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9. Supplementary Material
9.1. Proof of Lemma 6.1

Note that the update rule (24) can be written as
ZM =28 + WZF — WZF! — o(BR(ZM) - BE T (ZY)), (47)

from the definition of W. To prove the first part of the lemma, by summing (47) from k£ = 1 to ¢ and (25), one has

ZH = (W -W) Zz’wwzt aB!(ZP). (48)
k=0

From the definition of U and Q! and the identity T = 2W — W, we have
aBH(ZY) = W(Zt — 21T —uQttt. (49)

By subtracting the optimality condition (15), we have the result.

From first part, we have

(211~ 2°,alB(Z") - B'(2))
(Z -2, -W(Z' - Z") + U(Q" — Q"))
:<Zt+1 . Z*7Zt+1 B Zt>w + <Zt+1 _ Z*7U(Qt+1 _ Q*)>
<Zt+1 B Z*, Zi+l _ Zt>V~v + <Qt+1 . Qt’ Qt+1 i Q*>, (50)

where the last equality uses the definition of Q! and that UZ* = 0. By applying the generalized Law of cosines
2(a,b) = ||a||* + [|b]|* — ||a — b]|* with @ = X**T! — X* and b = X! — X!, we have the second part.

9.2. Proof of Lemma 6.2

We have T*T! > 1 S from the definition of cocoerciveness. Expanding the definition of BY(Z'*1), we have

+Eit (2,50 — 2", [Buit, (¥t — Bn, é i ni(Yni) = Bu(2")]). (51)
The first term is exactly —2 7"+, and is bounded by —17*+1 < f%StH — 1;—9T”1 for 0 < # < 1. Since

i {(Buis 0713) — B (2] = D Buayt.) — Bala)]} = 0. 62
and z!, is independent of i%,, we have

it (2, — 2", [Buat, (Yni1,) — Bn.it, (27)] = b Y Builyn:) = Ba(2")]) = 0. (53)
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We bound the second term by

N q
1
> B (zh — 2% [Buit, (V) — Bar, (27)] — [5 > Builyh) = Ba(z)))

n=1 i=1
N L
=> Eu (2t — 2, B (V) — B (27)] - [5 > Bui(yh) = Ba(z")))
n=1 =1
N q
< QE-B- t —B-*—l Blt—B*zi]E- t+1 _ t2
< 30 BBy (715) = B (7)) = [ 3 By ) = Bala I 4+ 5 B ) — |
n=1 i=1
N
n N 1
<> S Eit [1Bn.it (¥hit) = B (2> + %Ez’ z,5 — 2|
n=1
1 7
=_—FE|z"! - Z"? + S D 54
o l I +3D% (54)

where we use {a,b) < -

< 55 llall® + Z[[b]]? in first inequality and [|a — Ea||* < [|a||* in the second one.

9.3. Proof of Lemma 6.3

From the definition of Bt(Zt+1), on node n, we have

2. * * * 1 1 *
BZ(ZZH) —B,(z") = [Bn,i; (Z;tlgz) - Bn,ii (z")] — [Bmih (y:qu) - Bn,iﬁ (z")] + [6 ZBnZ(Yfm) —Bn(z")]. (55)
i=1
Using |la + b]|? < 2||al|* + 2||b]|?, we have
E|BY(Z") - B(Z")|?
N 1
<D 2Bit [1Brit (275 ) = Buit, (2717 + 2Eqt (1B, (v5,1.) = Bryir, (27)] = [5 Y Builyh) = Ba(z)]|?
n=1 i=1
S St+1 +Dt, (56)
where the last inequality uses the definition of D! and S'*! and ||a — Eal|? < ||a||?.
9.4. Proof of Lemma 6.4
Expand || X! — X*||3, by the definition of X* and || - ||»s and suppose Z'™! and Q'*! are generated from some fixed

it ,n € [N]. Using ||a + b||? < 2||a||? + 2||b]|?, we have

X" = X*)3, = 12" - 2*||% + Q" — Q7||?

<2z -2 22 - 7 21 - Q2
We now bound the second term and last term. Using
12 =z < 12 -z (58)
since W < I, and the p-strongly monotonicity of B,, ;¢ , we have
| N
|1zt — Z|2%, < ;Zfz;;; — 2", Byt (2,71 ) — Bt (27))- (59)

From the construction of Q**! and Q*, every column of Q**! — Q* is in span(U), thus we have

Q™ — QI < U(Q! — Q)% (60)
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where 7 is the smallest nonzero singular value of U? = W — . From Lemma 6.1, we write

IU(Q™ = Q)II* = [|la[B"(Z") — B(Z")] + W(Z'! - Z")||?
< 20%|BY(ZY) — B(Z")|* + 212 — 2|3, (61)

Substituting these two upper bounds into (57), we have

N

X~ Xy < (2 )Z 2+ 2@ QU+ -3 ' B (5]) ~ B ()
n=1
402 .
+ TIIBt(Z”l) - B(Z")|. (62)

Taking expectation and using Lemma 6.3, we have the result.
9.5. Proof of Theorem 6.1
From Lemma 6.1 and 6.2, we have

E[IX = XF[Ry = X = X §y + EIX = X3y

= 20E(Z!Y — Z* B(Z*) — BY(Z!Y))

0
< %Enzt“ 7Y%+ ?Dt - TO‘SHI — (1 - 0)aT!. (63)

Also for D*t1, we have

N o 4
ED!! — Z P ZE% HBn,i(yf:fil) — Bpi(z")|?
n=1 =1
Yo &1 t+1 \[12 1 t (12
= > S Bl )~ B P + (1= DBu(st) — Bala))
n=1 =1
— (1_ E)Dt_"_lst—‘rl. (64)
q q

By adding ¢cD**! and rearranging terms, we have

1
E[| X = X*|3; + eD™] <X = X*[§g — B[ X = XUy + (1 - =)eD’ + =81
q

q
9
+ %IEHZt“ — 7Y% + %Dt - TO‘StH — (1 - 0)aTt. (65)

If we further have

(1= O)[IX" = X3 + D] [ X! — X* |31 — B[ X! = X[y + (1 - —)eD + S5t
q

_1
q

9
+ %Enzt+1 — 7Y + %Dt - f‘)‘st“ — (1 - 0)aTH, (66)

then we have the result. The above inequality is equivalent to

c an, ab C\ aitl 1
S —ed— Dt (— - 5)S 1-0)T
(== SOD (T = )8 a(l - 6)
> §|X - X3y — X — X3y + SE|Z - 22, 67
n

A
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and hence a sufficient condition is that an upper bound of the right hand side is less than the left hand side.

To bound A, using Lemma 6.4 for the first term, the definition of || X®*1 — X?||3, for the second term, and

Lt t))2 41 t))2

§||Z -7 <27 -7 (68)
for the third term since %I < W, we have

4 t+1 t)2 Lot t+1 2 40 i ¢
A <62+ ;)EHZ -7 + ;T +2EQ" — Q'|* + T(S + DY)
2a
—E|Z% - Z'|3 - EIQT - QPP + 7]E||Zt+1 - 2% (69)

Uniting like terms gives us the following sufficient condition for Theorem 6.1 to stand:

c an  4da* o af ¢ 40?4 O\ i1
R e ) » LTI (e T G - ¢ ) R o
(5 5 DN+ = ,Y) (o )M)
4. 2
= 2EIQ = QP+ (1- 2+ 1) - TB|Z - 215 2 0. (70)

Since every term in the above inequality is nonnegative, this inequality holds when every bracket is nonnegative. Let

T 1 mq
0413?71404,9:5,6:?, (71)
where 7 and m are constant to be set. The non-negativity of of the first two brackets equivalents to
(35 =)+ 35 ~ B~ $ 20 )
T m § 47 (7 )
37~ 12~ 517 20

: - 1 - 1 ind p 11
Taking 7 = 57, m = 55,0 < min{ 5, ;£7, 37 7}, we have the result.

9.6. Resolvent of Logistic Regression

—Yn,i
1+cxp(yn,7~,-a117¥z)
feature vector of a sample and y,, ; € {—1, 41} is its class label. The resolvent, 7,5, ,(z), does not admit a closed form
solution, but can be computed efficiently by the following newton iteration: let ap = 0, b = a;';iz

In Logistic Regression, each component operator 3,, ; is defined as 5,, ;(z) = a, i, where a,, ; € R? is the

—Yni oep +ap — b
ep = ———>—— and arpy] = ar — . (73)
1 4 exp(yn,iak) + 1 — ayn e — aer
When the iterate converges, the resolvent is obtain by
jaBn,,q‘, (Z) =Z— (b - ak‘)an,i' (74)

In our experiments, 20 newton iteration is sufficient for DSBA.

9.7. Resolvent of AUC maximization

In the ¢5-relaxed AUC maximization, the variable z € R%+3 is a d + 3-dimensional augmented vector, where d is the
dimension of the dataset. For simplicity, we decompose z as z = [WT; a; b; 0] with w € RiaeR,beR,0eR. Fora
positive sample, i.e. ¥, ; = +1, the component operator B,, ; is then defined as

2(1-p)((a, ;W — @) — (L+0)an;
But=| PP 75)

2p(1 —p)f +2(1 —pla) ,w
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and for a negative sample, i.e. ¥, ; = —1
2p((a, ;W — b) + (1 +0))an,
0
Bl =1 palw ) 70

2p(1 —p)0 — 2pa,, ;W

where p = W is the positive ratio of the dataset. Similar to RR, the resolvent of B, ; also admits a closed

form solution, which we now derive. For a positive sample, define

1+42(1-pa —2(1-pja 0 —2(1-p
—21-p)la 1+2(1—p)a 0 0
+_
A= 0 0 1 0 7)
2(1 - p)a 0 0 1+2p(1—-pa
and
aliw +2(1-pa
+ a
bt = ) (78)
0
Letb;” = (A")"'b™ € R* and decompose it as b,” = [z,7; a,"; b;"; 6,"]. The resolvent is obtain as
[w—2(1=pal(zf —a) = (1+0)lan;
+
a
Jos, :(2) = 27 = b (79)
o
We can do the similar derivation for a negative sample. Define
1+2pa 0 —2pa 2pa
_ 0 1 0 0
A= —2pa 0 14 2pa 0 (80)
—2pa 0 0 1+ 2p(1 —pla
and
ajm-w — 2pa
+ a
bt = ) (81)
0

Letb, = (A7) 'b~ € R* and decompose it as b,” = [z, ;a, ; b, ; 0, ] The resolvent is obtain as

[w = 2paf(z; = b) — (1 +0)]an

Jap,.(2) = 7 = o : (82)
O



