A Spectral Approach to Gradient Estimation for Implicit Distributions:
Appendix

A. Proof of Proposition 1

We first introduce the following lemmas.

Lemma 1 (Liu et al. 2016, Proposition 3.5). Let H denote the Reproducing Kernel Hilbert Space (RKHS) induced by kernel
k. If k(-, ) has continuous second order partial derivatives, and both k(x, ) and k(-,X) are in the Stein class of q for any
fixed x, then V' f € H, f is in the Stein class of q.

Lemma 2 (Mercer’s theorem). Let k be a continuous kernel on compact metric space X. q is a finite Borel measure on X.
Then for {1;};>1 that satisfy eq. (1), ¥x,y € X:

y) = Z 125 (x) 5 (y)

Proof. See Sejdinovic & Gretton, Theorem 50. O

Lemma 3 (Sejdinovic & Gretton, Theorem 51). Let X' be a compact metric space and k: X x X — R be a continuous

kernel, Define:
{f Zaﬂp, { }662}

Then H is the same space as the RKHS induced by k.

Then we prove Proposition 1.

Proof. In Lemma 3 we set a; = 1, a; = 0 (Vi # j), then we have ; € 1. According to Lemma 1, we can conclude that
15 is in the Stein class of ¢ . O

B. Error Bound of SSGE
Define

o) J
x) =Y Buti(x), gis Zﬁ”wj ), Gi Zﬁ”wg ), Gia(x) = Budi(x), @7
j=1

which correspond to the major approximations in each step.
Lemma 4 (Sinha & Belkin 2009; Izbicki et al. 2014; Rosasco et al. 2010). Forall1 < j < J,

[ (160~ v,0) " da =0, (@) : (28)

where §; = 1 — 141
Lemma 5 (Sinha & Belkin 2009; Izbicki et al. 2014). Forall1 < j < J,

1
/% ?dq = (W) +1, (29)
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and forall1 <i < Ji#j,

. . 1 1 1
i i(x)dg =0 —_— 4+ — , 30
[0 di=0, (= + =) 5o 30
where A j = mini<j<y 9d;.
Lemma 6. o
/|§i,J(X) - g,»7J(x)|2 dg = JOp (,UJA%]V[> . 3D

Proof. By Cauchy-Schwartz inequality, Assumption 2 and Lemma 4:

[ 1560 = 0P da = [}

iﬁu (i) = 5(0))
< (iﬁ?j) (ZJ:/ (%’(X) —1/3j(x))2 dq)

2

dq
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Lemma?7. Foralll1 < j < J,

([ (730 = 950 dq)2 _o, (lh%w | )

Proof. Denote §(x) = 1;(x) — ﬁj(x). According to Assumption 1, it is easy to see that ’(/AJ]‘ (x) satisfies the boundary
condition:

/ V[t (x)q(x)]dx = 0. (33)

And from the proof of Proposition 1, we know 1);(x) satisfies the boundary condition. Combining the two, we have:

/ Vi [0(x)q(x)] dx = 0, (34)

By eq. (34), Lemma 4 and Assumption 2, we have

(/ ind(x)dq>2 -

< ([ a2 ) ([ 0o )
o ()
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O

Lemma8. Foralll < j < J,

a 1 C
(Bij — Bij)? = Op (M) + Op <W> : (36)
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Proof.

2 1 2
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O,

i mz: (Vmii/}j(xm) - sz/}j(xm)) - / (Vzﬂ/h‘(x) - V%n&j(x)) dq]

< ( ) o
=1 (37)
. 2
w2 [ (Varts) = T2y ) ]
1 1 2
~0, (M> +20, <M> +2 </ (Vi) = Vi th5(3)) d ) .
Therefore, by Lemma 7 we have
5 2 i C

O

Lemma 9.
20 _ g2 1 c

Proof. By applying Minkowski inequality, Cauchy-Schwartz inequality, Lemma 8 and Lemma 5, we have

2 2
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2
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Theorem 3 (Estimation Error).

o 1 C C
/|ng ng )| dg=J (Op<M +Op MJA?]M JrJop MJA?]M (41)

Proof. By lemma 6 and lemma 9.

/mi,J( —gi,g(x dq</\9u — gig(x))? dQ+/|ng — Gis(x)[*dg

o 1 c C
=J (0p<M +0, AT +JO, ATIT

(42)
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Theorem 4 (Approximation Error).

[ 191569 = 6:69 da = 33,0000 @
Proof.
[ 19160 - i) da = Y 5% = S0, <, Z = uilgili (44)
>J Py Py
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Theorem 5 (Error Bound of SSGE).

[ a0 =0 da = (0, (57) 00 (ioiz ) ) + 900 (g ) + a0t @9

Proof. By theorem 3 and theorem 4, we have

/ (61.1(x) — i(x))? dq < / 310 (%) — gis () da + / 90,7 (%) — g:(x) 2 dg

1 c c (46)
. . |2
= 72(00 (57) + 0 () ) + 700 (g ) + IO
O
C. Derivation of Gradient Estimates for Entropy
First, we decompose the gradients into two terms:
VgH(q) = —V4Ey, loggg(x) = —=V4E, log gg(x) — V4E,, log q(x).
Then it is easy to see that the first term is zero:
VoE,log gy (x) = /q(x)V¢ log gy (x) dx = /V¢q¢(x) dx = V¢/q¢(x) dx = 0.
So we have
V,H(q) = —VyE,, log q(x). 47)

A low-variance Monte-Carlo estimate of eq. (47) can be obtained when ¢(x) is continuous and reparameterizable (Kingma
& Welling, 2013). For example, if there exists a random variable € ~ A(0,I), so that x = f(e; @) follows the same
distribution as ¢(x), we have

Vol(q) = =VeEenon loga(f(€ ¢))
= —EcnonVeloga(f(e d))
= —Eeno.)Vxloga(f(€¢)) Vs f(€ ),
where the intractable term Vy log q(f(€; ¢)) can be easily estimated by SSGE.

D. MNIST Results

We did an MNIST experiment on a VAE with an 8-dim latent space. In Figures 5a to 5S¢ we plot random generations by
a plain VAE, an Implicit VAE with the entropy term removed, and an Implicit VAE trained by SSGE, all with the same
decoder structures. In Figure 5d we show the log likelihoods of the trained models (VAE and the Implicit VAE with SSGE)
on 2048 test images using Annealed Importance Sampling (AIS). The results are averaged over 10 runs. For reference, we
also include the results of 8-dim VAEs from the AVB paper (Mescheder et al., 2017). Though their decoder structure is not
the same as ours (the structure is even not the same for their three models), we can see our method is slightly better than
plain VAE without other tricks, while AVB has to rely on Adaptive Contrast (AC) and different decoder structures.
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Figure 5. Results on the MNIST dataset: (a)-(c) Samples generated by VAE, Implicit VAE trained without the entropy term, and Implicit
VAE trained by SSGE; (d) Test log likelihoods evaluated by AIS.



