Supplementary Material for
* An Algorithmic Framework of Variable Metric Over-Relaxed

Hybrid Proximal Extra-Gradient Method ”’

A. Proof of Theorem 1
Theorem. Let {(:ck, yk)} be the sequence generated by the VMOR-HPE framework.

. . Z . L . 2
(i) For any given x* € T~1(0), the following approximation contractive sequence of ||sck —z* HMk holds

||J]k+1 o

o <A+ &)l — o |[h, — (1= o)1+ &) +0)]|2* —oF |}, 31)

M1 —

(ii) {z*} and {y*} both converge to a point x> belonging to T~*(0).

Proof. (i) Notice that v* € T!)(y*) and 2* € T~1(0). By utilizing the definition of T'], it holds that (v*, y* — 2*) >
—éy,. In combination with this inequality and ¥+ = ¥ — (1 + 6 )c; M, 'v*, we obtain that

Hmk—H gt f\/lk — ||k * 3\/1 + (140, 2‘|CkM_lkai/lk —2(1+9k)<c;€v f — > (32)
b 0+ (0 M, — 208 e 2 5 o )
= ||lo* — 2|5, Q0 e My ob |, — 20+00) (erv, 2P — ) — 20+ 05 e (0¥, yF — 27

< [l =, + (08 [er My 0|, — 200+08) (er My 08, Mi(aF — 5F))+ 20140 exer
= [l = allq, + 0 00) [l M o [, + llexMi o + 5 =¥, +2enen— 1y~ ]
< lo* = 2l = A=)+ 00y — 2,

where the last inequality holds according to (7b). Moreover, according to M1 = (1 + &) M}, we obtain ey E Hz’““ —

< sz“ —z || My Substituting this inequality into (32) yields the desired approximation contractive sequence
w112 2
|l = 2"y, = € — (1 =o)L+ &)+ 00" =",
(i) By the inequality (31), 6, > 8 > —1 and 0 < 1, we obtain H$k+1 — ¥ i/mrl <( and
2 b 2
2" = 2[5, < [T +&))2° ==y, - (33)
i=1

In addition, for any ¢ > 0, it is easy to verify that log(1 + ¢) < ¢. Hence, Z;’io & < 4oo implies

(1+&;) <exp (Z{z) < +o0.

—
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= 2 . N L .
ktl < :on -z H . This inequality, in combination with
Mo

=2y, <
My, = wZ, implies the boundedness of sequence {z*}. According to (31) again, we obtain

Combing the above two inequalities implies ||x

(1= o) (1 + &) (1401 [2* — y*[1Re, < A& lI2" — 2|34, — 2" — 2%,
_ ||$k+1

< Jlz* = 2134, =" Ry, T &El2” = 2734,
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Using 0, > 6 > —1,0 < 1 and taking a summation of both sides of the above inequality, we obtain
i 2 ; 2
(1=0)1+0)> o' —v'[, < Z (1= o)1 +&)(1+0:)|[2" =y,

§HI1_$* 2 _Hmk-i-l_ *

My z

k
2 —
Myt + Z&:HxO -7
=1

k
< (1—&-2&): (34
i=1
Dividing the term (1 — o)(1 + ) on both sides of the above inequality, we obtain
(1 + Zz 57/)
ZH@' — |, < Toare 1~ T (35)

(1-0)(1+9)

According to Y57 | &; < 0o, My, = wZ, the boundedness of {z*} and inequality (35), sequence {y*} is apparently bounded
and has the same limitation points as sequence {z*}. To show the convergences of {z*} and {y*}, we further need to argue
that the accumulated residuals Zle | M Ly? ”3\/11 and the accumulated error Zle €; are bounded. Expanding the term
|cxM;; ok +y* kHMk in (7b), we acquire 2(cyv", 2% —y*) > (1+0)||cx M} "0k Hi/lk +(1-0)||y*—aF Hi/{k +2ck€.
In addition, by the Cauchy-Schwartz inequality, it holds that

2exo", o = o) < 2 e My o8y, [l = 0F ]y, < H % e |, + 1+9 e =5,
Substituting the inequality into the above inequality, we obtain
(1+ 01)[ex M 0% ||, + 2cne O MR — ﬁ”xk—kaMk <0, (36)
which further indicates 252 || e, My 0|3, + 2eker < 25 ||a* —y* |}, - Hence, we have
leeMi v g, < gl = e even < gy =2, @7

Combining (35) and (37) yields the bounds of 3% (1+6;)2||c;M; v ||i/l,_ and 2% (1+60;)c;e;, which are

k k
1 A0+ 6= o
;( HCZM HM = 1-0)(1+0) H (38)
k
( +Z 1674 0 x[|2
(14 6)cies < - =LSUR 00 g% (39)
2 T-oi+0 M
By 6 > 6 and ¢, > ¢ > 0, the upper estimations for Zle HM;lviHMi and Zle €; are given below:
k k
—1,i(|2 (1+Z7, § 2 (1+Z fl)
;HML K HMZ < 1— 0)62(11—H9 7|2~ ||M07 ;Q = o(1— )(f_,_g vl HMO' (40)

By (35), (40) and M, = wZ, it holds that limy,_, o € = limy_00 |[vF]| = limy_s o [|2¥ — ¥ = 0. In addition, due to the
boundedness of {z*} and {y*}, there exists a subsequence K C {1,2, ...} such that limge k—s00 2 = limgex ko0 ¥ =
x>, Let k € K tend to be infinity in v* € T¢I (3*) in (7a), and then it holds that 0 € T'(z>) by verifying the definition of
enlargement operator 71+, Hence, 2> is a root of inclusion problem (1). Replacing z* by > in inequality (31), we derive

[ =l p,., < &0l =2y, — (T4 &)1 = o)1+ 002 = o*[[, -
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k

Notice that limgex k00 2 = 2°°. Therefore, for any given € > 0, there exists k € K > 0 such that |k — 2> Ha\’lz

IN
e

Then, for all k& > k, the above inequality indicates

k k
o0 k oo €
"+t = 2% Ry, < TTO+ &) la" -2 < [0 +€)5 <e
i=k i=0
Hence, it holds that limj_, o, ¥ = limg_y o0 yk = z*° by M} = wZ. We complete the proof. O
B. Proof of Theorem 2

Theorem. Let {(z*, y*)} be the sequence generated by the VMOR-HPE framework. Assume that the metric subregularity
of T at (x*°,0) € gph T holds with k > 0. Then, there exists k > 0 such that for all k > k,

disty,,, (51, T70) < (1= )disthy, (25, T7(0)), 1)
—_—— 2 P — 2
where gk:[(l—a)(l—l-t%)}/ {(1—}—'; :z“’) (1+ J—F%) ] € (0,1).

Proof. Let ™ be the limitation point of {z*} and z* be the point satisfying 0 € ¢, T(z*) + M, (z* — 2*), respectively.
By the metric subregularity of T" at (z>°,0) € gph T, there exists k£ € N such that for all &k > k,

distuq,, (25, 771(0)) < \/ﬁdist(zk,T_l(O)) < VEGkdist (0,7(z%))

=Wk
<

K [Ew
Mi(F =) < & 220k — 2k 42
- b)) < 5 Z e, @
where the third inequality holds due to —c;, ' My (z* — 2*) € T(2*) and ¢; > ¢, and the last inequality holds due to
1 1
[ ME (2F —2")|| = Amin (M3 )||2* — 2*||. By the triangle inequality, inequality (42) indicates

dist aq,, (27, 771(0)) < Hsck - zkHMk + dist g, (25, 771(0)) < (1 + g’ f %) sz - kaMk' 43)

Next, we build the connection between ||z¥ — || A4, and ||y* — 2% || a1, , Which is crucial for establishing the linear
convergence rate (41). Due to inequality (7a), 0 € ckT(zk) + Mk(zk — zk) and the definition of T!¢*], we obtain
<ckka/\/lk(xkfzk), ykfzk> > —cpep . Letrk = ck./\/llzlvlC +y* —a%, and then it holds that czv* = Mpr*4+ M, (2% —y*).
Substituting this equality into the last inequality yields

1% = 5" 134, = ¥ e 12 = 55, = cxen < 0.

The above quadratic inequality on the term sz -y directly implies the following result that

o,

1
1 = ¥l g, < 5 17 e, + V4, + derer] < 4/ Ir* 1, + 2006t (44)
Moreover, arranging the terms in (7b), and then using notations 7* and inequality (37), we have
715, + 2ener < olla* = 4* |5y, = OullexMi o [, < (o + max{=61,0}/ (1 + 61)%) |2 — 4[5,

Substituting this inequality into (44) and using the triangle inequality, we further obtain

4 max{—0y,0}
o =241, < 1=, 2t < (1o SOy
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Substituting this inequality into inequality (43), for all £ > k it holds that

. _ =w 4max{—0;,0}
istae, (25,771 0) £ (145 [FD) (14 o 4 AmCO00Y
lek(l‘a ())— +Q w +4/0+ (1+9) H yHMk
Kk [Ew dmax{—0;,0}\, » &
<(1+E )(1 —) I 45
According to (31) in Theorem 1, for all £ € N, it holds that
. _ 2 2
disthy, , (", 7710)) = [|2*T = -1 () (M“)HMM < |2M T = -1 (M)HMM (46)
2 2
< (14 &b ~Tps oy (@)%, — (1461 — o) (1 +80)][2* —* [,
. _ 2
= (1+ &)distly, (¢, T710)) — (1 + &) (1 — o) (1 + 0p)|J«* — " ||, (47)
where [I7-1(0)(+) = arginf,cp-1(0) || . —xH Miis? and the first equality and the first inequality hold due to the definition
of dis ., (.7 *(0)). Utilizing inequalities (45) and (46), we obtain
disthy, (2", T71(0)) < (1+ &) (1 — o)distiy, (¥, T7(0)), (48)

where g, = [(1 —0)(1 + Hk)]/[(l + g\/?) (1 +4/0+ W)r € (0,1). In addition, recall Y ;- , §k < 00.

Hence, there exists & € N such that for all & > k, itholds that &, < ﬁ, which means that (14+&;)(1—px) < 1—22 < 1.

Substituting this inequality into (48) and setting k = maX{E, /15}, we acquire the desired result (41). The proof is ﬁmshed. O

C. Proof of Theorem 3
Theorem. Let {(z*,y* v*)} and {e}} be the sequences generated by the VMOR-HPE framework.
(i) There exists an integer ko € {1,2,...,k} such that vFo € Tlxol (y*0) with v*° and ey, > 0 respectively satisfying
ko < ( +Zz 152) o d < (1+Zz lg’t) o 49
||U || = \/k(l )(1 +9)3 2 HCL’ T ||Mo’ an €ko = I{i(l )( +9)2 Hl’ T ||M0 ( )

(i) Let {i } be the nonnegative weight sequence satisfying Zle a; > 0. Denote 7; = (1 + 0;)c;, and

k ; k ; k i ka0 =k
=k _ D i1 Ty * = D i TiCV' z — D i1 Tilk (61' +{y' =70 =7 >) (50)

)

% % k &
D e Tilk D i T D e Tilk

Then, it holds that 7% € T (G*) with &, > 0. Moreover, if My, < (1 + £x) Myy1, it holds that

1rgag<k{az+1} Z &+ Z lo; — 1| + argr + o

[7%|| < =1 =l M, (51)
c(l+ 9) Z =1 %
k
(10+6) 112?<Xk{ai}(l + Z &)+ (2+0) aipn — ol
&, = — = B, (52)

(1+9) Zz 1%

where M and B are two constants that are respectively defined as M = =w [| Mo} and

=2
=

a2 22 2 = N2
5 = max {01, =)o |+ S =y gl = e g o = )
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Proof. (i) By (35), there exists an integer kg € {1,2,. .., k} such that the following inequality holds:

(1 + Z’L 61)
o =yl < wa oot~ (53)
Combining this inequality with (37) and using wZ < M1 =< (1 + &) My, ¢ > ¢, we obtain
k (1+ Y0 &)=2 o (1430, 6)2 0_
HU D” < \/k‘(l )(1 _|_9) c2 H €ko < k‘( )(1_|_9 2 || ||MU
In addition, v¥o € Tl¢rol(y*0) holds directly due to (7a). Hence, result (i) has been established.
(ii) By (Monteiro & Svaiter, 2010), it holds that 7* € T®!(7*) and € > 0. By (50), it holds that
k — L 1+9 — i 2 z+1 7
7% = S o Z( o) ||an || = S Z1+9 HZO‘ — ')
1 ) )
= Zk Coou ( 10, ) ||Z alJrleJrlx - OliMil'l) + Z(azMz — Oli+1Mi+1)l'z+1H
=1 1t 1=1
< Hzle(aiJrlMiJrlxz—‘rl - aiMixi) H + ||Zf:1 (OlZMZ — Oéi+1Mi+1){Ei+1H
- i cii(1+65) S (1 46))
. ks My grah+t — ag Mozt Zf=1||a¢/\/lz — it Mg || 11;1?§Xk{Haci+1||}
Z?:l ciai(l +91) Zf lciai(l —|—9)
< Ozk+1H./\/lk+1.'L‘k+1|| —‘rOéluMl.TlH ZleHOéiM az-‘rlMZ-‘rlH Igafk{Hxl-i_lll}
B Yy cioi(1 4 6;) S o1 4 6))
- Apept [ My || + ar M| + S5 [JeiMi — azi M| e {21}, 54
Zle ciai(146;) 1<i<k

where the first and the third inequalities hold by the Cauchy-Schwartz inequality. By using My < (1 + &) M1 and
M1 < (1 + &) My, the following inequality holds that

ZH% i — @i Mg

k k
Z — aipa|max{[ M|, IMill} + > & max{o || Mg, il M|}

i=1

1< <k

k k
max {[|Migall} Y lew — aiga| + max {ai [ M|} > &
=1 - =1

k k
< 1122?1<Xk{|Mi+1”}|:2 | — 1| + 11£?§><k{ai+1} 231 51}.
1= i=

Substituting this inequality into (54) and using || M}41]| < Ew and ¢, > ¢ > 0, we obtain

max {1} Y0 & + Yy o — i + apr +

L=k max {||z"! ||} E@.

szzl oi(1+6)) 1<i<k

Mo* By using the notation M and 6, > 6, it holds that

"] <

By inequality (33), we have Ha:

max {1} Zz 16+ Zz e —aipa| +appr +an
1<i<k M

(1+9)Zl L

"] <
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In the following, we estimate the upper bound for €;. By the definition of €;, we obtain

. S e (1460;) (€14 (' =5, v1)) Zfziaici(lJr@)éi+Zf:laici(lJr@i)(yi—?k,vi)
k: =

SF L cai(1+6)) SF (14 6:) S cai(1+6))
Y1+ )i n S joici(l 4 60:) (@t — 7*,v') n Yo cici(1+0:)(y' — 2t v!)
K cai(1+6)) SF (1 +6;) SF L cai(1+6;)
< 1121a<xk{az}zl 11+ )cie n Zleaici(l +0;){(z" — g*,v?)
Yy ciai(1+6;) Yy ciai(1+6;)

max {ai 00 (L+ 00 e 'Ry, + g = 27l134,)
Zf 1 CiOéi(]. —+ 91)

6 max {az}21 1Hy - HM

& e
< 1<i<k ] n Ziz}caﬂi@z -y >U1>7 (55)
Zizl Ciai(l + 91) Zizlciai(l + 97)
where the first inequality holds according to the Cauchy Schwartz inequality and the last inequality holds according
to (37). In addition, ||z — 7*|3, = |lz* — 7*|3,, + WM ot v'|44, — 2(miv’, 2" — ") holds by using 2" =
— (14 ) e M 'vP = 2F — 7, M 'o¥. Hence, we obtain
2a;(rivt, 2t = 5*) = il MG g, Faille — 7, — eillat - 53
1 1
< ai||[ M Ry, el = 713, — m” 2 =7,
< il MG Ry, Faille’ = TR, — il = B0, ikl =50 R,
= ai|[ M Ry, a2t =GR, — il =R, ikl =T

where the first and the second inequalities hold due to M; 1 =< (1 + &;)M; and ﬁ > 1 — &, respectively. Taking a
summation on both sides of the above inequality, it holds that

k
22041-<Tivi,xi -7 (56)
=1
k k k
SZOQHTiMfleH?wi +Z(0‘i+1_04i)||xl+1 _?kiig\/liﬂ'i‘allixl_yk”.%\/ll+Zai§i”xl—i—1 7" 3,
; i=1 i—1
k k
<4 ax {al}ZHy -z HM + Jax, {||$1+1_yk||3\4i+1} [Z|ai+1—ai|+zaifi + Oq}
i=1 i=1
, k k
3 s i+1 _ —k||2
< 41rga<xk{az}ZlHy’—wZHM, + max {1 =7 3., } [leam—ai|+gg§xk{ai}<;@ +1),
= = i=

where the last inequality holds according to (37). This inequality combined with (55) yields

8 max {ai b0 v — o3, [Eiilain—ail+ max {a (D06 + 1)
€ < - + PR By, (7)
Zi;l ciai(1+6;) 2) i ciai(1+0;)

where By, = OIilla<Xk{ [+ —5¥[|34,,, }- Moreover, by the definition of 7*, it holds that
_1_

ot =71, <2, + 205, <2, + 2 e

where the second inequality holds according to the convexity of || - ||-%Vl+1 Hence, we obtain

B < 27 o [+ 7 4 1) < 22 e (2o o — ). 58
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By (31) and (33), it holds that ||z — /||, < =17 ]|2® — &*[[},,- Moreover, by (33), it holds that 1||z*||* <

||9c* ||2 + SH;UO —z* Hi/lo Substituting the two inequalities into (58) yields

®||2 E 0 _ ®]|2
il 7o)

Combining (35),(59) with (57) and using the fact that ¢, > ¢ and 6 > 6 > —1, we further obtain

8012182(]@{0[1} <1+Z 151) H 0 _ z*

(59)

Bk§2E[ x

€ | 1]

2

€ <
€ < Zf=1 CiOéi(lJrai) ( ) 1+9 Mo
k.
Pi‘l'“l‘“f“*fél%{%}(D—l&“’:[u P (1 g e
S con(146,) =T U sy ) T
8 Jhax {a;}(1 +Zf:1 &)=
<
(140238 (1-0)
S i o]+ Joax. {a}(F &+ 1) _ : =2, ,
+ TTos Sl 5 e = 2,
1=1 Q; -
N Yilaip— ol + mmax {a FiaGi+ 1) [Eznxo—x*”ﬁ%]
c(1 +Q)22i:1ai w (1-o0)

(10+6) max {a;}(1+ Y &)+ 2+ i —as
< == B
- c(1+6)? Z -1

)

%112

= 2 o
Mq . M } The proof is finished. O

|2~

where B = max{(l%)Hmo—x

(—aw

D. Proof of Proposition 1

Recall that the over-relaxed Forward-Backward-Half Forward (FBHF) algorithm (Bricefio-Arias & Davis, 2018) is defined
as

y* = j’y;cA(xk — v, (B1 + Bz)$k)7 (60a)

= a4 (L4 0) (0" — 2+ Ba(a®) — mBa(yh)). (60b)
Proposition. Let {(z*,y )} be the sequence generated by the over-relaxed FBHF algorithm. Denote ¢;, = ||z* —y*||%/(43)
and v* = ;1 (2% — y*) — Ba(2*) + Ba(y¥). Then,

(y*,0*) € gph T = gph (A + By + By)!+, (61a)
Ok o™ ||* + [vev® + (F = 2*)||” + 230e < oly* — 2|, (61b)
oF =2k — (14 00", (61c)

where (g, 01) satisfies 0,<[o— (v L)? +v/(28))]/[1+ (7 L)?].

Proof. By the definition of resolvent 7,, 4, the updating step (60a) of y* is formulated as follows
2" = (B1 + B2)(a") € y" + 3 AWY). (62)
By (Svaiter, 2014, Lemma 2.2), it holds that B; (%) € BI*)(y*) with e, =||z* — y*||2/(4). Then,
Wi (@ =) = Ba(a") + Ba(y*) € A(Y") + Ba(y") + Ba(a")
C AWY) + Ba(yh) + By
C (A+ By + By)ll(yh),
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where the first inclusion holds by (62), and the last inclusion holds by using the additivity property of enlargement operator
(Burachik et al., 1998). Hence, utilizing v* = v, ' (zF — y*) — Ba(2*) + Ba(y*), we directly obtain (61a) and (61c) that
(y*,v*) € gph Tler] and 25+ = 2% — (1 + 0 )y 0", respectively. Next, we argue that (61b) holds. By the monotonicity of
B, it holds that

Okl vev®[I” + lyv® + 4% — 2*|* + 2yken

= Oi|jy" — * + Ba(a®) — v Ba(y*)||* + | (Baz® — Bay®)||* + 2vnen

< O [lly"* — M + I Ba(a®) — Ba )] + [lon(Baa® = Bay®)||” + 2yeen

< [0 (L RL%) + L + e/ 20)] 2" = F|” < ole® —y*)1%,
where the last inequality holds according to the definition of 6. As a consequence, the FBHF algorithm with the iterations
(60a) and (60b) is a special case of the VMOR-HPE algorithm. O

E. Proof of Proposition 2

Let P be a bounded linear operator and U = (P+ P*)/2, S = (P— P*)/2. The over-relaxed non self-adjoint Metric
Forward-Backward-Half Forward (nMFBHF) algorithm (Bricefio-Arias & Davis, 2018) is defined as

y¥ = Tp-1a (2 — P71(By + Bo) (")), (63a)
=2+ (14 0,) (v* — 2 + U [Ba(a®) — Ba(y") — S(a* — y¥))). (63b)

Proposition. Let {(z*,y*)} be the sequence generated by the over-relaxed nMFBHF algorithm. Denote ¢), = ||z* —

y*I12/(4B) and v* = P(xF — y*) + Bo(y*) — Bo(a®). The step-size 0y, satisfies 0y, + 1122(_1?3’;) + 2ﬁ>\ml;n(U) < 0. Then,
(y",0*) € gph T = gph (A + By + By)l, (64a)
6l[U 1o [+ 10 P+ F = )] + 26 < ol — 2, (64b)
oF T =gk — (14 0,) U 10", (64c)
Proof. By the definition of (63a), it holds that P(z* — y*) — (B; + By)(z*) € A(y*), which indicates
P(a* —y*) + Ba(y*) — Ba(2*) € A(y*) + Bi(=") + Ba(y")
C AWY) + B h) + Ba(v)
C (A+ By + Byl (yh). (65)

By the definition of v*, we derive (64a) that (y*,v*) € gph ], In addition, recall U = (P+P*)/2 and S=(P—P*)/2.
It is easy to check U"'P — I = U~1S. Hence, we obtain

g = 2P 4+ (1+60;) (v* — 2% + U [Ba(2%) — Ba(y*) — S(=* — "))
= 2%+ (14 6,) (v — 2% — U (S(@* — yF) + Ba(y*) — Ba(a")))
=zF + (1+0,) (v — 2" = U (S@" — o) = U (Ba(y*) — Ba(a")))
=f + (14+0,) (v — 2"+ (I -U'P)(a" —¢*) = U~ (Ba(y*) — Ba(a")))
=2 + (1+6,) (U (P — 2F)) — U1 (B2(y*) — Ba(a")))
=k — (1+ Gk)Uflvk,

which indicates that (64c) holds. In what follows, we argue that (64b) holds. According to the above equality, it clearly
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holds that U ~1v* = 2% — y* — U~1[Ba(2*) — Ba(y*) — S(a* — y*)]. Hence

ORl|U I+ U o =+ 2

= Oi||* —yF — U [(Ba— ) (a") — (B2 —S)(y)||7, + U [(Ba—S) (&) — (B2 —8) (y")] |17, +2ex
< Op|lF =y |17+ (L4 00)|U [(Ba—S) (@) — (Ba—S) (yM)]||7, + 26

< G|z —F |2, + (1 + 0)AL L (U)I(B2 — S)a* — (B2 — S)y*||> + 261
< G|z ¥ |7, + [(1+ O)ASh (U) K2 4+ 1/(28)] |2 — y*||?

< [0k + [(1+ 00 Al (U)K + 1/ L O)] |28~
< olla® - y¥IIZ,

where the first inequality holds by the monotonicity of By — S, the second inequality holds by [|[U ™! - [|Z < Apax(U™Y)| -
2 = At ( )|| - ||, the third inequality holds by the Lipschitz continuity of By — S, the fourth inequality holds by

min

|12 < AL ()] - ||, and the last inequality holds by 0y, + [K2(1 + 6;.)]/[N2,:,(U)] + 1/[28Amin(U)] < o. Hence,

(64b) holds. In conclusion, the over-relaxed non self-adjoint metric FBHF algorithm with the iterations (63a) and (63b) falls
into the framework of VMOR-HPE. The proof is finished. O

F. Proof of Proposition 3
The over-relaxed Proximal-Proximal-Gradient (PPG) algorithm (Ryu & Yin, 2017) takes the following iterations:

n

b+i._p l 66
T : roxm - ; (66a)
a:f'H = Proxqg, (Zz tr 2k — onfi(xk+%)), i=1,...,n, (66b)
2B = 2 (14 0y) (2T — ), i=1,...,n. (66¢)

To establish Proposition 3, we need the following lemma which characterizes how to calculate the proximal mapping
Proxaz(+).

Lemma 1. Givenz € X", Prox,r(2) = arg mingex» 7(x) + o= ||x — z||? can be calculated in parallel with Proxaz(z) =
(Proxar (£ 30 1 i), Proxar (£ 30 1 25), -+, Proxe, (2 Y0 ) € V.

Proof. By the definition of 7(x), it holds that the components of Prox,r(z) are equal to each other. Let1 = (1,1,--- ,1) €
X™. By definitions of V and 7(x), the following equalities hold

n

1 1 1
o iy 70+ gl = 2 = arg gy 1+ Do) + 5~ 2P

1 1 )
= 1 -_ 71 - - . 67
argxmel‘r}ni r(zi) + 5 lx — 2| (67)

P
Let Proxq,(+ 31, 2;) = argmingex 7(z) + 5= |#1 — z||%. By the definition of V, we obtain

n

1 1 1
min — > " r(z;) + gollx - z||? = minr(z) + o—[|z1 - 2%,

xeV N “—
and that Prox,, (2217 solves (67). Hence, Proxa, (£217)1 = Prox,z(z). The proof is completed. O
Proposition. Let (x kg, xk 2h ) be the sequence generated by the over-relaxed PPG algorithm. Denote x* = (2%, | xF),

ZF =2k, 2F), 1= (1, 1) eXn, yb = gF 4 xkT1 _ ghtal vk = ghtal — xk+L and e, = LY " |lab T —
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a**+2 || /4. Parameters (8),, o) are constrained by 6y, + La/2 < . Then, it holds that

(yk,Vk) € gph S(E??%«k@? I = gph T[Ofek]7 (683)
OV |* + [IVF + (7* — 28)||° + 206 < 0|yt 2", (68b)
Zk+1 _ Zk _ (1 + Hk-)Vk. (68C)

Proof. By Lemma 1 and equation (66a), we derive zht31 = PI‘OXQ?(Zk). Hence,
at(z" - kar%l) € 3?(56’“%1) (69)
Unitizing g and f, (66b) is reformulated as x*™! = Prox,; (2:1:’”% 1—zF — aVf(akte 1)). Then,
a~l (227431 — XM - gF) € ag(xF ) + V(aFtE) (70)
C g(xF+1) + [Vﬂ [ex] (xk+1)
c [8§ n Vﬂ [Ek](xk+1)7

where €, = L||x¥+1 — zF+31||/4 = L7 | ||la"+! — 25+ 3| /4 and the second inclusion holds by (Svaiter, 2014, Lemma
2.2). Combining (69), (70) and using simple calculations, we obtain

xk+%1 - Xk+1 € Sa,[V?+6§][%J,5r (XkJrl + 04[0171 (Zk - mk+%1)])
1
= S, [vFiog)en or (25 X —akh21)

[over] k k+1  k+1q\ _ oloe] k
C S vrrogar (@ TX e =8 g o V)

where the first inclusion holds by x**1 + afa~! (22731 — x¥*+1 — 2F)] = 2¥+21 — afa~!(z* — #¥*+21)] and using
the definition of S, VF+09.0r and the last inclusion holds by (Shen, 2017). By using the notation v*, (68a) directly holds.

In addition, (66¢) can also be equivalently reformulated as z*+1 = z¥ + (1 4 6;)(x*T! — 2+ 21), which is equivalent to
zF*t1 = 2% — (1 + 0;,)v" by utilizing the definition of v¥. Hence, (68c) holds. Next, using the definition of v*, it holds that

Ok |[VF ]|+ [IVE + (vF — 2| + 206
= Hkak+%1 — Xk+1H2 n ka+%1 C L (kxR 2R Zk)Hz 206,
= (6 + La/2)||z**21 — x’f+1||2
oI

<oly" -z

)

where the first equality holds due to the definitions of v* and y*, the second equality holds due to the definition of e, and
the last inequality holds due to 8; + La/2 < o, which indicates that (68b) holds. In conclusion, the over-relaxed PPG
algorithm with the iterations (66a),(66b),(66¢) falls into the framework of VMOR-HPE. The proof is finished. L]

G. Proof of Proposition 4
The Asymmetric Forward Backward Adjoint Splitting (AFBAS) algorithm (Latafat & Patrinos, 2017) is defined as:
¢ = (H+A) " (H-M-C)" (71a)
a* = b b, STUHH + M) (EF - ), (71b)
where ay, = [A|[Z8" = 28|51 / [I(H + M*)(Z" — 2%)||2-.] and Ay, € [A, A] < [0, (2 — 1/(28)].
Proposition. Let (z*,T%) be the sequence generated by the AFBAS algorithm. Denote 0, = oy, — 1, v* = (H +M*)(z*) —
=k k2
(H + M*)(z"), and ¢}, = %. Then,
(@, v*) € gph (A + M + O)lex], (72a)
QkHS_lvk HZ—i— HS_lv—i-(Ek —a:k) Hé—l—ZeSUHEk —xk| Z, (72b)
2P =2k — (14 6;)5 ", (72¢)
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Proof. We first argue that C(z) € Cld(x) with € = ||z — z||%/(4f) for any z, z € X. Notice that for any y € X,
(x—y,C(2) = Cly)) = {x = 2,C(2) = Cy)) + (z =y, C(2) = C(y))
(@ —2,C(2) = C(y)) + BIIC(2) = C(y)l[-s
—llz = 2llpC(2) = C)lp-1 + BIC(2) = Cy)l

inf 812 — [z = 2]}t = — |}z = 2[[3/(45)

C
c

AVARIVARLY]

where the first inequality holds by (z — 2/, C(z) — C(z')) > B||C(z) — C(a") ||fH, which implies C(2) € C!(z) with
¢ = ||z — 2||%/(48) by the definition of Cll(z). Specifying (x,z) as (x*,z*), it holds that C(2*) € Cle+)(z*) with
er. = ||* — ||% /(4/3). This inclusion equation, in combination with (71a), yields

(H — M)(2*) — (H — M)(@") € A@") + M@") + C(2F)
C A®@®) + M(z*) + Clel(zF)
C (A+ M+ O)lel(@h).
Due to the definition of v* and the operator M being skew-adjoint, the above inequality indicates v* € (A+ M +C)les)(Z¥),
i.e., (72a) holds. Next, we argue that (72b) holds. Utilizing the formula of v*, we obtain
OIS R[5 + 1S 0" + 2 = 2F)1% + 26,
= 0||(H + M*) (2" = Z")|[5-1 + [|(H + M* = ) (a" —2")[[-0 + [l —7"(|5/(28)
= [|lz* -z}
=0T = Tl (H—M)S—1 (H4+M*)+(H—M—S)S—1 (H+M*—S)+P/(28)
= [l2* — Z*I1 ), 1y (- nry 51 (B4 M) 2 LS54 P) (28)
= [|lz* — fk||%a,€+1)(H—M)sfl(H+M*)—(2—1/(25)P+s
< of|z* — 7*(I%,

where the first equality holds by using the definition of €, the second and the third equalities hold according to M being skew-
adjoint, the fourth equality holds by H = P + K and K being skew-adjoint, and the last inequality holds by the condition
on 6, = ay, — 1, which implies that (72b) holds. At last, v+ = 2 + . S™H(H + M*)(z* — 2%) = 2% — (1 + 6;) S~ 1oF
holds by utilizing the definitions of v* and 6. Hence, (72c) holds. By now, we have shown that the AFBAS algorithm with
the iterations (71a)-(71b) falls into the framework of VMOR-HPE. The proof is finished. O]

H. Proof of Proposition 5
The Condat-Vu Primal-Dual Splitting (Condat-Vu PDS) algorithm (Vi, 2013; Condat, 2013) takes the following iterations:

" = Prox,—1,(zF — r 'V f(2¥) —r ' B*yF), (73a)
gt = Prox,-1,- (y* + s7' B(22% ! — 2*)), (73b)
(@ ) = (2P, %) + (L4 0 (@ 55 — (2%, 9Y)). (73¢)

Proposition. Let (xF,y*, 7% §*) be the sequence generated by the Condat-Vu PDS algorithm. Let z* = (z*,y*), and
wh = (FF, g**Y). Parameters (r,s,0) satisfy s — r=Y|B||?> > 0, and 0x + L/[2(s — 7~ Y|B||?)] < o. Denote

P = M(2F —w¥) and e, = L||z* — 5|2 /4. Then,

vf e Tl (wh), (74a)
QkH/VlflkaiA + [MF 4wk — zkHiA + 2¢;, < of|w — zkHi/l, (74b)
2L =2k (14 0 ) M1, (74¢)

Proof. By the definition of Prox,-1,, (73a) yields r(z* — z*+1) — B*y* € 9g(z*1) + V f(2*). Using (Svaiter, 2014,
Lemma 2.2), we obtain V f(z*) € (V f)le](ZF+1) with ¢, = L||2* — *+1 || /4. Combining the above two inclusions and
performing simple calculations yield

T(,Tk _ 5k+1) _ B*(yk _ :Uk+1) e 6g(fk+1) + (Vf)[ek](&:k—i-l) + B*§k+1. (75)
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k+1

Using the definition of Prox,-1,,- and performing similar operations on 7/* ! as z"*!, we obtain

s(y® — ") — B(z* — 21 € on* (") — Bz (76)

By the definitions of M, z¥ w* T and T'¢, (75) and (76) indicate that M (z* — w*) e T} (w"). Thus, (73a) holds by

utilizing v* = M(z* — w*). In addition, (73c) can be equivalently reformulated as 251 = 2% + (1 + ;) (wk — 2%) =

2% — (1 + 0x) M~1o* by using the definitions of z*, w" and v*. Hence, (74c) holds. Below, we argue that (74b) holds. By
the definition of v*, it holds that

O || Mv + ||/\/171v’c 4wk — zkHiA + 2¢;, < t9;€||w’C - zkHiA + L|jz* — 212 /2

< (9k + L/(z)\mln(M))) ||Zk - wkng\/l

< [0k + L/12(s — B | - 242,

k112
[y

< ofjut — |2,

where the first and the second inequalities hold by using €, and [|z% —ZF 1|2 < ||2F —w"||? < [|2% — w3/ Amin(M),
respectively. Hence, (74b) holds. In conclusion, the Condat-Vu PDS algorithm with the iterations (73a)-(73c) falls into the
framework of VMOR-HPE. The proof is finished. O

I. Proof of Proposition 6

The Asymmetric Forward Backward Adjoint Splitting Primal-Dual (AFBAS-PD) algorithm (Latafat & Patrinos, 2017) is
defined as

¢ = Proxvlg(xk — 1 Bryk — ’ylVf(J;k)), (77a)
7" == Proxy,p- (v + 12 B((1 — 0)z* + 07%)), (77b)
=2k oo (@ - 2%) — pn (2 - 0)B* (7" — b)), (77¢)
g = g (21— ) (2 - 0)BEF — ah) + @ - ")), (77d)

where a, = [ (9727 a2 +95 |7~y 2= 0(a* —a¥, B (7 —y*)] /V (@ =2, 7 ~5). M € 0] € (0,0)
and 6 and V' (x, y) are defined as 6 = 2— L(vy; * — 1202 B||?/4) "' /2 and V (x, y) = 77 2|2+ Hlyl|? + (1 — p)y2 (1 —
0)(2 = )| Ba|* + pm1(2 = O)|By|* + 2((1 — p)(1 — 6) — p)(x, B*y) which requires 7, ' — 726%| B||* /4 > L/4 and
€ 10,1],0 € [0,00).

Denote a linear operator M : Z — Z that M = RS —1 where R, S : 7Z — Z are defined as below

—1 * *
_ " -B B 1 —puy1(2—0)B
= [ (1-0)B A5 ] 5= [ Y2(1—p)(2—0)B 1 ' 78)
By the block matrix inversion formula (Horn & Johnson, 1990), R~!and M~ are derived as below
1= — %
-1 _ Yo = =B = _ [—1_-1 . x ] 1
R = { “(1-0)BE ~,— 75(1 — 0)BEB" } 2=l +A-085]
M-1— SRl [ (2 = 0) + 75 1 — p(2 — 0))= 1 — (2 — 6)|=B* }
L u(2 - 6)|BE Yo +72[1 — (2 — 6)| BEB*

Here, we claim that = = [’yfl”y{l +(1 - 6)B*B] 1~ 0. In fact, if @ < 1, it is obvious that = > 0, otherwise, -

v20%||B||?/4 > L/4 > 0 indicates v; '~v5 ' >62||B||>/4> (6 — 1)||B||? = (6 — 1) B* B. Hence, Z 0 holds for >0. In
addition, M is a self-adjoint positive definite linear operator by Schur complement theorem (Horn & Johnson, 1990).
Proposition. Let {(Z*, 7", 2", 4y*)} be the sequence generated by the AFBAS-PD algorithm. Denote w* = (Z*,7%),
2P = (2%, y*), vF = R(2¥ — wh), ex = L||2* — T*||?/4, and 0y = oy, — 1. Then, it holds that
oF e Tlerl (wh), (79a)
00 M2, + MR it — 2, + 26 < o — 2, 790
=2k (1 g ) MR (79¢)
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Proof. By the definition of Prox.,, 4, (77a) indicates 2% —v, B*y* —v, V f (2*) € " +~,09(z"), i.e.,
yl @t -7 - Byt~ 7)€ 9g(@*) + (V) @) + B'Y* (80)
by using V f(z*) € (Vf)lexl(z*). Similarly, by the definition of Prox.,, -, (77a) indicates that
(1=0)B@" —3%) +7; ' (v* - 7") € 9g(y") — B". (81)

By the definitions of (z*,w¥, v*, T*) and using the additivity property of enlargement operator (Burachik et al., 1998), the
two inclusions (80)-(81) indicate that v* = R(z* — w*) € Te!(w*). Hence, (79a) holds. By using (¥, w*), (77¢)-(77d)
can be reformulated as a compact form that

=2 0 S —wh) = 28 — ap MTIR(ZF — wh) = 2F — ap M, (82)
which indicates that (79¢) holds. At last, we verify (79b). By the definition of (M, e, vk ), it holds

OkHM*lkai/‘ + M+ 0k — ZkHi/l + 2¢;, — o||lw® — zkaM
= [Jw” - Zk”%OkJrl)S*MS'7$*IV17AIS+(170)JVI + L||z* —7"|* /2

= [lw* - Zk”ikS*R—R*—R+(1—a)M + L||z* —z"|?/2,
where the first equality holds due to M~'v* = S(zF — w"), and the second equality holds due to MS = R. Hence,

9;6”./\/1711)’“”?\4 + ||./\/l*1vk + wk — Zk”f\/t + 26, < ofw* — 2 i.e., (79b) holds if it can be shown that «; <
[l = ¥y — Llla* — 7*2/2] /10 — 2|3 . Notice

Nl -w)2-0)(1-0)B*B [(1-p)(1-6) - puB*
[(1—pm)(1—6)—puB Y |+ pm(2 - 0)BB

]

k. 2
e

S*R =

Simple algebraic manipulations yield ||w* — 2*||%. , = V(2* — Z*,y* — %"). In addition,
Jw* = |3 — Llla* = 712/
=2[y fla® =T+l — 70NP - 0" 7 BU (T~ 7)) - Lle® - 70?2
> 2= L/20" =2 BIP /)] [y lla® =T +ag ly" =512 - 0" — 2", B* (" — 7)),
where the first equality holds by using the definition of R, and the second inequality holds by the fact that

lz* = 2*|* < fla® = TP Amax(P7Y) < [la® = 2 [BAGL(P) < (07" = 720%]| B2 /4) " H|=" — 23,

min

-1
—0B*/2 =
where P = < _ZlB/Q 7;1/ %*JFR - L”gjk _ gjk||2/2]/||wk _

2k ||25*  holds. In conclusion, the AFBAS-PD algorithm with the iterations (77a)-(77d) falls into the framework of VMOR-
HPE algorithm. The proof is finished. O

) > 0. Hence, we have that 6, = a;, < [||w® — 2|

J. Proof of Theorem 4

Theorem. Let (7%, 5% 2% y*) be the sequence generated by the PADMM-EBB algorithm. Denote v* = U* (2% — w"),
e =||z% —T**+1||p /4, and operator T as (25). Then, it holds that

o e Tl (wh), (83a)
O || M oMy, + [ MR+ — 2P|+ 2e < ol — 2N, (83b)
=2 — (14 0) M ok (83c)

Besides, (i) (z*,T%) and (y*, ") converge to x> and y>, respectively, belonging to the optimal primal-dual solution set of

(6).

(ii) There exists an integer k € {1,2,...,k} such that
P _ _ p _ 1
> dist((9gi + V:)(E) + AGF,0) + [[b - > AT gO(ﬁ).
i=1 i=1
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(iii) Let a; = 1 or i. There exists 0 < &' < O(%) such that

P P
S dist (99, + Vfi)er (7) + AT, 0) + b= 3 Az < 0(%),

i=1 i=1
k k: ~i+1
—k L(1460;) a7 —k L (1+6;)aiy
where TV = == —————— Cli’ld ===
25_1(14'9 )az Yy Ef_l(l-‘rQ Yo

(iv) If T satisfies metric subregularity at ( (%0, y>°), O) € gphT with modulus x> 0. Then, there exists k>0 such that

distag,, (41,9, T710)) < (1= 2 )distan, (2,99), T71(0), ¥ = T,

where gi, :=[(1 — o)(1 —|—9k)}/ [(1 + ff\/>) (1+4/o+ %792(;’5’0})2} € (0,1).

~k+1

Proof. By the optimality condition of the subproblem of z; " ", the following inclusion directly holds for ¢ = 1, ..., p that

0V fi(*)+0g: (@) + A+ BeAs (D AsTEH 4+ Z Asak )+ (S + PR @ —ah).
j=1 Jj=i+1
Substituting 3% = — B (A* gt 4 P Arak — b) into the above inclusion, we obtain
(i + PF)(af — 75 + A Y A3 (ah — 7Y € Vi(ah) + 09, @) + A (84)
j=2

Stacking (84) fori = 1,2,...,pand y* = gF*+1 -, ( ~k+1 + 3P A;x’; — b), we obtain

[ (S1+ P (k-2 1 [0n@EY ] [ VAES+AG
(Si+PF) (k- k+1)+/3k,4 Sy Al —Fh c | 99:(@ k+1> N vfi(x’“)+¢4i§’€“
~ . - « — '.\/k ~k+1
(Zpﬂié;) (ﬁz; _f§+11)+ﬂkAp 2512]:41, (f}%:_l ) dgp(T ) V;fp( )+«:t~k+1
L By (W -y + ) + Z?:Q A;(% — &y ) i o b - - Zi:l A

By utilizing the notations U*, 2*, w" and T, the above inclusion is further reformulated as:

UR(F — wh) e [ 39(561;’“*1) ] n [ vf(()ock) ] " { pA*Zi~k+1 ] (85)
— 2ui=1v T
k+1 lex] (sk+1 *k
g{ag(b )%{vf O(:z: )%[_ PA%#“}’

where g(z) = >0, gi(x;),and A = [A; Ay --- Ap]. Using the additivity property of enlargement operator (Burachik
et al., 1998) and the definition of 7', the above inclusion indicates
B = Uk 2k —wk) e Tl (k).

Besides, by utilizing the updating step of (%1, y**1) and the definition of (v¥, w", z¥) , it holds that

k+1 _ (xk+17yk+l) _ (l'k,yk) + (1 +0k)M lUk( k+1 k’gk+1 yk)
= zk + (14 0p) MU (wh — 2F)
= (1 +6‘k)./\/l vk,

z
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Hence, (83a) and (83c) hold. At last, we check (83b). By the definition of (vk, €x), it holds that

HkH./\/lglv —&—H./\/lk vF +wk — 2 —|—2€;€—0Hwk—z’ 2

k112 k112 k
I, (o e

— lwh — o*
= [|w* == H(1+ak)(Uk)*M;1Uk—(U’°)*—U’“+(1—")Mk’+D/2
<0,

where the last inequality holds by the setting of over-relaxed step-size 0. Hence, PADMM-EBB is equivalently reformulated
as (83a)-(83c), i.e., it falls into the framework of VMOR-HPE. By Theorem 1, (i) directly holds that (z*, 3*) and (z*, 7*)
simultaneously converge to a point (2°°, y>°) belonging to 7~ *(0) which is exactly the primal-dual optimal solution set of
(6). In the following, we argue that (ii) and (iii) hold by utilizing Theorem 3. In fact, using (85), we have

ko | V@MY ] [ V@) dg(z"*1) V(@) A" ok
v® + [ 0 0 € b + 0 + | v A*Ef“ =T(w").
Hence, dist (7' (w*),0) < [[v*|| + L||z* — Z*T1|| = ||v*|| + 4¢j. This, in combination with (49), yields the desired result
(i), i.e., there exists an integer k& € {1,2,...,k} such that
Zdlst (09:(ZF) + V £:(F*) + Aig*,0) + ||b ZA*~k|| = dist(T(w"1),0) < O(L).
Vk
k _ —k
" S (146 J+ i+1 an -G, o Ik Fht12
Next, we claim that €,” = E“l( )az(le(lie,)al ’>) , where €;” = M,
Gi (Zl + /kal )(371 - 5114-1) Al?ji_'_la
G;z = (22 + 5k(./42./42 + P2 )) (172 — $12+1) AQ@ﬂH‘l,
p—1
G;va = (ZP + Bk(ApA; + sz)) ( Z—H + Z oA A* B ;+1) - AP§L+17
j=2
. . k i
o _ S L+ 60)aiGL o Y (L +0)aGl, o S (140Gl
xl Y1+ 6 Y (60 " S (14 6:)a
P k i
10 o~ P~ —k 2 (L +0:)uG
G =Bty =)+ ) Azt -7, and G, = &= v,
= ) ; 0 =) YL+ 0)a
k ; k ; k P
Define Ek _ Z¢E1(1+91)aiwl ﬁk _ Zifl(l-i-&)ai’ul and Ek _ Zi:1(1+9i)0;€i (€i+<'w —w* v _Uk>) as Theorem 3. Hence
Do (1405 a Yo (1+0:)as Yo (1+0:)a;
utilizing (51)-(52) and (83a)- (83a) we obtain ||7"|| < 1 andef < L by setting «¢; = 1 or a; = 4. Using (85) and the
definitions of G ,--- , G} and G Giﬁp, we have
Gk + A1~k+1 (391 + vfl)[ﬁzl}(gllc+1) + A7 k41
€ z
G’“+A~’€+1 (09p + Vfp)(on @3+ + A7

By utilizing (Burachik et al., 1998, theorem 2.3), it holds that € > 0 foralli € {1,--- ,p} and

G o+ AT (091 + Vfl)[zzl](flf) + Ay

Z1

N

Gr + A (Ogp + prnezp]( E) + A7



An Algorithmic Framework of Variable Metric Over-Relaxed Hybrid Proximal Extra-Gradient Method

By (85) and G¥ = B (yk — ) 4+ 3

—k .
Gml + A1yk

7k ’

G,, + A"
—k
Gy

Hence, we obtain ) ;_

0<e’<O(3)foralli=1,2,...,p. Notice
u 1 k k
g Er = Z{ k ——— > (14 0o (e + (@ -5, GL G”))}
j=1 o (1+ ei)ai i=1 ! ’
LS e ’“
= 14 6;)a( efJ—&- AR ; -G, )
Zz 1(1 +0; )Oél i=1 Jj=1 j=1 !
1 r k
~itl =k i
S D1+ Baie + @ -7, G- G)),
iz (L4 0oy i
where the third equality holds according to ¢; = f L€, and (27! RaNen @i) are defined as
~it1 —k G a"
Ty T1 1 T
= T = : .G = . ’ék: :
T 7 G, G,
Let v} = G* + A;y*+1 be the i-th component of v*. Using 2!, 7%, Gi, é’;, we obtain
k i k
S (4 0)a (@ -5, GL - G,) = (14 60)ou (@ — 78, GL)
i=1 i=1
k
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A (af

b— 3P | AT we get that
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(0gp + vfp)[zi’)
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|(Ty) + AT
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where the last equality holds by using the definitions of v*, w* and ¥, w". In addition,

k

Z(1+9 Yo (Y°

P

<.
—
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-
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_
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p p k )
(1+0:)ai (@) T Y AT —b— (D ATE—b) 2+ _(1+6:) (7, G —G,))
j=1 j=1 i=1

—i

G,) =o.

P AT < II0F| < O(F). Next, we show that
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By the definition of €, and combining the above equality with (86) and (87), it directly holds that

1

L1 4 P =< O(2).

€k + + €k € > (k)

Thus, (iii) has been established. At last, (iv) is directly derived according to Theorem 2 by setting ¢, = ¢ = 1. As a
consequence, the proof is completed. O

K. More Experiments

Actually, to make the subproblems of PADMM-EBB, PLADMM-PSAP (Liu et al., 2013; Lin et al., 2015), PGSADMM and
M-GSJADMM (Lu et al., 2017) have closed-form solutions, we equivalently reformulate problem (29) as the following
form by introducing two slack variables (H, F') to separate the sparsity and nonnegativity of (Z, G):

. [ gl
min || H ||« + [|F[l« + Al B[l + §||leiz + 5|IGII2LG (88)
st.X=XZ+GX+FE,Z2>0,G>0,Z=H,G=F.

In the implementation, we measure the performance of the four solvers of PADMM-EBB, PLADMM-PSAP (Liu et al.,
2013; Lin et al., 2015), PGSADMM and M-GSJADMM (Lu et al., 2017) in terms of the proximal KKT residual de-
fined as (25), objective value, and feasibility of (29) over iterations and runtime. Below, we report the performance on
X = randn(200, 200) and PIE _pose27 of PADMM-EBB, PLADMM-PSAP, PGSADMM and M-GSJADMM with new
hyperparameters (\, iz,7) = (102,10, 10%). In addition, we conduct experiments on two extra real datasets (COIL20,
YaleB_32x32)? with hyperparameters (), i,7) = (10%,10%,10%) and (), u,v) = (102, 10%,10%) . In the implementation
of PLADMM-PSAP, PGSADMM and M-GSJADMM, the penalty parameters i are all updated via the suggestions from
(Luetal., 2017), i.e., Bx+1 = min(pfk, 1.0e10) where p = 1.1 and Sy = 1.0e — 4.
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Figure 3. The above four figures illustrate the proximal KKT residual vs. iteration, proximal KKT residual vs. runtime, objective value vs.
iteration, and feasibility vs. iteration on the synthetic dataset with parameters (X, &, v) = (102, 10%, 10%), respectively.
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Figure 4. The above four figures illustrate the proximal KKT residual vs. iteration, proximal KKT residual vs. runtime, objective value vs.
iteration, and feasibility vs. iteration on the real dataset PIE_pose27 with parameters (X, u1,v) = (10%,10%, 10%), respectively.

“http://dengcai.zjulearning.org:808 1/Data/FaceDataPIE.html
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Figure 5. The above four figures illustrate the proximal KKT residual vs. iteration, proximal KKT residual vs. runtime, objective value vs.
iteration, and feasibility vs. iteration on the real dataset COIL20 with parameters (\, i, v) = (10%,10%,10%), respectively.
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Figure 6. The above four figures illustrate the proximal KKT residual vs. iteration, proximal KKT residual vs. runtime, objective value vs.
iteration, and feasibility vs. iteration on the real dataset COIL20 with parameters (A, i, v) = (10%,10%, 10*), respectively.
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Figure 7. The above four figures illustrate the proximal KKT residual vs. iteration, proximal KKT residual vs. runtime, objective value vs.
iteration, and feasibility vs. iteration on the real dataset YaleB_32x32 with parameters (), 1, v) = (102, 10%,10%), respectively.
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Figure 8. The above four figures illustrate the proximal KKT residual vs. iteration, proximal KKT residual vs. runtime, objective value vs.
iteration, and feasibility vs. iteration on the real dataset YaleB_32x32 with parameters (X, s, v) = (10%,10%,10%), respectively.



