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Abstract
In the pursuit of increasingly intelligent learning
systems, abstraction plays a vital role in enabling
sophisticated decisions to be made in complex
environments. The options framework provides
formalism for such abstraction over sequences of
decisions. However most models require that op-
tions be given a priori, presumably specified by
hand, which is neither efficient, nor scalable. In-
deed, it is preferable to learn options directly from
interaction with the environment. Despite several
efforts, this remains a difficult problem. In this
work we develop a novel policy gradient method
for the automatic learning of policies with options.
This algorithm uses inference methods to simulta-
neously improve all of the options available to an
agent, and thus can be employed in an off-policy
manner, without observing option labels. The dif-
ferentiable inference procedure employed yields
options that can be easily interpreted. Empirical
results confirm these attributes, and indicate that
our algorithm has an improved sample efficiency
relative to state-of-the-art in learning options end-
to-end.

1. Introduction
Recent developments in reinforcement learning (RL) meth-
ods have enabled agents to solve problems in increasingly
complicated domains (Mnih et al., 2016; Mousavi et al.,
2018). However, as RL agents become increasingly in-
tegrated in society, there is an increased need for the be-
haviour of the agents to be interpretable. Further, in order
for such agents to solve difficult and realistic environments–
potentially involving long sequences of decisions–more sam-
ple efficient techniques are needed. One way to improve
on existing agents is to leverage abstraction. By reasoning
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at various levels of abstraction, it is possible to infer, learn
and plan much more efficiently. Further, abstraction makes
interpretation easier, by making higher-order properties of
data more explicit. Recent developments outside of RL have
lead to breakthroughs in terms of learning rich representa-
tions for perceptual information (Bengio et al., 2013). In RL
domains, however, while efficient methods exist to plan and
learn when abstraction over sequences of actions is provided
a priori, it has proven more difficult to learn this type of
abstract behaviour from interaction data.

Many frameworks for formalizing temporal abstraction
have been proposed; most recent developments build on
the Options framework (Sutton et al., 1999; Precup, 2000),
which can be parameterized in a flexible manner, poten-
tially amenable to learning. The majority of prior work on
learning options has centered around the idea of discovering
subgoals in state space, and constructing a set of options
such that each option represents a policy leading to that
subgoal (McGovern & Barto, 2001; Menache et al., 2002;
Şimşek & Barto, 2009). These methods can lead to useful
abstraction, however, they often require access to a model
of the environment dynamics, which is not always available,
and can be infeasible to learn. Our contribution instead
builds on the work of Bacon et al. (2017), and exploits a
careful parameterization of the policy of the agent, as well
as a differentiable inference step, in order to simultaneously
learn a set of options, while directly optimizing returns. We
relax a few key assumptions of this previous work, including
the expectation that only options that were actually executed
during training can be learned, and the focus on executing
options in an on-policy manner, with option labels available.
By relaxing these, we can improve sample efficiency and
practical applicability, including the possibility to learn con-
trol policies from data without knowing which options were
executed at each step, as is the case in the context of expert
demonstration, or otherwise learn interpretable hierarchical
behaviours from behavioural data.

Further to this point, interpretability represents a largely
unexplored use-case for options, which have generally been
employed for exploration or transfer learning. However,
it is often the case that policies learned without options
can be difficult to understand, with agents often performing
complex sequences of high-dimensional actions. With a
discrete set of options, if each represents a distinct, tempo-
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rally extended sub-policy, then it is sufficient to observe that
single option in order to understand the general behaviour
of the agent. As agents become increasingly complex and
increasingly integrated in society, the importance of easily
interpreted behaviour is paramount, as it allows us to un-
derstand what an agent is doing, and what it plans to do
next.

Contributions: We present an algorithm that solves the
problem of learning control abstractions by viewing the set
of options as latent variables that concisely represent the
agent’s behaviour. More precisely, we do not only improve
those options that were actually executed in a trajectory.
Instead, we allow intra-option learning by simultaneously
improving all individual options that could have been exe-
cuted, and the policy over options, in an end-to-end manner.
The result is an algorithm for learning options that is:

Data Efficient. Learning with options rather than learning
flat policies introduces additional complexity. By al-
lowing single experiences to improve all options at the
same time, we can nevertheless learn with a sample
efficiency that is competitive with that of flat policies.

Applicable with Partial Data. Many state of the art meth-
ods for learning options rely on observing the executed
options, as well as the actions that led to a behaviour.
Our method does not require these option labels, mak-
ing it applicable in more situations.

Interpretable. Favoring options that were more likely to
have generated a learning experience in the policy up-
date leads to increased specialization of individual op-
tions. This specialization yields options that are tem-
porally and spatially more coherent, and that can more
readily be interpreted, without need for regularization.

We evaluate this algorithm on continuous MDP benchmark
domains and compare it to earlier reinforcement learning
methods that use flat and hierarchical policies.

2. Related Work
Recent attention in the field of option discovery generally
falls into one of two categories. One branch of work focuses
on learning options that are able to reach specific subgoals
within the environment. Much work in this category has
focused on problems with discrete state and action spaces,
indentifying salient or bottleneck states as subgoals (McGov-
ern & Barto, 2001; Menache et al., 2002; Şimşek & Barto,
2009; Silver & Ciosek, 2012). Recent work has focused
on finding subgoal states in continuous state spaces using
clustering (Niekum & Barto, 2011) or spectral methods
(Machado et al., 2017). Konidaris & Barto (2009) describe
an approach where subgoals of new policies are defined

by the initiation conditions of existing options. Specifying
options using subgoals generally requires a given or a-priori
learned system model, or specific assumptions about the en-
vironment. Furthermore, the policies to reach each subgoal
have to be trained independently, which can be expensive in
terms of data and training time (Bacon et al., 2017).

A second body of work has learned options by directly op-
timizing over the parameters of function approximations
that are structured in a way to yield hierarchical policies.
One possibility is to augment states or trajectories with the
indexes of the chosen options. Option termination, selec-
tion, and inter-option behavior then all depend on both the
regular system state and the current option index. This
approach was suggested by Levy & Shimkin (2011) for
learning the parameters of a hierarchical model consisting
of pre-structured policies. In the option-critic architecture
(Bacon et al., 2017), a similar model is employed, with
option-specific value functions to learn more efficiently. Fur-
thermore, neural networks are used instead of a task-specific
given structure. Mankowitz et al. (2016) use an explicit par-
titioning of the state space to ensure policy specialization.

An alternative to state augmentation was proposed by Daniel
et al. (2016). In that paper, options were considered la-
tent variables rather than observable variables. That paper
employed a policy structure that allowed maximizing the
objective in the presence of these latent variables using an
expectation-maximization approach. However, the optimiza-
tion of this structure requires option policies to be linear
in state features, which imposes the need to specify good
state features a priori. Further, this approach necessitates the
use of information from the entire trajectory before policy
improvement can be done, eliminating the possibility of an
on-line approach. Fox et al. (2017) uses a similar approach
in the imitation learning setting with neural network policies
instead of a task specific structure.

It should be noted that there are several other related works
in hierarchical reinforcement learning outside of the options
framework. One possibility is to have a higher-level policy
learn to set goals for a learning lower-level policy (Vezhn-
evets et al., 2017), or to set a sequence of lower-level actions
to be followed (Vezhnevets et al., 2016). Another possibility
is to have a higher-level policy specify a prior over lower-
level policies for different tasks, such that the system can
acquire useful learning biases for new tasks (Wingate et al.,
2011).

3. Technical Background
We consider an agent interacting with its environment, at
several discrete time steps. Generally, the state of the envi-
ronment at step t, is provided in the form of a vector, st, with
s0 determined by an initial state distribution. At every step,
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the agent observes st, and selects a vector-valued action at,
according to a stochastic policy π(at|st), which gives the
probability that an agent executes a particular action from a
particular state. The agent then receives a reward rt and the
next state st+1 from the environment.

We consider episodic setups where, eventually, the agent
reaches a terminal state, sT upon which the environment
is reset, to a state drawn from an initial state distribution.
A sequence of states, actions and rewards generated in this
manner is referred to as a trajectory τ .

We define the discounted return from step t within a tra-
jectory to be R(τ)

t =
∑T
i=t γ

(i−t)ri. The objective of the
learning agent is to maximize the expected per-trajectory
return, given by ρ = Eτ [R

(τ)
0 ].

3.1. Policy Gradient Methods

While several methods exist for learning a policy from inter-
action with the environment, here, we focus on policy gradi-
ent methods, which have benefited from a recent resurgence
in popularity. Policy gradient methods directly optimize ρ
by performing stochastic gradient ascent on the parameters
θ of a family of policies πθ. Policy gradients can be es-
timated from sample trajectories, or in an online manner.
The full return likelihood ratio gradient estimator (Williams,
1992) takes the form:

∇θρ(θ) = Eτ

[
(Rτ0 − b)

T∑
t=0

∇θ log π(at|st)

]
, (1)

where b is a baseline, used to reduce variance. This is one
of the simplest, most general policy gradient estimators,
and can be importance sampled if observed trajectories are
not generated from the agent’s policy. The policy gradient
theorem (Sutton et al., 2000) expands on this result in the
on-policy case, giving a gradient estimate of the form:

∇θρ(θ) = Eτ

[
T∑
t=0

(Rτt − b)∇θ log π(at|st)

]
, (2)

which can be shown to yield lower variance gradient esti-
mates.

3.2. Options

The options framework provides the necessary formalism
for abstraction over sequences of decisions in RL (Sutton
et al., 1999; Precup, 2000). The agent is given access to
a set of options, indexed by ω. Each option has its own
policy: πω(at|st), an initiation set, representing the states
in which the option is available, and a termination function
βω(st), which represents the state-dependent probability of
terminating the option. Additionally, the policy over options,

πΩ(ωt|st) is employed to select from available options once
termination of the previous option occurs.

During execution, option are used as follows: in the initial
state, an option is sampled from the policy over options. An
action is then taken according to the policy belonging to
the currently active option. After selecting this action and
observing the next state, the policy then terminates, or does
not, according to the termination function. If the option does
not terminate, the current option remains active. Otherwise
the policy over options can be sampled in the new state in
order to determine the next active option.

The policy over options can be combined with the termina-
tion function in order to yield the option-to-option policy
function:

π̃Ω(ωt|ωt−1, st) = [1− βωt−1
(st)]δωtωt−1

+ βωt−1
(st)πΩ(ωt|st),

where δ is the Kronecker delta.

4. Inferred Option Policy Gradient
To learn options using a policy gradient method we
parametrize all aspects of the policy: πΩ,θ denotes the pol-
icy over options, parametrized by θ. πω,ϑ then denotes the
intra-option policy of option ω, parametrized by ϑ. Finally
βω,ξ is the termination function for ω, parametrized by ξ.
Rather than explicitly constructing initiation sets, which can-
not be done trivially in a differentiable manner, we assume
that for all of our options, the initiation set is the entire state
space.

We aim to optimize the performance of the agent with re-
spect to a set of policy parameters. The loss function is
identical to that employed by traditional policy gradient
methods: we optimize the expected return of trajectories in
the MDP sampled using the current policy,

ρ(θ,ϑ, ξ) = Eτ [Rτ0 ] =

∫
τ

P (τ)Rτ0dτ,

where Eτ denotes expectation over sampled trajectories.

The expected performance can be maximized by increasing
the probability of visiting highly rewarded state-action pairs.
To increase this probability, it does not matter which option
was originally used in order to generate that state-action pair,
rather, we will derive an algorithm that updates all options
that could have generated that state-action pair. Determining
these options is done in a differentiable inference step. As a
result the policy can be optimized end-to-end, yielding our
Inferred Option Policy Gradient algorithm.

In order to compute the gradient of the loss objective, we
decompose P (τ) into the relevant conditional probabilities,
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and employ the “likelihood ratio” method, so that it is possi-
ble to estimate the gradient from samples:

∇ρ = Eτ

[
Rτ0

T∑
i=0

∇ logP (ai|s[0:i],a[0:i−1])

]
.

In this equation, s[0:i] denotes the sequence of states be-
tween step 0 and step i. Gradients are taken with respect to
all policy parameters θ,ϑ, and ξ. Note that this is similar
to the REINFORCE policy gradient, though here actions
are not independent, even when conditioned on states, since
information can still pass through the unobserved options.
Figure 1 demonstrates this, as the graphical model of tra-
jectories executed under a policy without observed options
follows a hidden Markov model-like structure.

s0

ω0

a0

s1

ω1

a1

. . .

. . .

. . .

Figure 1. Graphical Model for Option Trajectory

In order to compute the inner gradient, we marginalize over
the hidden options at each time step, leading to:

∇ρ = Eτ

[
Rτ0

T∑
i=0

∇ log

(∑
ωi

m(i)ωiπωi,ϑ(ai|si)

)]
,

where m(i) is the vector of option probabilities at time step
i, i.e. m(i)ωi = P (ωi|s[0:i],a[0:i−1]).

It is this marginalization that explicitly introduces the option
structure into our policy. Because we employ marginaliza-
tion, rather than sampling, it is not necessary to have actually
observed the option being executed, as may be the case with
data generated by another agent. Further, this introduces
a weighted update of all available options, with updates
proportional to the likelihood that the agent is in a particular
option at that point in the trajectory.

From the graphical model, we observe that the m(i) term
can be expressed in a recursive form, simply as an applica-
tion of the forward algorithm (Baum & Petrie, 1966):

m(i+ 1)ωi+1
=∑

ωi

c−1
i m(i)ωiπωi,ϑ(ai|si)π̃Ω,θ,ξ(ωi+1|ωi, si+1).

In this equation, ci is a normalization factor, given by:

ci =
∑
ωi

m(i)ωi
πωi,ϑ(ai|si).

The recurrence starts from the initial value P (ω0|s0) =
πΩ,θ(ω0|s0). If our policies are differentiable, then this re-
cursive term is differentiable as well, allowing us to perform
gradient descent to maximize our objective, using the sam-
pled data to compute the full return Monte Carlo gradient
estimate:

∇ρ ≈ Rτ0

[
T∑
i=0

∇ log

(∑
ωi

m(i)ωi
πωi,ϑ(ai|si)

)]
,

where τ = (s0,a0, . . . ,aT−1, sT ) is a trajectory sampled
from the system using the current policy πθ. The variance
of this estimator can be reduced through inclusion of a
constant baseline, through an argument identical to that
used for REINFORCE (Williams, 1992).

Here, we notice that actions at any given time step are con-
ditionally independent of rewards received in the past, given
the trajectory up to that action. As in other policy gradi-
ent methods, we can reduce variance further by removing
these terms from our gradient estimator. This is formally
expressed as:

∀j < k Es[0:k],a[0:k]

[
rj∇ logP (ak|s[0:k],a[0:k−1])

]
= 0.

With this realization, we can simplify our estimator to:

∇ρ ≈

 T∑
i=0

 T∑
j=i

(rj)− b(si)


∇ log

(∑
ωi

m(i)ωi
πωi,ϑ(ai|si)

)]
, (3)

where b(sj) is a state-dependent baseline. Note that the
estimate is unbiased regardless of the baseline, although
good baselines can reduce the variance. In this work, we use
a learned parametric approximation of the value function
Vν as baseline. The value function is learned using gradient
descent on the mean squared prediction error of Monte-
Carlo returns:

T∑
t=0

(Vν(st)−Rt)2
. (4)

Estimating the value function can also be done using other
standard methods such as LSTD or TD(λ).

The algorithm for learning options to optimize returns
through a series of interactions with the environment is
given in Algorithm 1. While this algorithm can only be ap-
plied in the episodic RL setup, it is also possible to employ
the technical insight shown here in an online manner, which
is the topic of the next section.
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Algorithm 1: Inferred Option Policy Gradient (IOPG)

Initialize parameters randomly
foreach episode do

ω0 ∼ πΩ(ω|s0) // sample initial option
for t← 0, . . . , T do

at ∼ πωt(st) // sample action from option
Get st+1 and rt from system
ωt+1∼ π̃Ω(ωt+1|ωt, st+1) // sample option

end
Update ν according to (4), using sampled data
θ, ϑ, and ξ according to (3), using sampled data

end

5. Online Gradient Estimates
In addition to the batch gradient estimator described in Sec-
tion 4, it is also possible to develop an online estimator.
While we introduce some bias by updating the parameters
in the middle of the trajectory, this increases the number of
environments in which our method can be applied. In order
to achieve this, we employ a method similar to real-time
recurrent learning (Williams & Zipser, 1989), leveraging
the recursive structure of the gradient estimate in order to
make computation tractable.

For convenience, let ψ denote the concatenation of parame-
ter vectors θ,ϑ, and ξ. By noticing that m(t) is a function
of only the data at time t, the current parameters, and the
previous value: m(t− 1), alongside a simple application of
the chain rule, we observe that:

dm(t)ω
dψ

=
∂m(t)ω
∂m(t− 1)

dm(t− 1)

dψ
+

∂m(t)ω
∂ψ

. (5)

Thus, in order to efficiently compute this gradient in an
online manner, in addition to our parameter vector ψ, we
maintain an additional set of gradient traces, gωψ , for each
option, and update them according to equation 5. These
values then substitute dm(t−1)

dψ when computing the subse-
quent gradient. This procedure adds an additional memory
complexity of O(|ψ| × |Ω|), since a gradient trace over all
parameters must be maintained for each option.

An inferred option actor-critic (IOAC) algorithm using this
gradient estimator is described in Algorithm 2. Note that
this algorithm–in addition to learning online–could exhibit
lower variance than the IOPG method described above. By
using a learned estimator for the returns instead of the Monte
Carlo results, updates are more consistent, ideally leading
to increased stability, at the cost of some bias.

Algorithm 2: Inferred Option Actor Critic (IOAC)
initialize ψ randomly
foreach episode do

gωψ ← 0
s← s0

ω ∼ πΩ(s)
for t← 0, . . . , T do

a ∼ πω(a|s)
s′, r ∼ step(a, s)
Update ν according to TD
Update gωψ according to (5)
Substitute gωψ into (3) to update θ and ϑ
Draw option termination b ∼ β(s′)ω
if b then

ω ∼ πΩ(s′)
end
s← s′

end
end

6. Experiments
In order to evaluate the effectiveness of our algorithm, as
well as the qualitative attributes of the options learned, we
examine its performance across several standardized contin-
uous control environments as implemented in the OpenAI
Gym (Brockman et al., 2016) in the MuJoCo physics simu-
lator (Todorov et al., 2012). In particular, we examine the
following environments:

• Hopper-v1 (observation dimension: 11, action dimen-
sion: 3)

• Walker2d-v1 (observation dimension: 17, action di-
mension: 6)

• HalfCheetah-v1 (observation dimension: 17, action
dimension: 6)

• Swimmer-v1 (observation dimension: 8, action dimen-
sion: 2).

Generally, they all require the agent to learn to operate joint
motors in order to move the agent in a particular direction,
with penalties for unnecessary actions. Together, they are
considered to be reasonable benchmarks for state-of-the art
continuous RL algorithms.

6.1. Comparison of performance

We compared the performance of our algorithm (IOPG)
with results from option-critic (OC) and asynchronous actor-
critic (A3C) methods, as described in Mnih et al. (2016).
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Figure 2. Training curves for 2 million time steps averaged across 10 random seeds
for several continuous RL domains. The shaded area represents the 95% confidence
interval.

Figure 3. Typical option activity as a function of
state. The axes represent T-SNE embeddings of
higher dimensional states. Each state is coloured
according to the option that was active at that
point.

In order to ensure an appropriate comparison, IOPG and
OC were also implemented using multiple agents operating
in parallel, as is done in A3C. The option-critic algorithm
as described in (Bacon et al., 2017) employs greedy option
selection according to the learned Q. To ensure a fair com-
parison, we employed the same parametrized actor as the
inter-option policy in our option-critic baseline as was used
in IOPG. Since option-critic already learns option-value
functions, no SMDP-level value function approximation is
needed.

Our model architecture for all three algorithms closely fol-
lows that of Schulman et al. (2017). The policies and value
functions were represented using separate feed-forward neu-
ral networks, with no parameters shared. For each agent,
both the value function and the policies used two hidden
layers of 64 units with tanh activation functions. The IOPG
and OC methods shared these parameters across all policy
and termination networks. The option sub-policies and A3C
policies were implemented as linear layers on top of this,
representing the mean of a Gaussian distribution. The vari-
ance of the policy was parametrized by a linear softplus
layer. Option termination was given by a linear sigmoid
layer for each option. The policy over options, for OC and
IOPG methods, was represented using a final linear softmax
layer, of size equal to the number of options available. The
value function for IOPG and AC methods was represented
using a final linear layer of size 1, and for OC, size |Ω|. All
weight matrices were initialized to have normalized rows.
RMSProp (Tieleman & Hinton, 2012) was used to optimize

parameters for all agents. We employ a single shared set
of RMSProp parameters across all asynchronous threads.
Additionally, entropy regularization was used during opti-
mization for the AC policies, the option policies and the
policies over options. This regularization encourages explo-
ration, and prevents the policies from converging to single
repeated actions, as policy gradient methods parametrized
by neural networks often suffer from this problem (Mnih
et al., 2016).

The results of these experiments are shown in Fig. 2. We
see that IOPG, despite having significantly more parameters
to optimize, and recovering additional structure, is able to
learn as quickly as A3C across all of the domains, and learns
significantly faster in the Walker2d environment. This is
likely enabled by the fact that all of the options in IOPG can
make use of all of the data gathered. OC, on the other hand
seems to suffer a reduction in learning speed due to the fact
that options are not all learned simultaneously, preventing
experience from being shared between them, thus suffering
from the additional complexity burden of the additional
parameters. It is likely that IOPG performs particularly well
in Walker2d due to the relatively high dimensional action
space combined with the cyclical nature of good policies
being well suited to the option structure.

An additional experiment was performed to investigate the
effectiveness of Generalized Advantage Estimation (Schul-
man et al., 2015) with the IOAC algorithm. Here, gradients
were accumulated over the course of a trajectory and applied
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Figure 4. The options discovered by IOPG can be easily interpreted, due to their temporal and dynamic coherence. The coloured bars
each represent a trajectory in the HalfCheetah-v1 environment, with each colour representing execution of a different option, and the
width of the bar proportional to the number of steps that option was executed. The frames represent the agent behaviour, with the border
colour representing the option that was active during that behaviour. Three clear behaviours are observed: a fast “forward leaning” policy
(blue), a slower “backward leaning” policy (red), and a slow, but stabilizing “spread” policy (yellow).

only at the end. Results were highly similar to those shown
in Fig. 2, with no significant improvement from the use of
GAE.

6.2. Option Structure

One important benefit of the extra structure learned by op-
tions is that it allows for simplified interpretation of the
agent’s actions. While the agent’s behaviour in the primi-
tive action space may be high dimensional and real-valued,
in a spatially and temporally coherent option-space the be-
haviour can be reduced to a single category. This represen-
tation leads to improved interaction and understanding of
option behaviour, as well as debugging, monitoring, and
potentially verifiable behaviour. In order to further under-
stand if the nature of the options learned by IOPG exhibit
these traits, we performed a visualization of them over a
random subsample of states in the last 8000 frames. We
perform T-SNE (Maaten & Hinton, 2008) on these states in
order to represent the high-dimensional state space in two
dimensions.

Fig. 3 shows the results of this procedure. We can see
that different options are active in different regions of state
space. This pattern indicates that the options learned can be
interpreted as having some local structure. Options appear
to be spatially coherent, as well as having structure in policy
space. The relation between state and action abstraction has
been observed previously in the RL literature (Andre & Rus-
sell, 2002; Provost et al., 2007). This outcome demonstrates
the specialization of options learned by IOPG—different op-
tions generally do not occupy the same roles in the agent’s
behaviour.

Further, we find that the options learned represent be-

haviours that are easily interpreted. We find that options
learned by IOPG are both temporally extended—one option
often lasts several time steps—and that each option repre-
sents a unique policy used by the agent in a coordinated
manner to optimize returns. These properties are generally
difficult to achieve for automatically learned options, with-
out heuristic structure or regularization. These attributes
match the intuitive notion that options represent “skills”, or
abstract behaviours which can extend over several primitive
actions. Fig. 4 clearly demonstrates that learned options
possess both temporal coherence and separation in policy-
space. We observe that the agent’s behavior is represented
primarily by three options of the available four: The blue
option represents a “forwards leaning” movement, which is
the fastest, but leads the agent to become unstable. The red
option represents a “backwards leaning” policy, which can
slow the agent down, but balance the effects of executing
the blue option. Finally, the yellow option stabilizes the
agent by lowering its center of mass. This final option is
particularly interesting, as it appears to be a transient option
learned during training so as to stabilize the agent before it
is able to coordinate the other two policies. Once the agent
learns to alternate between the red and blue options in a
coordinated manner, the yellow option is no longer used.

Fig. 5 displays analysis of the options learned in the
Walker2d environment. We found that in this particular
environment, agents with either four or eight options avail-
able perform roughly equally, while having only two options
led to sub-optimal performance (Fig. 5a). This effect can be
explained by the fact that three options seem to be sufficient,
and if more options are given only three of them tend to
get frequently selected (Fig. 5b). This finding suggests that
only three of the options that IOPG learns are useful here,
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(a) Performance in the Walker2d environ-
ment as a function of available options. We
see that in this environment, having several
options available to the agent leads to an
improved policy.

(b) In the Walker2d environment, initially
option selection is uniform. After training
only 3 options tend to be selected, even
when more are available. Selection frequen-
cies are averaged over 100 sampled states.

(c) As the options improve during train-
ing, the probability of remaining in the ac-
tive option increases, plateauing at around
0.85. This outcome suggests that the options
learned here exhibit temporal extension.

Figure 5. Analysis of the learned options in the Walker2d environment.

perhaps due to the relative simplicity of the environment. In
Fig. 5c, we observe further evidence that the options learned
by IOPG are temporally extended. A moving average of the
continuation probability (1− βω(st)) during training indi-
cates that early on, when the options are not well optimized,
termination occurs quite frequently. As the options improve,
termination decreases, until the policy over options is only
queried approximately every ten steps on average.

7. Discussion
In this paper, we have introduced a new algorithm for
learning hierarchical policies within the options framework,
called inferred option policy gradients. This algorithm treats
options as latent variables. Gradients are propagated through
a differentiable inference step that allows end-to-end learn-
ing of option policies, as well as option selection and termi-
nation probabilities.

In our algorithms policies take responsibility for state-
actions pairs they could have generated. In contrast, in
learning algorithms for hierarchical policies that use an aug-
mented state space, option policies are updated using only
those state-action pairs that were actually generated. As
a result, in our algorithm options do not tend to become
‘responsible’ for unlikely states or actions they generated.
This may prevent collapse in the transient option structure,
which could be sensitive to rare events. Thus, options are
stimulated more strongly to specialize in a part of the state
space. We conjecture that this specialization caused the
discussed increase in the interpretability of options. Alterna-
tively, it may be the case that fully end-to-end optimization
of the policy over options and option policies is what leads
to this specialization, as the gradient of the option policies
explicitly includes terms concerning the policy over options,
which is not the case in previous state-augmented methods.

Furthermore, in our experiments learning with inferred op-
tions was significantly faster than learning with an option-
augmented state space. In fact, learning with inferred op-
tions proved equally fast, or sometimes even faster, than
using a comparable non-hierarchical policy gradient method
despite IOPG having many more parameters. We conjecture
that option inference encourages intra-option learning, thus
allowing multiple options to improve as the result of a single
learning experience, causing this speed-up.

In future work, we want to quantify the suitability of the
learned options for transfer between tasks. Our experiments
so far were in the episodic setting. In Section 5, we intro-
duced an on-line actor-critic version of our algorithm, that
can learn continuously in infinite-horizon setting. We plan
to investigate this variant more closely in future work. Fur-
thermore, while we did not examine such methods here, we
want to investigate how techniques for improving learning
stability, as used in, e.g., the TRPO and PPO algorithms, can
be leveraged in within the context of learning with inferred
options.
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