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1. The Approximate Euler-Maruyama Scheme
1.1. Connection with gradient descent with momentum

The standard Euler-Maruyama scheme for the SDE (8) can be developed as follows:

θn+1 = θn + hHn(θn)pn, (S1)

pn+1 = pn − hHn(θn)∇θU(θn)− hγpn +
h

β
Γn(θn) +

√
2hγ

β
Zn+1 (S2)

= (1− hγ)pn − hHn(θn)∇θU(θn) +
h

β
Γn(θn) +

√
2hγ

β
Zn+1 (S3)

where h is the step-size and {Zn}Nn=1 is a collection of standard Gaussian random variables.

We can obtain simplified update rules if we define un , hpn and use it in (S3). The modified update rules are given as
follows:

hpn+1 = hpn − h2Hn(θn)∇θU(θn)− h2γpn +
h2

β
Γn(θn) +

√
2h3γ

β
Zn+1 (S4)

un+1 = un − h2Hn(θn)∇θU(θn)− hγun +
h2

β
Γn(θn) +

√
2h3γ

β
Zn+1 (S5)

= (1− hγ)︸ ︷︷ ︸
γ′

un − h2︸︷︷︸
h′

Hn(θn)∇θU(θn) +
h2

β
Γn(θn) +

√
2h3γ

β
Zn+1 (S6)

= γ′un − h′Hn(θn)∇θU(θn) +
h′

β
Γn(θn) +

√
2h′(1− γ′)

β
Zn+1, (S7)

where γ′ ∈ (0, 1). If we use the modified Euler scheme as described in (Neal, 2010) and replace pn with pn+1 in (S1), we
obtain the following update equation:

θn+1 = θn + hHn(θn)pn+1 (S8)
= θn +Hn(θn)un+1. (S9)
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Note that, when β →∞ we have the following update rules:

un+1 = γ′un − h′Hn(θn)∇θU(θn) (S10)
θn+1 = θn +Hn(θn)un+1, (S11)

which coincides with Gradient descent with momentum when Hn(θ) = I for all n.

1.2. Numerical integration with stale stochastic gradients

We now focus on (S1) and (S2). We first drop the term Γn, replace the gradients ∇U with the stochastic gradients, and
then modify the update rules by using stale parameters θn−ln and pn−ln . The resulting scheme is given as follows:

θn+1 = θn + hHn(θn−ln)pn−ln , (S12)

pn+1 = pn − hHn(θn−ln)∇θŨn(θn−ln)− hγpn−ln +

√
2hγ

β
Zn+1. (S13)

By using a similar argument to the one used in Section 1.1, we define un , hpn, h′ = h2, γ′ = hγ, and obtain the
following update equations:

θn+1 = θn +Hn(θn−ln)un−ln , (S14)

un+1 = un − h′Hn(θn−ln)∇θŨn(θn−ln)− γ′un−ln +

√
2h′γ′

β
Zn+1. (S15)

2. Proof of Proposition 1
Proof. We start by rewriting the SDE given in (8) as follows:

dXt =

−

[
0 0
0 γ

β I

]
︸ ︷︷ ︸

D

+

[
0 −Ht(θt)β

Ht(θt)
β 0

]
︸ ︷︷ ︸

Qt(X)


[
β∇θU(θt)

βpt

]
︸ ︷︷ ︸
∇XE(Xt)

+

[
0

1
βΓt(θt)

]
︸ ︷︷ ︸

Γt(Xt)

 dt+
√

2DdWt. (S16)

Here, we observe that D is positive semi-definite, Q is anti-symmetric. Furthermore, for all i ∈ {1, 2, . . . , 2d} we observe
that

[
Γt(X)

]
i

=

2d∑
j=1

∂[D + Qt(X)]ij
∂Xj

. (S17)

The assumptions H1 and 2 directly imply that the function−(D+Qt(X))∇XE(X)+Γt(X) is locally Lipschitz continuous
in X for all t. Then, the desired result is obtained by applying Theorem 1 of (Ma et al., 2015) and Proposition 4.2.2 of
(Kunze, 2012).

3. Proof of Lemma 1
3.1. Preliminaries

In the rest of this document, if there is no specification, the notation E
[
F
]

will denote the expectation taken over all the
random sources contained in F .

Before providing the proof of Lemma 1, let us consider the following Itô diffusion:

dXt = b(Xt)dt+ σ(Xt)dWt, (S18)
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where Xt ∈ R2d, b : R2d → R2d, σ : R2d → R2d×2d, and Wt is Brownian motion in R2d. The generator L for (S18) is
formally defined as follows:

Lf(Xt) , lim
h→0+

E[f(Xt+h)|Xt]− f(Xt)

h
=
(
b(Xt) · ∇+

1

2

(
σ(Xt)σ(Xt)

>) : ∇∇>
)
f(Xt), (S19)

where f : Rn → R is any twice differentiable function whose support is compact. Here, a · b denotes the inner product
between vectors a and b, A : B by definition is equal to tr{A>B} for some matrices A and B. In our study, the generator
for the diffusion (S16) is then defined as follows: (define n = t/h and use (S19))

Ln ,
(
Hnpn · ∇θ −

(
Hn∇θU(θn) + γpn −

1

β
Γn(θn−ln)

)
· ∇p

)
+ D : ∇X∇>X . (S20)

We also define the following operator for the approximate Euler-Maruyama scheme with delayed updates:

L̃n ,
(
Hnpn · ∇θ −

(
Hn∇θŨ(θn−ln) + γpn

)
· ∇p

)
+ D : ∇X∇>X . (S21)

By using the definitions Ln and L̃n, we obtain the following identity:

L̃n = Ln −∆Vn, (S22)

where ∆Vn ,
(
Hn(θn−ln)(∇θŨn(θn−ln) − ∇θU(θn)) + 1

βΓ(θn−ln)
)
· ∇p. This operator essentially captures all the

errors induced by the approximate integrator.

We now proceed to the proof of Lemma 1. The proof uses several technical lemmas that are given in Section 6.

3.2. Proof of Lemma 1

Proof. We first consider the Euler-Maruyama integrator of the SDE (S16), to combine (S1) and (S3) into a single equation,
given as follows:

Xn+1 = Xn − h(D + Qn(Xn))∇E(Xn) + hΓn+1(Xn) +
√

2hDZ ′n+1

where Z ′n is a standard Gaussian random variable in R2d, h is the step-size, D, Q, and Γ are defined in (S16). We then
modify this scheme such that we replace the gradient ∇E with the stale stochastic gradients and we discard the term Γ.
The resulting numerical integrator is given as follows:

Xn+1 = Xn − h(D + Qn(Xn−ln))∇Ẽn(Xn−ln) +
√

2hDZ ′n+1. (S23)

Note that (S23) coincides with the proposed algorithm, given in (5).

In the sequel, we follow a similar strategy to (Chen et al., 2016b). However, we have additional difficulties caused by the
usage of L-BFGS matrices, which are reflected in the operator ∆Vn. Since we are using the Euler-Maruyama integrator,
we have the following inequality (Chen et al., 2015):

E[ψ(Xn)|Xn−1] = (I+ hL̃n)ψ(Xn−1) +O(h2). (S24)

By summing both sides of (S24) over n, taking the expectation, and using (S22), we obtain the following:

N∑
n=1

E[ψ(Xn)] = ψ(X0) +

N−1∑
n=1

E[ψ(Xn)]− h
N∑
n=1

E[∆Vnψ(Xn−1)] + h

N∑
n=1

E[Lnψ(Xn−1)] +O(Nh2). (S25)

By rearranging the terms and dividing all the terms by Nh, we obtain:

Eψ(XN )− ψ(X0)

Nh
=
−
∑N
n=1E[∆Vnψ(Xn−1)] +

∑N
n=1E[Lnψ(Xn−1)]

N
+O(h). (S26)
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By using the Poisson equation given in (12) for each Lnψ(Xn−1) and rearranging the terms, we obtain:

E[
1

N

∑
n

(U(θn)− Ūβ)] =
E[ψ(XN )]− ψ(X0)

Nh
+

∑N
n=1E[∆Vnψ(Xn−1)]

N
+O(h). (S27)

By assumption H3, the term E[ψ(XN )] − ψ(X0) is uniformly bounded. Then, by Assumption H3 and Lemma S3, we
obtain the following bound:

E[
1

N

∑
n

(U(θn)− Ūβ)] = O
( 1

Nh
+ max(lmax, 1)h+

1

β

)
, (S28)

as desired.

Remark 1. Theorem 1 significantly differentiates from other recent results. First of all, none of the references we are
aware of provides an analysis for an asynchronous stochastic L-BFGS algorithm. Aside from this fact, when compared
to (Chen et al., 2016a), our bound handles the case of delayed updates and provides an explicit dependence on β. When
compared to (Chen et al., 2016b), our analysis considers the tempered case and handles the additional difficulties brought
by the L-BFGS matrices and their derivatives. On the other hand, our analysis is also significantly different than the
ones presented in (Raginsky et al., 2017) and (Xu et al., 2017), as it considers the asynchrony and L-BFGS matrices, and
provides a bound for the ergodic error.

4. Proof of Lemma 2
Proof. We use the same proof technique given in (Raginsky et al., 2017)[Proposition 11]. We assume that πθ admits
a density with respect to the Lebesgue measure, denoted as ρ(θ) , 1

Zβ
exp(−βU(θ)), where Zβ is the normalization

constant: Zβ ,
∫
Rd

exp(−βU(θ))dθ. We start by using the definition of Ūβ , as follows:

Ūβ =

∫
Rd
U(θ)πθ(dθ) =

1

β
(H(ρ)− logZβ), (S29)

whereH(ρ) is the differential entropy, defined as follows:

H(ρ) , −
∫
Rd
ρ(θ) log ρ(θ)dθ. (S30)

We now aim at upper-boundingH(ρ) and lower-bounding logZβ . By Assumption H6, the distribution πθ has a finite sec-
ond order moment, therefore its differential entropy is upper-bounded by the differential entropy of a Gaussian distribution
that has the same second order moment. Then, we obtain

H(ρ) ≤ 1

2
log[(2πe)d det(Σ)] (S31)

≤ 1

2
log[(2πe)d

( tr(Σ)

d

)d
] (S32)

≤ d

2
log
(

2πe
Cβ
βd

)
, (S33)

where Σ denotes the covariance matrix of the Gaussian distribution. In (S32) we used the relation between the arithmetic
and geometric means, and in (S33) we used Assumption H6.

We now lower-bound logZβ . By definition, we have

logZβ = log

∫
Rd

exp(−βU(θ))dθ (S34)

= −βU? + log

∫
Rd

exp(β(U? − U(θ)))dθ (S35)

≥ −βU? + log

∫
Rd

exp(−βL‖θ − θ
?‖2

2
)dθ (S36)

= −βU? +
d

2
log(

2π

Lβ
). (S37)
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Here, in (S36) we used Assumption H1 and (Nesterov, 2013)(Lemma 1.2.3).

Finally, by combining (S29), (S33), and (S37), we obtain

Ūβ − U? =
1

β
(H(ρ)− logZβ)− U? (S38)

≤ 1

β

(d
2

log
(
2πe

Cβ
βd

)
+ βU? − d

2
log(

2π

Lβ
)
)
− U? (S39)

=
1

β

d

2
log
(eCβL

d

)
(S40)

= O
( 1

β

)
. (S41)

This finalizes the proof.

5. Proof of Theorem 1
Proof. We decompose the error, as follows:∣∣∣EÛN − U?∣∣∣ =

∣∣∣E[
1

N

N∑
n=1

(U(θn)− U?)]
∣∣∣ (S42)

=
∣∣∣E[

1

N

N∑
n=1

(
U(θn)− Ūβ ]

)
+
(
Ūβ − U?

)∣∣∣ (S43)

≤
∣∣∣E[

1

N

N∑
n=1

(
U(θn)− Ūβ ]

)∣∣∣︸ ︷︷ ︸
A1

+
(
Ūβ − U?

)
︸ ︷︷ ︸

A2

, (S44)

where the term A1 is bounded by Lemma 1 and the term A2 is bounded by Lemma 2. This finalizes the proof.

6. Technical Lemmas
For convenience, let us introduce the following notations: X̄k , (X0, . . . , Xk). Let us also denote Ωn the (uniform)
random subsample, which is chosen independently of (X̄n), used for iteration n.
Lemma S1. Let fk(X) , ‖X −Xk−1‖. Under the assumptions H2-5, the following bound holds:

EX̄n

[
‖∇θU(θn−ln)−∇θU(θn)‖

]
= O

(
lmaxh max

i∈Jn−lmax+1,nK
E
[
Lifi(Xi−1)

]
+ h2

)
(S45)

where EX̄k denotes the expectation taken over the random variables X0, . . . , Xk.

Proof. The proof is similar to [(Chen et al., 2016b), Lemma 8], we provide the proof for completeness. We first consider
the following estimate which uses the Lipschitz property of∇θU(θ):

EX̄n

[
‖∇θU(θn−ln)−∇θU(θn)‖

]
≤ LEX̄n

[
‖θn−ln − θn‖

]
≤ LEX̄n

[∥∥∥ n−1∑
i=n−ln

(θi − θi+1)
∥∥∥]

≤ L
n−1∑

i=n−ln

EX̄n

[∥∥∥θi − θi+1

∥∥∥]

≤ L
n−1∑

i=n−ln

EX̄n

[∥∥∥Xi −Xi+1

∥∥∥]

= L

n−1∑
i=n−ln

EX̄n

[
fi+1(Xi+1)

]
. (S46)
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Using law of total expectation, we have

EX̄n

[
fi+1(Xi+1)

]
= E

[
fi+1(Xi+1)

]
= E

[
E
[
fi+1(Xi+1)|Xi

]]
= E

[
ehLi+1fi+1(Xi) +O(h2)

]
= E

[
fi+1(Xi) + hLi+1fi+1(Xi) +O(h2)

]
≤ hE

[
Li+1fi+1(Xi)

]
+O(h2). (S47)

The third equality is due to the fact that Euler integrator is a first order integrator. Then we applied Assumption H5 and
fi+1(Xi) = 0 to obtain the last two lines. Finally, by combining (S46) and (S47), we obtain:

EX̄n

[
‖∇θU(θn−ln)−∇θU(θn)‖

]
≤ L

n−1∑
i=n−ln

(hE
[
Li+1fi+1(Xi)

]
+O(h2))

≤ L
n−1∑

i=n−lmax

(hE
[
Li+1fi+1(Xi)

]
+O(h2))

≤ Llmaxh max
i∈Jn−lmax+1,nK

E
[
Lifi(Xi−1)

]
+O(h2).

This completes the proof.

Lemma S2. If Assumption H2 holds then the following bound holds:

‖Γn‖ = O(
1

β
), (S48)

where Γn is defined in (S16).

Proof. If ln > 0 then ‖Γn(θn)‖ = 0 since Hn will not depend on θn (see (9) for the definition of Γn). For ln = 0, by
the Lipschitz continuity of Hn, the first order partial derivatives of Hn are all bounded by LH . Then, ‖Γn‖ = 1

β ‖Γn‖ is
therefore bounded by a quantity that is proportional to β−1.

Lemma S3. Let fk(X) , ‖X −Xk−1‖. Under the assumptions H2-5, the following bound holds:

E
[
∆Vnψ(Xn−1)

]
= O

(
lmaxh max

i∈Jn−lmax+1,nK
E
[
Lifi(Xi−1)

]
+ h2 + β−1

)
. (S49)

Proof. First, by using the triangular inequality we have:

‖E
[
∆Vnψ(Xn−1)

]
‖ =‖E

[
(Hn(θn−ln)(∇θŨn−ln(θn−ln)−∇θU(θn)) +

1

β
Γn(θn−ln)) · ∇pψ(Xn−1)

]
‖

≤‖E
[
Hn(θn−ln)(∇θŨn−ln(θn−ln)−∇θU(θn)) · ∇pψ(Xn−1)

]
‖

+ ‖E
[ 1

β
Γn(θn−ln) · ∇pψ(Xn−1)

]
‖. (S50)

Applying Assumption H3 and Lemma S2, we obtain the bound for the second term in the above sum:

A1 , ‖E
[ 1

β
Γn(θn−ln) · ∇pψ(Xn−1)

]
‖ = O(β−1). (S51)

We note that the expectation is taken over (X̄n,Ωn), where X̄n and Ωn are independent. Hence, the first term in (S50) can
be rewritten as follows:

A2 ,‖E
[
Hn(θn−ln)(∇θŨn−ln(θn−ln)−∇θU(θn)) · ∇pψ(Xn−1)

]
‖

=‖EX̄n
[
EΩn

[
Hn(θn−ln)(∇θŨn−ln(θn−ln)−∇θU(θn)) · ∇pψ(Xn−1)

]]
‖

=
∥∥EX̄n[EΩn

[
Hn(θn−ln)(∇θŨn−ln(θn−ln)−∇θŨn−ln(θn)) · ∇pψ(Xn−1)

]
+ EΩn

[
Hn(θn−ln)(∇θŨn−ln(θn)

−∇θUn(θn)) · ∇pψ(Xn−1)
]]∥∥.
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As Hn and ∇pψ(Xn−1) are independent of the random subsample Ωn, we have

EΩn

[
Hn(θn−ln)(∇θŨn−ln(θn)−∇θUn(θn)) · ∇pψ(Xn−1)

]
= Hn(θn−ln)EΩn

[
∇θŨn−ln(θn)−∇θUn(θn)

]
· ∇pψ(Xn−1)

= 0.

As a result,

A2 = ‖EX̄n
[
EΩn

[
Hn(θn−ln)(∇θŨn−ln(θn−ln)−∇θŨn−ln(θn)) · ∇pψ(Xn−1)

]]
‖

= ‖EX̄n
[
Hn(θn−ln)(∇θU(θn−ln)−∇θU(θn)) · ∇pψ(Xn−1)

]
‖

≤ CEX̄n
[
‖∇θU(θn−ln)−∇θU(θn)‖

]
= O

(
lmaxh max

i∈Jn−lmax+1,nK
E
[
Lifi(Xi−1)

]
+ h2

)
. (S52)

The inequality in (S52) is deduced from the fact thatHn is bounded by (Berahas et al., 2016)[Lemma3.3] and∇pψ(Xn−1)
is bounded by assumptions, and the last equality is due to Lemma S1. Finally, by combining (S50), (S51), and (S52), we
obtain (S49), which concludes the proof.

7. Additional Experimental Results
In this section, we provide the result where we illustrate the iteration speedup of as-L-BFGS on the ML-1M dataset.
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Figure S1. The convergence behavior of as-L-BFGS on the ML-1M dataset for increasing number of workers.

8. Algorithm Parameters Used in the Experiments
8.1. Linear Gaussian model

Table 1 lists the algorithm parameters for the synthetic data experiments. We fixed the L-BFGS memory sizes for mb-L-
BFGS and as-L-BFGS to M = 3. The remaining parameters are the step sizes (h, h′), timeout duration of mb-L-BFGS
server (Tmb), the friction parameter (γ′), and the inverse temperature (β) of as-L-BFGS.

Table 1. The list of algorithm parameters that are used in the experiments on the linear Gaussian model.
a-SGD mb-L-BFGS as-L-BFGS

h h Tmb (base units) h′ γ′ β

1× 10−3 5× 10−2 10 4× 10−4 3× 10−2 5× 102

Table 2 lists the parameters of the simulator. The parameters are (i) µm: the average computational time spent by the
master node at each iteration, (ii) µw: the average computational time spent by a single worker at each iteration, and (iii)
τ : the time spent for communication per iteration. In all cases we set τ = 10, NΩ = NY /100, NO = NΩ/3.

8.2. Large-scale matrix factorization

Table 3 lists the algorithm parameters for different data sets. We fixed the L-BFGS memory sizes for mb-L-BFGS and
as-L-BFGS to M = 3. In all experiments we set ρ = 3, NΩ = NY /100, NO = NΩ/3.
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Table 2. The list of simulator parameters that are used in the experiments on the linear Gaussian model.
a-SGD mb-L-BFGS as-L-BFGS

µm µw µm µw µm µw

0 1000× NΩ

N 30 1000× NΩ

NY
0 1000× NΩ

NY
+ 60

Table 3. The list of algorithm parameters that are used in the experiments on the large scale matrix factorization.
a-SGD mb-L-BFGS as-L-BFGS

h h Tmb (m. sec.) h′ γ′ β

ML-1M 1× 10−6 5× 10−7 400 2× 10−8 1× 10−1 1× 103

ML-10M 2× 10−7 1× 10−8 3400 1× 10−9 3× 10−2 1× 103

ML-20M 1× 10−7 1× 10−8 4500 1× 10−9 1× 10−3 1× 103
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