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1. Proof of auxiliary lemmas
1.1. Proof of Lemma 1

Proof. Let A,_,, = A — A,, (we have assumed that rank
of A is r and r > m). First note that A,, and A, _,,
are orthogonal to each other. To see this write A using
singular value decomposition as A = Y7_, Ui(A)ﬁi\?T
where u; and v; are left and right smgular vectors of A
respectively, and al(A) > O'Q(A) > > UT(A) are sin-
gular values of A. Clearly, A = Zz 1 UZ(A)qu and
A,._,, = Y i1 oi(A)a;v, . Therefore, A,, Al =

Zz 123 m-1 JZ(A) (A)UZ(VTVJ)
A,_ mAT =0.

=0. Slmllarly,

Due to orthogonality of A, and A,_,, using Pythagorean
theorem, it holds that||A PA|% = |(I-P)A|% = ||(I-

P)A,,.||% + ||(I — P)A,_,,||% for any rank k projection
matrix P. To see this, let Y = I — P. Then,
A — PAH%
= |[@-P)A[% = [YA[E = [Y(An + A,n)7

N N N - T
2 trace (Y(Am YA, ) (Y(Am + Ar,m)) )
= trace (Y(Am + Ar_m)(Am + Ar_m)TYT)
= trace (YAmA;YT + YAr,mALmYT—i—
YA,AT, YT+ YAT_mA;YT)
b A ATVT A AT T
= trace (YAmAmY ) + trace (YAr,mAPmY )
= YAn|E + YAl
= @ =P)A, |5+ |T-P)A, |7

where, equality a follows from the fact that for any matrix
B, |B|% = trace(BBT) and equality b follows from
linearity of trace and orthogonality of A,, and A,_,,.
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Since any rank k projection matrix P can be written as
P = QQ7, where Q is a matrix of k orthonormal columns,
PA is a rank k& matrix spanned by the columns of Q.
Clearly, (A — PA) is spanned by (r — k) orthonormal
columns (which are orthogonal to the columns of Q
since A has rank r). Therefore, PA and (A — PA) are
orthogonal to each other and using similar argument as
above we see that, ||A[|Z = |[PA + (A — PA)|% =

trace (PA + (A~ PA))(PA + (A-PA))T) =
trace (PA(PA)T) +trace ((A —~PA)(A - PA)T) =
IPAZ + A — PAR.
IA ~PA|Z = [[All% — ||PA||2

other words,

Now using optimality of P~* and definition of 15~, we get,
[T =P)A|E < yIIXT-PA[E < 4IT - P;)Al%
Expanding on both side, we get,

< (=B )Al3 + 11— Ph)A )

Rearranging the terms,

[T —P)A,.[I%
<ANT=Pr) A7 + 1T =P Al
- H(I - P)Arme%‘

W@ =B A3 +1|Ar 3 — P A
1Al ~ [PA—nlF)

<AIT=Pr)AnlE + (v = DIIA—nllf + [PA 3
ey

—

This establishes the first result. When v = 1, P =P*and
the above inequality becomes

(1= P*)A,, |7 < (X—P;) A%+ [PA |} )

Next we show how to bound ||PAT m||%. First note that,
1A} = Si2" 0P (A = Ap) = 30,1 0 (A).
Since P is arank k projection matrix, assuming  —m > k,
PA,_,, r—m |3 has value
no more than the top k singular values of A,._,,. In other
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words,
o k _ _ m+k B
||PA,._7,L||% < ZOZZ(A —Ap) = Z U?(A) 3)
=1 i=m-+1

Using singular value decomposition it is easy to see that
A — AgllE = 220", 1 07 (A). From this we can write

2H‘Am_lgchQF
m m m m+k
= Y o2A)+ Y oRA) S SRA) + Y XA
i=k+1 i=k+1 i=k+1 1=m+1
m+k 5 < b m+k m+k:
= 0 (A)>m O’

“4)

where, inequality a follows from the fact that sum of (m—k)
singular values of Ais being bounded from below by sum
of k (smaller) singular values of A (in the worst case if all
these singular values are of same value then inequality a
will hold if (m — k) > k or m > 2k, which will always
hold as long as € < 1/2). Inequality b follows from the fact
that sum of m consecutive singular values of A is bounded
from below by m times average of the smallest k of those
m singular values of A. Finally, inequality c follows from
our choice of m. Combining equation 3 and 4 we get,

HpArme% < 26||Am - A:AkHQFN < 26”Am - f):nAmH%
= 2¢|(I-P})An% )

where, the second inequality follows from the fact that A,
is the best rank k approximation of A, since m > k and
P Am is a rank k& matrix having same size that of A,
Combining equation 2 and 5 yields part (i) of the Lemma.

To prove part (ii) of the lemma note that (y—1)[|A,_,, | % =
€1 Z::m+1 a?(A)N < ~ 27111 UQ(A) < 2¢|Ay —
A% < 2¢||(I - P;,)A,,||%. Combining this with equa-
tion 1, 5 and v = 1 + €1, yields the desired result. O

1.2. Proof of Lemma 2

Proof. We observe, using Lemma 1 of (Achlioptas & Mc-
sherry, 2007), that
[A=Am|lr < |A=An|r+Nupl[r+2V [N | 7| A 7
(6)
For the choice of p and using Theorem ??, we get
INmllF < vVmelAllp < m'Y*/&|Allp, where
the second inequality follows from the restriction of es.
Next, /[N, [ [Anlr < vmPelAlr[Adlr <
m!/4 /ez||A||p. Plugging in these values in equation 6
we get the desired result. O

1.3. Proof of Lemma 3

Proof. Note that the choice of m satisfies, |A,,[|% =
Yiioi(A) < 1Zp of(A) = s|AlE =

(||Am||F+||A Al ) = 2[AnlE < [AmlE +
[A = Anl2 = [Anl2 < 1A - Anl? > Al +
A — Anlt < 20A = Anlf = Al < 2(A -
Anlz = Al < V2JA — Aulr  Now in-
voking Lemma ?? ensures that , ||[A — A,|lr <

(1 + 3+v/2¢5 (k/63)1/4) ||A AmHF Setting €5 = LS\/%
yields the desired result.

1.4. Proof of Corollary 1

Proof. Since v = 1 + €1, it is easy to see that % <
(14€1+4€)(1+11¢€) (y+4e)(1+11€) < v(14+4€)(1+11€) <

1—4e
(1+15e+445 ) < 7(1—4—226) We requlre (11+549:) <1 4 =

1—4e — 1—4e

(1+59€)_(1—4E—|—€(1—46)):>636§( —4de€’) =

€ < gatao- Setting € = €' /67 and plugging in Theorem ??
yields the desired result. O
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