9. Supplementary Material

9.1. Proof of Lemma 6.1

Note that the update rule (24) can be written as

$$\mathbf{Z}^{k+1} := \mathbf{Z}^k + \mathbf{W}\mathbf{Z}^k - \tilde{\mathbf{W}}\mathbf{Z}^{k-1} - \alpha(\hat{\mathcal{B}}^k(\mathbf{Z}^{k+1}) - \hat{\mathcal{B}}^{k-1}(\mathbf{Z}^k)), \tag{47}$$

from the definition of $\tilde{\mathbf{W}}$. To prove the first part of the lemma, by summing (47) from k=1 to t and (25), one has

$$\mathbf{Z}^{t+1} = (\mathbf{W} - \tilde{\mathbf{W}}) \sum_{k=0}^{t} \mathbf{Z}^{k} + \tilde{\mathbf{W}} \mathbf{Z}^{t} - \alpha \hat{\mathcal{B}}^{t} (\mathbf{Z}^{t+1}).$$
(48)

From the definition of **U** and \mathbf{Q}^t and the identity $\mathbf{I} = 2\tilde{\mathbf{W}} - \mathbf{W}$, we have

$$\alpha \hat{\mathcal{B}}^t(\mathbf{Z}^{t+1}) = \tilde{\mathbf{W}}(\mathbf{Z}^t - \mathbf{Z}^{t+1}) - \mathbf{U}\mathbf{Q}^{t+1}. \tag{49}$$

By subtracting the optimality condition (15), we have the result.

From first part, we have

$$\langle \mathbf{Z}^{t+1} - \mathbf{Z}^*, \alpha [\mathcal{B}(\mathbf{Z}^*) - \hat{\mathcal{B}}^t(\mathbf{Z}^{t+1})] \rangle$$

$$= \langle \mathbf{Z}^{t+1} - \mathbf{Z}^*, -\tilde{\mathbf{W}}(\mathbf{Z}^t - \mathbf{Z}^{t+1}) + \mathbf{U}(\mathbf{Q}^{t+1} - \mathbf{Q}^*) \rangle$$

$$= \langle \mathbf{Z}^{t+1} - \mathbf{Z}^*, \mathbf{Z}^{t+1} - \mathbf{Z}^t \rangle_{\tilde{\mathbf{W}}} + \langle \mathbf{Z}^{t+1} - \mathbf{Z}^*, \mathbf{U}(\mathbf{Q}^{t+1} - \mathbf{Q}^*) \rangle$$

$$= \langle \mathbf{Z}^{t+1} - \mathbf{Z}^*, \mathbf{Z}^{t+1} - \mathbf{Z}^t \rangle_{\tilde{\mathbf{W}}} + \langle \mathbf{Q}^{t+1} - \mathbf{Q}^t, \mathbf{Q}^{t+1} - \mathbf{Q}^* \rangle, \tag{50}$$

where the last equality uses the definition of \mathbf{Q}^t and that $\mathbf{U}\mathbf{Z}^* = \mathbf{0}$. By applying the generalized Law of cosines $2\langle a,b\rangle = \|a\|^2 + \|b\|^2 - \|a-b\|^2$ with $a = \mathbf{X}^{t+1} - \mathbf{X}^*$ and $b = \mathbf{X}^{t+1} - \mathbf{X}^t$, we have the second part.

9.2. Proof of Lemma 6.2

We have $T^{t+1} \ge \frac{1}{L}S^{t+1}$ from the definition of cocoerciveness. Expanding the definition of $\hat{\mathcal{B}}^t(\mathbf{Z}^{t+1})$, we have

$$\mathbb{E}\langle \mathbf{Z}^{t+1} - \mathbf{Z}^*, \mathcal{B}(\mathbf{Z}^*) - \hat{\mathcal{B}}^t(\mathbf{Z}^{t+1})\rangle
= \sum_{n=1}^{N} -\mathbb{E}_{i_n^t}\langle \mathbf{z}_{n,i_n^t}^{t+1} - \mathbf{z}^*, \mathcal{B}_{n,i_n^t}(\mathbf{z}_{n,i_n^t}^{t+1}) - \mathcal{B}_{n,i_n^t}(\mathbf{z}^*)\rangle
+ \mathbb{E}_{i_n^t}\langle \mathbf{z}_{n,i_n^t}^{t+1} - \mathbf{z}^*, [\mathcal{B}_{n,i_n^t}(\mathbf{y}_{n,i_n^t}^t) - \mathcal{B}_{n,i_n^t}(\mathbf{z}^*)] - [\frac{1}{q} \sum_{i=1}^{q} \mathcal{B}_{n,i}(\mathbf{y}_{n,i}^t) - \mathcal{B}_n(\mathbf{z}^*)]\rangle.$$
(51)

The first term is exactly $-\frac{1}{2}T^{t+1}$, and is bounded by $-\frac{1}{2}T^{t+1} \le -\frac{\theta}{2L}S^{t+1} - \frac{1-\theta}{2}T^{t+1}$ for $0 \le \theta \le 1$. Since

$$\mathbb{E}_{i_n^t}\{[\mathcal{B}_{n,i_n^t}(\mathbf{y}_{n,i_n^t}^t) - \mathcal{B}_{n,i_n^t}(\mathbf{z}^*)] - [\frac{1}{q}\sum_{i=1}^q \mathcal{B}_{n,i}(\mathbf{y}_{n,i}^t) - \mathcal{B}_n(\mathbf{z}^*)]\} = \mathbf{0},\tag{52}$$

and \mathbf{z}_n^t is independent of i_n^t , we have

$$\mathbb{E}_{i_n^t} \langle \mathbf{z}_n^t - \mathbf{z}^*, [\mathcal{B}_{n,i_n^t}(\mathbf{y}_{n,i_n^t}^t) - \mathcal{B}_{n,i_n^t}(\mathbf{z}^*)] - \left[\frac{1}{q} \sum_{i=1}^q \mathcal{B}_{n,i}(\mathbf{y}_{n,i}^t) - \mathcal{B}_n(\mathbf{z}^*)\right] \rangle = 0.$$
 (53)

We bound the second term by

$$\sum_{n=1}^{N} \mathbb{E}_{i_{n}^{t}} \langle \mathbf{z}_{n,i_{n}^{t}}^{t+1} - \mathbf{z}^{*}, [\mathcal{B}_{n,i_{n}^{t}}(\mathbf{y}_{n,i_{n}^{t}}^{t}) - \mathcal{B}_{n,i_{n}^{t}}(\mathbf{z}^{*})] - [\frac{1}{q} \sum_{i=1}^{q} \mathcal{B}_{n,i}(\mathbf{y}_{n,i}^{t}) - \mathcal{B}_{n}(\mathbf{z}^{*})] \rangle$$

$$= \sum_{n=1}^{N} \mathbb{E}_{i_{n}^{t}} \langle \mathbf{z}_{n,i_{n}^{t}}^{t+1} - \mathbf{z}_{n}^{t}, [\mathcal{B}_{n,i_{n}^{t}}(\mathbf{y}_{n,i_{n}^{t}}^{t}) - \mathcal{B}_{n,i_{n}^{t}}(\mathbf{z}^{*})] - [\frac{1}{q} \sum_{i=1}^{q} \mathcal{B}_{n,i}(\mathbf{y}_{n,i}^{t}) - \mathcal{B}_{n}(\mathbf{z}^{*})] \rangle$$

$$\leq \sum_{n=1}^{N} \frac{\eta}{2} \mathbb{E}_{i_{n}^{t}} \| [\mathcal{B}_{n,i_{n}^{t}}(\mathbf{y}_{n,i_{n}^{t}}^{t}) - \mathcal{B}_{n,i_{n}^{t}}(\mathbf{z}^{*})] - [\frac{1}{q} \sum_{i=1}^{q} \mathcal{B}_{n,i}(\mathbf{y}_{n,i}^{t}) - \mathcal{B}_{n}(\mathbf{z}^{*})] \|^{2} + \frac{1}{2\eta} \mathbb{E}_{i_{n}^{t}} \| \mathbf{z}_{n,i_{n}^{t}}^{t+1} - \mathbf{z}_{n}^{t} \|^{2}$$

$$\leq \sum_{n=1}^{N} \frac{\eta}{2} \mathbb{E}_{i_{n}^{t}} \| \mathcal{B}_{n,i_{n}^{t}}(\mathbf{y}_{n,i_{n}^{t}}^{t}) - \mathcal{B}_{n,i_{n}^{t}}(\mathbf{z}^{*}) \|^{2} + \frac{1}{2\eta} \mathbb{E}_{i_{n}^{t}} \| \mathbf{z}_{n,i_{n}^{t}}^{t+1} - \mathbf{z}_{n}^{t} \|^{2}$$

$$= \frac{1}{2\eta} \mathbb{E} \| \mathbf{z}^{t+1} - \mathbf{z}^{t} \|^{2} + \frac{\eta}{4} D^{t}, \tag{54}$$

where we use $\langle a,b\rangle\leq \frac{1}{2\eta}\|a\|^2+\frac{\eta}{2}\|b\|^2$ in first inequality and $\|a-\mathbb{E}a\|^2\leq \|a\|^2$ in the second one.

9.3. Proof of Lemma 6.3

From the definition of $\hat{\mathcal{B}}^t(\mathbf{Z}^{t+1})$, on node n, we have

$$\hat{\mathcal{B}}_{n}^{t}(\mathbf{z}_{n}^{t+1}) - \mathcal{B}_{n}(\mathbf{z}^{*}) = \left[\mathcal{B}_{n,i_{n}^{t}}(\mathbf{z}_{n,i_{n}^{t}}^{t+1}) - \mathcal{B}_{n,i_{n}^{t}}(\mathbf{z}^{*})\right] - \left[\mathcal{B}_{n,i_{n}^{t}}(\mathbf{y}_{n,i_{n}^{t}}^{t}) - \mathcal{B}_{n,i_{n}^{t}}(\mathbf{z}^{*})\right] + \left[\frac{1}{q}\sum_{i=1}^{q} \mathcal{B}_{n,i}(\mathbf{y}_{n,i}^{t}) - \mathcal{B}_{n}(\mathbf{z}^{*})\right].$$
(55)

Using $||a + b||^2 \le 2||a||^2 + 2||b||^2$, we have

$$\mathbb{E}\|\hat{\mathcal{B}}^t(\mathbf{Z}^{t+1}) - \mathcal{B}(\mathbf{Z}^*)\|^2$$

$$\leq \sum_{n=1}^{N} 2\mathbb{E}_{i_{n}^{t}} \|\mathcal{B}_{n,i_{n}^{t}}(\mathbf{z}_{n,i_{n}^{t}}^{t+1}) - \mathcal{B}_{n,i_{n}^{t}}(\mathbf{z}^{*})\|^{2} + 2\mathbb{E}_{i_{n}^{t}} \|[\mathcal{B}_{n,i_{n}^{t}}(\mathbf{y}_{n,i_{n}^{t}}^{t}) - \mathcal{B}_{n,i_{n}^{t}}(\mathbf{z}^{*})] - [\frac{1}{q} \sum_{i=1}^{q} \mathcal{B}_{n,i}(\mathbf{y}_{n,i}^{t}) - \mathcal{B}_{n}(\mathbf{z}^{*})]\|^{2} \\
\leq S^{t+1} + D^{t}, \tag{56}$$

where the last inequality uses the definition of D^t and S^{t+1} and $||a - \mathbb{E}a||^2 \le ||a||^2$.

9.4. Proof of Lemma 6.4

Expand $\|\mathbf{X}^t - \mathbf{X}^*\|_M^2$ by the definition of \mathbf{X}^t and $\|\cdot\|_M$ and suppose \mathbf{Z}^{t+1} and \mathbf{Q}^{t+1} are generated from some fixed $i_n^t, n \in [N]$. Using $\|a+b\|^2 \le 2\|a\|^2 + 2\|b\|^2$, we have

$$\|\mathbf{X}^{t} - \mathbf{X}^{*}\|_{M}^{2} = \|\mathbf{Z}^{t} - \mathbf{Z}^{*}\|_{\tilde{\mathbf{W}}}^{2} + \|\mathbf{Q}^{t} - \mathbf{Q}^{*}\|^{2}$$

$$\leq 2\|\mathbf{Z}^{t+1} - \mathbf{Z}^{t}\|_{\tilde{\mathbf{W}}}^{2} + 2\|\mathbf{Z}^{t+1} - \mathbf{Z}^{*}\|_{\tilde{\mathbf{W}}}^{2} + 2\|\mathbf{Q}^{t+1} - \mathbf{Q}^{t}\|^{2} + 2\|\mathbf{Q}^{t+1} - \mathbf{Q}^{*}\|^{2}.$$
(57)

We now bound the second term and last term. Using

$$\|\mathbf{Z}^{t+1} - \mathbf{Z}^*\|_{\tilde{\mathbf{W}}}^2 \le \|\mathbf{Z}^{t+1} - \mathbf{Z}^*\|^2$$
 (58)

since $\tilde{\mathbf{W}} \leq I$, and the μ -strongly monotonicity of $\mathcal{B}_{n,i_{-}}$, we have

$$\|\mathbf{Z}^{t+1} - \mathbf{Z}^*\|_{\tilde{\mathbf{W}}}^2 \le \frac{1}{\mu} \sum_{n=1}^{N} \langle \mathbf{z}_{n,i_n^t}^{t+1} - \mathbf{z}^*, \mathcal{B}_{n,i_n^t}(\mathbf{z}_{n,i_n^t}^{t+1}) - \mathcal{B}_{n,i_n^t}(\mathbf{z}^*) \rangle.$$
 (59)

From the construction of \mathbf{Q}^{t+1} and \mathbf{Q}^* , every column of $\mathbf{Q}^{t+1} - \mathbf{Q}^*$ is in $\mathrm{span}(U)$, thus we have

$$\gamma \|\mathbf{Q}^{t+1} - \mathbf{Q}^*\|^2 \le \|U(\mathbf{Q}^{t+1} - \mathbf{Q}^*)\|^2, \tag{60}$$

where γ is the smallest nonzero singular value of $U^2 = \tilde{\mathbf{W}} - W$. From Lemma 6.1, we write

$$||U(\mathbf{Q}^{t+1} - \mathbf{Q}^*)||^2 = ||\alpha[\hat{\mathcal{B}}^t(\mathbf{Z}^{t+1}) - \mathcal{B}(\mathbf{Z}^*)] + \tilde{\mathbf{W}}(\mathbf{Z}^{t+1} - \mathbf{Z}^t)||^2$$

$$\leq 2\alpha^2 ||\hat{\mathcal{B}}^t(\mathbf{Z}^{t+1}) - \mathcal{B}(\mathbf{Z}^*)||^2 + 2||\mathbf{Z}^{t+1} - \mathbf{Z}^t||_{\tilde{\mathbf{W}}}^2.$$
(61)

Substituting these two upper bounds into (57), we have

$$\|\mathbf{X}^{t} - \mathbf{X}^{*}\|_{M}^{2} \leq (2 + \frac{4}{\gamma}) \|\mathbf{Z}^{t+1} - \mathbf{Z}^{t}\|_{\tilde{\mathbf{W}}}^{2} + 2\|\mathbf{Q}^{t+1} - \mathbf{Q}^{t}\|^{2} + \frac{2}{\mu} \sum_{n=1}^{N} \langle \mathbf{z}_{n,i_{n}^{t}}^{t+1} - \mathbf{z}^{*}, \mathcal{B}_{n,i_{n}^{t}}(\mathbf{z}_{n,i_{n}^{t}}^{t+1}) - \mathcal{B}_{n,i_{n}^{t}}(\mathbf{z}^{*}) \rangle$$

$$+ \frac{4\alpha^{2}}{\gamma} \|\hat{\mathcal{B}}^{t}(\mathbf{Z}^{t+1}) - \mathcal{B}(\mathbf{Z}^{*})\|^{2}.$$
(62)

Taking expectation and using Lemma 6.3, we have the result.

9.5. Proof of Theorem 6.1

From Lemma 6.1 and 6.2, we have

$$\mathbb{E}\|\mathbf{X}^{t+1} - \mathbf{X}^*\|_{\mathbf{M}}^2 - \|\mathbf{X}^t - \mathbf{X}^*\|_{\mathbf{M}}^2 + \mathbb{E}\|\mathbf{X}^{t+1} - \mathbf{X}^t\|_{\mathbf{M}}^2$$

$$= 2\alpha \mathbb{E}\langle \mathbf{Z}^{t+1} - \mathbf{Z}^*, \mathcal{B}(\mathbf{Z}^*) - \hat{\mathcal{B}}^t(\mathbf{Z}^{t+1})\rangle$$

$$\leq \frac{\alpha}{n} \mathbb{E}\|\mathbf{Z}^{t+1} - \mathbf{Z}^t\|^2 + \frac{\eta\alpha}{2}D^t - \frac{\theta\alpha}{L}S^{t+1} - (1-\theta)\alpha T^{t+1}.$$
(63)

Also for D^{t+1} , we have

$$\mathbb{E}D^{t+1} = \sum_{n=1}^{N} \frac{2}{q} \sum_{i=1}^{q} \mathbb{E}_{i_{n}^{t}} \| \mathcal{B}_{n,i}(\mathbf{y}_{n,i}^{t+1}) - \mathcal{B}_{n,i}(\mathbf{z}^{*}) \|^{2}$$

$$= \sum_{n=1}^{N} \frac{2}{q} \sum_{i=1}^{q} \{ \frac{1}{q} \| \mathcal{B}_{n,i}(\mathbf{z}_{n,i}^{t+1}) - \mathcal{B}_{n,i}(\mathbf{z}^{*}) \|^{2} + (1 - \frac{1}{q}) \| \mathcal{B}_{n,i}(\mathbf{y}_{n,i}^{t}) - \mathcal{B}_{n,i}(\mathbf{z}^{*}) \|^{2} \}$$

$$= (1 - \frac{1}{q})D^{t} + \frac{1}{q}S^{t+1}.$$
(64)

By adding cD^{t+1} and rearranging terms, we have

$$\mathbb{E}[\|\mathbf{X}^{t+1} - \mathbf{X}^*\|_{M}^{2} + cD^{t+1}] \leq \|\mathbf{X}^{t} - \mathbf{X}^*\|_{\mathbf{M}}^{2} - \mathbb{E}\|\mathbf{X}^{t+1} - \mathbf{X}^{t}\|_{\mathbf{M}}^{2} + (1 - \frac{1}{q})cD^{t} + \frac{c}{q}S^{t+1} + \frac{\alpha}{n}\mathbb{E}\|\mathbf{Z}^{t+1} - \mathbf{Z}^{t}\|^{2} + \frac{\eta\alpha}{2}D^{t} - \frac{\theta\alpha}{L}S^{t+1} - (1 - \theta)\alpha T^{t+1}.$$
(65)

If we further have

$$(1 - \delta)[\|\mathbf{X}^{t} - \mathbf{X}^{*}\|_{M}^{2} + cD^{t}] \ge \|\mathbf{X}^{t} - \mathbf{X}^{*}\|_{\mathbf{M}}^{2} - \mathbb{E}\|\mathbf{X}^{t+1} - \mathbf{X}^{t}\|_{\mathbf{M}}^{2} + (1 - \frac{1}{q})cD^{t} + \frac{c}{q}S^{t+1} + \frac{\alpha}{\eta}\mathbb{E}\|\mathbf{Z}^{t+1} - \mathbf{Z}^{t}\|^{2} + \frac{\eta\alpha}{2}D^{t} - \frac{\theta\alpha}{L}S^{t+1} - (1 - \theta)\alpha T^{t+1},$$
(66)

then we have the result. The above inequality is equivalent to

$$\frac{\left(\frac{c}{q} - c\delta - \frac{\alpha\eta}{2}\right)D^{t} + \left(\frac{\alpha\theta}{L} - \frac{c}{q}\right)S^{t+1} + \alpha(1-\theta)T^{t+1}}{\geq \delta \|\mathbf{X}^{t} - \mathbf{X}^{*}\|_{\mathbf{M}}^{2} - \|\mathbf{X}^{t+1} - \mathbf{X}^{t}\|_{\mathbf{M}}^{2} + \frac{\alpha}{\eta}\mathbb{E}\|\mathbf{Z}^{t+1} - \mathbf{Z}^{t}\|^{2},}$$
(67)

and hence a sufficient condition is that an upper bound of the right hand side is less than the left hand side.

To bound Λ , using Lemma 6.4 for the first term, the definition of $\|\mathbf{X}^{t+1} - \mathbf{X}^t\|_{\mathbf{M}}^2$ for the second term, and

$$\frac{1}{2} \|\mathbf{Z}^{t+1} - \mathbf{Z}^t\|^2 \le \|\mathbf{Z}^{t+1} - \mathbf{Z}^t\|_{\tilde{\mathbf{W}}}^2$$
(68)

for the third term since $\frac{1}{2}I \preccurlyeq \tilde{\mathbf{W}}$, we have

$$\Lambda \leq \delta[(2 + \frac{4}{\gamma})\mathbb{E}\|\mathbf{Z}^{t+1} - \mathbf{Z}^{t}\|_{\tilde{\mathbf{W}}}^{2} + \frac{1}{\mu}T^{t+1} + 2\mathbb{E}\|\mathbf{Q}^{t+1} - \mathbf{Q}^{t}\|^{2} + \frac{4\alpha^{2}}{\gamma}(S^{t+1} + D^{t})] - \mathbb{E}\|\mathbf{Z}^{t+1} - \mathbf{Z}^{t}\|_{\tilde{\mathbf{W}}}^{2} - \mathbb{E}\|\mathbf{Q}^{t+1} - \mathbf{Q}^{t}\|^{2} + \frac{2\alpha}{\eta}\mathbb{E}\|\mathbf{Z}^{t+1} - \mathbf{Z}^{t}\|_{\tilde{\mathbf{W}}}^{2}.$$
(69)

Uniting like terms gives us the following sufficient condition for Theorem 6.1 to stand:

$$\left(\frac{c}{q} - c\delta - \frac{\alpha\eta}{2} - \frac{4\delta\alpha^{2}}{\gamma}\right)D^{t} + \left(\frac{\alpha\theta}{L} - \frac{c}{q} - \frac{4\delta\alpha^{2}}{\gamma}\right)S^{t+1} + (\alpha(1-\theta) - \frac{\delta}{\mu})T^{t+1} + (1-2\delta)\mathbb{E}\|\mathbf{Q}^{t+1} - \mathbf{Q}^{t}\|^{2} + (1-(2+\frac{4}{\gamma})\delta - \frac{2\alpha}{\eta})\mathbb{E}\|\mathbf{Z}^{t+1} - \mathbf{Z}^{t}\|_{\tilde{\mathbf{W}}}^{2} \ge 0.$$
(70)

Since every term in the above inequality is nonnegative, this inequality holds when every bracket is nonnegative. Let

$$\alpha = \frac{\tau}{L}, \eta = 4\alpha, \theta = \frac{1}{2}, c = \frac{mq}{L^2}, \tag{71}$$

where τ and m are constant to be set. The non-negativity of of the first two brackets equivalents to

$$\begin{cases} c(\frac{1}{3q} - \delta) + \frac{2m}{3L^2} - \frac{2\tau^2}{L^2} - \frac{\delta}{\gamma} \frac{4\tau^2}{L^2} \ge 0\\ \frac{\tau}{2L^2} - \frac{m}{L^2} - \frac{\delta}{\gamma} \frac{4\tau^2}{L^2} \ge 0 \end{cases}$$
(72)

Taking $au=\frac{1}{24}, m=\frac{1}{96}, \delta \leq \min\{\frac{\gamma}{12}, \frac{\mu}{48L}, \frac{1}{3q}, \frac{1}{4}\}$, we have the result.

9.6. Resolvent of Logistic Regression

In Logistic Regression, each component operator $\mathcal{B}_{n,i}$ is defined as $\mathcal{B}_{n,i}(\mathbf{z}) = \frac{-y_{n,i}}{1+\exp(y_{n,i}\cdot\mathbf{a}_{n,i}^{\top}\mathbf{z})}\mathbf{a}_{n,i}$, where $\mathbf{a}_{n,i}\in\mathbb{R}^d$ is the feature vector of a sample and $y_{n,i}\in\{-1,+1\}$ is its class label. The resolvent, $\mathcal{J}_{\alpha\mathcal{B}_{n,i}}(\mathbf{z})$, does not admit a closed form solution, but can be computed efficiently by the following newton iteration: let $a_0=0, b=\mathbf{a}_{n,i}^{\top}\mathbf{z}$

$$e_k = \frac{-y_{n,i}}{1 + \exp(y_{n,i}a_k)}$$
 and $a_{k+1} = a_k - \frac{\alpha e_k + a_k - b}{1 - \alpha y_{n,i}e_k - \alpha e_k^2}$. (73)

When the iterate converges, the resolvent is obtain by

$$\mathcal{J}_{\alpha\mathcal{B}_{n,i}}(\mathbf{z}) = \mathbf{z} - (b - a_k)\mathbf{a}_{n,i}.$$
(74)

In our experiments, 20 newton iteration is sufficient for DSBA.

9.7. Resolvent of AUC maximization

In the ℓ_2 -relaxed AUC maximization, the variable $\mathbf{z} \in \mathbb{R}^{d+3}$ is a d+3-dimensional augmented vector, where d is the dimension of the dataset. For simplicity, we decompose \mathbf{z} as $\mathbf{z} = [\mathbf{w}^\top; a; b; \theta]$ with $\mathbf{w} \in \mathbb{R}^d$, $a \in \mathbb{R}$, $b \in \mathbb{R}$. For a positive sample, i.e. $y_{n,i} = +1$, the component operator $\mathcal{B}_{n,i}$ is then defined as

$$\mathcal{B}_{n,i}(\mathbf{z}) = \begin{bmatrix} 2(1-p)((\mathbf{a}_{n,i}^{\top}\mathbf{w} - a) - (1+\theta))\mathbf{a}_{n,i} \\ -2(1-p)(\mathbf{a}_{n,i}^{\top}\mathbf{w} - a) \\ 0 \\ 2p(1-p)\theta + 2(1-p)\mathbf{a}_{n,i}^{\top}\mathbf{w} \end{bmatrix}$$
(75)

and for a negative sample, i.e. $y_{n,i} = -1$

$$\mathcal{B}_{n,i}(\mathbf{z}) = \begin{bmatrix} 2p((\mathbf{a}_{n,i}^{\top}\mathbf{w} - b) + (1+\theta))\mathbf{a}_{n,i} \\ 0 \\ -2p(\mathbf{a}_{n,i}^{\top}\mathbf{w} - b) \\ 2p(1-p)\theta - 2p\mathbf{a}_{n,i}^{\top}\mathbf{w} \end{bmatrix}$$
(76)

where $p = \frac{\# \text{positive samples}}{\# \text{samples}}$ is the positive ratio of the dataset. Similar to RR, the resolvent of $\mathcal{B}_{n,i}$ also admits a closed form solution, which we now derive. For a positive sample, define

$$\mathbf{A}^{+} = \begin{bmatrix} 1 + 2(1-p)\alpha & -2(1-p)\alpha & 0 & -2(1-p)\alpha \\ -2(1-p)\alpha & 1 + 2(1-p)\alpha & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 2(1-p)\alpha & 0 & 0 & 1 + 2p(1-p)\alpha \end{bmatrix}$$
(77)

and

$$\mathbf{b}^{+} = \begin{bmatrix} \mathbf{a}_{n,i}^{\top} \mathbf{w} + 2(1-p)\alpha \\ a \\ b \\ \theta \end{bmatrix}. \tag{78}$$

Let $\mathbf{b}_r^+ = (\mathbf{A}^+)^{-1} \mathbf{b}^+ \in \mathbb{R}^4$ and decompose it as $\mathbf{b}_r^+ = [z_r^+; a_r^+; b_r^+; \theta_r^+]$. The resolvent is obtain as

$$\mathcal{J}_{\alpha\mathcal{B}_{n,i}}(\mathbf{z}) = \mathbf{z}_r^+ = \begin{bmatrix} [\mathbf{w} - 2(1-p)\alpha[(z_r^+ - a) - (1+\theta)]\mathbf{a}_{n,i}] \\ a_r^+ \\ b_r^+ \\ \theta_r^+ \end{bmatrix}$$
(79)

We can do the similar derivation for a negative sample. Define

$$\mathbf{A}^{-} = \begin{bmatrix} 1 + 2p\alpha & 0 & -2p\alpha & 2p\alpha \\ 0 & 1 & 0 & 0 \\ -2p\alpha & 0 & 1 + 2p\alpha & 0 \\ -2p\alpha & 0 & 0 & 1 + 2p(1-p)\alpha \end{bmatrix}$$
(80)

and

$$\mathbf{b}^{+} = \begin{bmatrix} \mathbf{a}_{n,i}^{\top} \mathbf{w} - 2p\alpha \\ a \\ b \\ \theta \end{bmatrix}$$
 (81)

Let $\mathbf{b}_r^- = (\mathbf{A}^-)^{-1}\mathbf{b}^- \in \mathbb{R}^4$ and decompose it as $\mathbf{b}_r^- = [z_r^-; a_r^-; b_r^-; \theta_r^-]$ The resolvent is obtain as

$$\mathcal{J}_{\alpha\mathcal{B}_{n,i}}(\mathbf{z}) = \mathbf{z}_r^+ = \begin{bmatrix} [\mathbf{w} - 2p\alpha[(z_r^- - b) - (1+\theta)]\mathbf{a}_{n,i} \\ a_r^- \\ b_r^- \\ \theta_r^- \end{bmatrix}. \tag{82}$$