generate data from an
integer HMM and use the L-BFGS (Liu & Nocedal, 1989)
algorithm to recover parameters by maximizing the log-
likelihood. Based on the inference results, we consider as
a baseline the optimizer that uses AD-LNS to compute
the likelihood and numerically estimates gradients by finite
differences. The per-iteration cost to compute numerical
gradients is the number of parameters times the cost to com-
pute the log-likelihood (or twice this if central differences
are used). For our approach, we used nested forward-over-
reverse AD algorithm to compute exact gradients. In this
case, the running time to compute the gradient is a constant
factor greater than the time to compute the log-likelihood.
We predict based on this that as the number of parameters
increases, exact gradients will be faster.

Figure 3 shows the results. For each trial, we simulate

20 independent realizations of the integer HMM for up to
K = 10 time steps, with immigration distribution my ~
Poisson(5) and p = 0.6. For the left plot, the offspring
distribution zj; ~ Poisson(1.2) is not time-varying, and
we fit only the single parameter §. In this case, the cost
of numerical gradient is only twice that of computing the
objective, and the two methods behave similarly. Note that
the running time is shown on a log scale. In the right plot, the
offspring distribution zj ; ~ Poisson(dy) is time-varying,
with 0, ~ Exp(1), and we fit each of these values for a total
of K parameters. In this case, we see that the exact gradient
method is several times faster for K > 4. The running time
of both methods increases with K due to the increased cost
of inference. We saw similar results across a wide range of
models, and expect the benefits of using exact gradients to
be even more significant for models with more parameters.

In most cases, the optimizer followed nearly the exact same
sequence of parameter values regardless of the gradient
computation, but was faster with exact gradients; in some
cases the algorithm with exact gradients took more iterations
and achieved a better objective value. See Figure 4.

6. Discussion

We introduce new AD techniques for inference in integer
HMMs. By cleanly incorporating nested derivatives into the
AD computation model, we greatly simplify the algorithms
for inference using PGFs. By implementing forward-mode
AD operations using the logarithmic number system and
using fast power series algorithms, we achieve fast, accurate,
and stable algorithms for very high-order derivatives. Our
new techniques for nested forward-over-reverse AD allow
us to compute exact gradients in integer HMMs for the first
time, which leads to significantly faster, and sometimes
more accurate, learning procedures.

Related work. An alternate approach to compute nested
derivatives is to repeatedly apply AD at each level of nest-
ing starting with the innermost, for example, using source
transformation. Pearlmutter & Siskind (2007) and Siskind
& Pearlmutter (2008) introduced a tagging mechanism for
forward AD to properly handle nesting and avoid “perturba-
tion confusion” (Siskind & Pearlmutter, 2005); this idea is
impemented in functional AD tools such as DiffSharp (Bay-
din et al., 2015). However, since each application of AD
increases running time by a constant factor, and the inner-
most function is “transformed” each time (either through
source transformation or by adding a new tagged perturba-
tion), the running time of these approaches is exponential in
the number of levels of nesting, while our running time is
polynomial. But note that these methods can handle more
general functions than ours (i.e., multivariate, not subject to
Assumption 1). An interesting avenue of future work is to
extend our approach to multivariate nested derivatives.



Learning in Integer Latent Variable Models

Acknowledgments

This material is based upon work supported by the Na-
tional Science Foundation under Grants No. 1617533 and
1522054.

References

Baydin, A. G., Pearlmutter, B. A., Radul, A. A., and Siskind,
J. M. Automatic differentiation in machine learning: a
survey. arXiv preprint arXiv:1502.05767, 2015.

Brent, R. P. and Kung, H. T. Fast algorithms for manipulat-
ing formal power series. Journal of the ACM (JACM), 25
(4):581-595, 1978.

Coleman, J. N., Chester, E. I, Softley, C. 1., and Kadlec, J.
Arithmetic on the European logarithmic microprocessor.
IEEE Transactions on Computers, 49(7):702-715, 2000.

Dail, D. and Madsen, L. Models for estimating abundance
from repeated counts of an open metapopulation. Biomet-
rics, 67(2):577-587, 2011.

Domke, J. Generic methods for optimization-based model-
ing. In Artificial Intelligence and Statistics, pp. 318-326,
2012.

Foo, C.-s., Do, C. B, and Ng, A. Y. Efficient multiple hy-
perparameter learning for log-linear models. In Advances

in neural information processing systems, pp. 377-384,
2008.

Griewank, A. and Walther, A. Evaluating derivatives:
principles and techniques of algorithmic differentiation.
SIAM, 2008.

Heathcote, C. R. A branching process allowing immigra-
tion. Journal of the Royal Statistical Society. Series B
(Methodological), 27(1):138-143, 1965.

Johansson, F. A fast algorithm for reversion of power series.
Mathematics of Computation, 84(291):475-484, 2015.

Liu, D. C. and Nocedal, J. On the limited memory BFGS
method for large scale optimization. Math. Program., 45
(3):503-528, December 1989.

Maclaurin, D., Duvenaud, D., and Adams, R. Gradient-
based hyperparameter optimization through reversible
learning. In International Conference on Machine Learn-
ing (ICML), pp. 2113-2122, 2015.

Pearlmutter, B. A. and Siskind, J. M. Lazy multivariate
higher-order forward-mode AD. In Symposium on Prin-
ciples of Programming Languages (POPL), pp. 155-160,
2007.

Rabiner, L. A tutorial on hidden Markov models and se-

lected applications in speech recognition. Proceedings of
the IEEE, 77(2):257-286, 1989.

Siskind, J. M. and Pearlmutter, B. A. Perturbation con-
fusion and referential transparency: Correct functional
implementation of forward-mode AD. 2005.

Siskind, J. M. and Pearlmutter, B. A. Nesting forward-
mode AD in a functional framework. Higher-Order and
Symbolic Computation, 21(4):361-376, Dec 2008.

Swartzlander, E. E. and Alexopoulos, A. G. The sign/loga-
rithm number system. IEEE Transactions on Computers,
100(12):1238-1242, 1975.

Swartzlander, E. E. J., Chandra, D. V. S., Nagle, H. T. J.,
and Starks, S. A. Sign/logarithm arithmetic for FFT
implementation. /EEE Transactions on Computers, C-32
(6):526-534, 1983.

Wilson, H. and Keich, U. Accurate pairwise convolutions of
non-negative vectors via FFT. Computational Statistics
and Data Analysis, 101:300-315, 2016.

Winner, K. and Sheldon, D. Probabilistic inference with
generating functions for Poisson latent variable models.

In Advances in Neural Information Processing Systems
29, 2016.

Winner, K., Sujono, D., and Sheldon, D. Exact inference
for integer latent-variable models. In International Con-
ference on Machine Learning (ICML), pp. 3761-3770,
2017.



