
Accelerating Natural Gradient with Higher-Order Invariance

A. Proofs
Proposition 1. The Levi-Civita connection of a neural network model manifold is given by

�µ
↵� = gµ⌫Eq(x)Ep✓(t|x)

⇢
@⌫ log p✓(t | x)

@↵@� log p✓(t | x) +

1

2
@↵ log p✓(t | x)@� log p✓(t | x)

��

Proof of Proposition 1. Let r✓(z) be the joint distribution defined by q(x)p✓(t | x). The Fisher information met-
ric is gµ⌫ = Ez[@µ log r✓(z)@⌫ log r✓(z)]. The partial derivative @µg↵� can be computed via scoring function trick,
i.e., @µg↵� = @µEz[@↵ log r✓(z)@� log r✓(z)] = Ez[@µ log r✓(z)@↵ log r✓(z)@� log r✓(z) + @µ@↵ log r✓(z)@� log r✓(z) +
@↵ log r✓(z)@µ@� log r✓(z)]. All other partial derivatives can be obtained via symmetry.

According to the definition,

�µ
↵� =

1

2
gµ⌫(@↵g⌫� + @�g⌫↵ � @⌫g↵�)

= gµ⌫Ez

�
@⌫ log r✓(z)

⇥
@↵@� log r✓(z) +

1

2
@↵ log r✓(z)@� log r✓(z)

⇤
.

The proposition is proved after replacing r✓(z) with q(x)p✓(t | x).

Theorem 1. Consider the initial value problem ẋ = f(t, x(t)), x(0) = a, 0 t T , where f(t, x(t)) is a continuous

function in a region U containing

D := {(t, x) | 0 t T, kx� ak X}.

Suppose f(t, x) also satisfies Lipschitz condition, so that

kf(t, x)� f(t, y)k Lf kx� yk , 8(t, x) 2 D ^ (t, y) 2 D.

In addition, let M = sup(t,x)2D kf(t, x)k and assume that TM X . Next, suppose x to be the global coordinate of a

Riemannian C1
-manifold M with Levi-Civita connection �µ

↵�(x). Then, let the interval [0, T] be subdivided into n equal

parts by the grid points 0 = t0 < t1 < · · · < tn = T , with the grid size h = T/n. Denote xk as the numerical solution

given by Euler’s update with geodesic correction (7), so that

xµ
k+1 = xµ

k + hfµ(tk, xk)�
1

2
h2�µ

↵�(xk)f
↵(tk, xk)f

�(tk, xk), x0 = a. (11)

Let x̂k be the numerical solution obtained by faster geodesic correction (9)

x̂µ
k+1 = x̂µ

k + hfµ(tk, x̂k)�
1

2
h2�µ

↵�(x̂k)�x̂
↵
k �x̂

�
k , (12)

where �x̂k = (x̂k � x̂k�1)/h. Finally, define the error ek at each grid point xk by ek = x0
k � xk, and êk = x0

k � x̂k, where

x0
k is the numerical solution given by Riemannian Euler method, i.e.,

x0
k+1 = Exp(x0

k, hf(tk, x
0
k)), x0

0 = a. (13)

Then, assuming kxk � ak X , kx̂k � ak X , and kx0
k � ak X , it follows that

kekk O(h2) and kêkk O(h2), h! 0, 8k 2 [n].

As a corollary, both Euler’s update with geodesic correction and its faster variant converge to the solution of ODE in 1st

order.

Proof of Theorem 1. Since f(t, x) is continuous in the compact region D satisfying Lipschitz condition, and TM X ,
Picard-Lindelf theorem ensures that there exists a unique continuously differentiable solution in D.

On the smooth Riemannian manifold M, the corresponding region X ⇢M for the set of coordinates {x | kx� ak X}

is compact. Following Lemma 5.7, Lemma 5.8 in (Petersen, 2006) and a standard covering-of-compact-set argument,

Accelerating Natural Gradient with Higher-Order Invariance

there exists a constant ✏ > 0 such that geodesics are defined everywhere within the region G := {(p, v, s) | p 2 X , v 2
TpM ^ kvk M, 0 s ✏}. Tychonoff’s theorem affirms that G is compact in terms of product topology and we
henceforth assume h < ✏. Next, let �(p, v, s) := Exp(p, sv), where s 2 (�✏, ✏). From continuous dependence on initial
conditions of ODE, we have �(p, v, s) 2 C1 (see, e.g., Theorem 5.11 in (Petersen, 2006)).

Using Taylor expansion with Lagrange remainder, we can rewrite update rule (13) as

x0
k+1 = x0

k +
@�(x0

k, v
0
k, 0)

@s
h+

1

2

@2�(x0
k, v

0
k, 0)

@s2
h2 +

1

6

@3�(x0
k, v

0
k, ⇠h)

@s3
h3, (14)

where v0k = f(tk, x0
k) and ⇠ 2 [0, 1]. In the meanwhile, update rule (11) can be equivalently written as

xk+1 = xk +
@�(xk, vk, 0)

@s
h+

1

2

@2�(xk, vk, 0)

@s2
h2, (15)

where vk = f(tk, xk). Subtracting (15) from (14), we obtain

ek+1 = ek +

@�(x0

k, v
0
k, 0)

@s
�

@�(xk, vk, 0)

@s

�
h

+
1

2

@2�(x0

k, v
0
k, 0)

@s2
�

@2�(xk, vk, 0)

@s2

�
h2

+
1

6

@3�(x0
k, v

0
k, ⇠h)

@s3
h3.

(16)

Recall that �(p, v, s) is C1 on G, by extreme value theorem we can denote

�1 = sup
(p,v,s)2G

����
@2�(p, v, s)

@p@s

���� , �2 = sup
(p,v,s)2G

����
@2�(p, v, s)

@v@s

����

�3 = sup
(p,v,s)2G

����
@3�(p, v, s)

@p@s2

���� , �4 = sup
(p,v,s)2G

����
@3�(p, v, s)

@v@s2

����

�5 = sup
(p,v,s)2G

����
@3�(p, v, s)

@s3

���� ,

where k·k can be chosen arbitrarily as long as they are compatible (e.g., use operator norms for tensors), since norms in a
finite dimensional space are equivalent to each other.

With upper bounds �1, �2, �3, �4 and �5, Eq. (16) has the estimation via Lagrange mean value theorem,

kek+1k kekk+ h(�1 kekk+ �2 kv
0
k � vkk) +

1

2
h2(�3 kekk+ �4 kv

0
k � vkk) +

1

6
�5h

3

 kekk+ h(�1 kekk+ Lf�2 kekk) +
1

2
h2(�3 kekk+ Lf�4 kekk) +

1

6
�5h

3

✓
1 + �1h+ �2hLf +

1

2
�3h

2 +
1

2
�4Lfh

2

◆
kekk+

1

6
�5h

3

 · · ·

✓
1 + C1h+

1

2
C2h

2

◆k ✓
ke0k+

�5h2

6C1 + 3C2h

◆
�

�5h2

6C1 + 3C2h

⇣
eC1kh+ 1

2C2kh
2

� 1
⌘✓ �5h2

6C1 + 3C2h

◆

⇣
eC1T+ 1

2C2T
2

� 1
⌘✓ �5h2

6C1 + 3C2h

◆

�5

6C1

⇣
eC1T+ 1

2C2T
2

� 1
⌘
h2 = O(h2),

Accelerating Natural Gradient with Higher-Order Invariance

where from the fifth line we substitute C1 for �1 + �2Lf and C2 for �3 + �4Lf , and we used the fact that ke0k = 0 and
the inequality (1 + w)k exp(kw). This means geodesic correction converges to the invariant solution obtained using a
Riemannian Euler method with a 2nd-order rate. Since Riemannian Euler method is itself a first-order algorithm (Bielecki,
2002), geodesic correction also converges to the exact solution in 1st order.

Then, we consider the faster geodesic update rule (12)

x̂µ
k+1 = x̂µ

k +
@�µ(x̂k, v̂k, 0)

@s
h�

1

2
�µ
↵�(x̂k)(x̂

↵
k � x̂↵

k�1)(x̂
�
k � x̂�

k�1)

=x̂µ
k +

@�µ(x̂k, v̂k, 0)

@s
h�

1

2
�µ
↵�(x̂k)

h
@�↵(x̂k�1, v̂k�1, 0)

@s
+

1

2
h2�↵

ab(x̂k�1)f
a(tk�1, x̂k�1)

f b(tk�1, x̂k�1)

�
·

h
@��(x̂k�1, v̂k�1, 0)

@s
+

1

2
h2��

cd(x̂k�1)f
c(tk�1, x̂k�1)f

d(tk�1, x̂k�1)

�

=x̂µ
k +

@�µ(x̂k, v̂k, 0)

@s
h�

1

2
�µ
↵�

@�↵(x̂k�1, v̂k�1, 0)

@s

@��(x̂k�1, v̂k�1, 0)

@s
h2

+ �µ(h, x̂k, x̂k�1, tk�1, v̂k�1)

=x̂µ
k +

@�µ(x̂k, v̂k, 0)

@s
h+

1

2

@2�µ(x̂k�1, v̂k�1, 0)

@s2
h2 + �µ(h, x̂k, x̂k�1, tk�1, v̂k�1), (17)

where the last line utilizes geodesic equation (1) and �µ(h, x̂k, x̂k�1, tk�1, v̂k�1) is

h3 1

2
�µ
↵�(x̂k)�

↵
ab(x̂k�1)f

af b @�
�(x̂k�1, v̂k�1, 0)

@s| {z }
=:�1(x̂k,x̂k�1,v̂k�1,tk�1)

+h4 1

8
�µ
↵�(x̂k)�

↵
ab(x̂k�1)�

�
cd(x̂k�1)f

af bf cfd

| {z }
=:�2(x̂k,x̂k�1,tk�1)

,

where f i = f i(tk�1, x̂k�1), i 2 {a, b, c, d}. Both �1 and �2 are C1 functions on compact sets. As a result, extreme value
theorem states that there exist constants A and B so that sup k�1k = A and sup k�2k = B.

Subtracting (17) from (15) and letting ✓k = xk � x̂k we obtain

✓k+1 = ✓k +

@�(xk, vk, 0)

@s
�

@�(x̂k, v̂k, 0)

@s

�
h

+
1

2

@2�(xk, vk, 0)

@s2
�

@2�(x̂k, v̂k, 0)

@s2

�
h2

+ h3�1(x̂k, x̂k�1, v̂k�1, tk�1) + h4�2(x̂k, x̂k�1, tk�1),

and the error can be bounded by

k✓k+1k k✓kk+ h(�1 k✓kk+ �2 kvk � v̂kk) +
1

2
h2(�3 k✓kk+ �4 kvk � v̂kk) +Ah3 +Bh4

 k✓kk+ h(�1 k✓kk+ Lf�2 k✓kk) +
1

2
h2(�3 k✓kk+ Lf�4 k✓kk) +Ah3 +Bh4

 (1 + C1h+
1

2
C2h

2) k✓kk+Ah3 +Bh4

 · · ·

✓
1 + C1h+

1

2
C2h

2

◆k ✓
k✓0k+

Ah2 +Bh3

C1 +
1
2C2h

◆
�

Ah2 +Bh3

C1 +
1
2C2h

⇣
eC1kh+ 1

2C2kh
2

� 1
⌘ Ah2 +Bh3

C1 +
1
2C2h

⇣
eC1T+ 1

2C2T
2

� 1
⌘ Ah2 +Bh3

C1
= O(h2).

Accelerating Natural Gradient with Higher-Order Invariance

Finally, kêkk kekk + k✓kk = O(h2) as h ! 0. This shows that faster geodesic correction converges to the invariant
solution of Riemannian Euler method with a 2nd-order rate and the exact solution of ODE in 1st order.

B. Derivations of Connections for Different Losses
In this section we show how to derive the formulas of Fisher information matrices and Levi-Civita connections for three
common losses used in our experiments.

B.1. Squared Loss

The squared loss is induced from negative log-likelihood of the probabilistic model

p✓(t | x) =
oY

i=1

N (ti | yi,�
2),

and the log-likelihood is

ln p✓(t | x) = �
1

2�2

oX

i=1

(ti � yi)
2 + const.

According to the definition of Fisher information matrix,

gµ⌫ = Eq(x)[Ep✓(t|x)[@µ ln p✓(t | x)@⌫ ln p✓(t | x)]]

= Eq(x)

2

4Ep✓(t|x)

2

4 1

�4

X

ij

(ti � yi)(tj � yj)@µyi@⌫yj

3

5

3

5

= Eq(x)

2

4 1

�4

X

ij

�ij�
2@µyi@⌫yj

3

5

=
1

�2

oX

i=1

Eq(x) [@µyi@⌫yj] .

To compute the Levi-Civita connection �µ
↵� , we first calculate the following component

Ep✓(t|x)[@⌫ ln p✓(t | x)@↵@� ln p✓(t | x)]

=Ep✓(t|x)

✓
1

�2

oX

i=1

(ti � yi)@⌫yi

◆✓
1

�2

oX

j=1

�@↵yj@�yj + (tj � yj)@↵@�yj

◆�

=
1

�4
Ep✓(t|x)

X

ij

(ti � yi)(tj � yj)@⌫yi@↵@�yj

�

=
1

�4
Ep✓(t|x)

X

ij

�2�ij@⌫yi@↵@�yj

�

=
1

�2

oX

i=1

Ep✓(t|x)

@⌫yi@↵@�yi

�
.

The second component of �µ
↵� we have to consider is

Ep✓(t|x)

1

2
@⌫ ln p✓(t | x)@↵ ln p✓(t | x)@� ln p✓(t | x)

�

=
1

2�6

X

ijk

Ep✓(t|x)[(ti � yi)(tj � yj)(tk � yk)@⌫yi@↵yi@�yi]

=0,

Accelerating Natural Gradient with Higher-Order Invariance

where the last equality uses the property that third moment of a Gaussian distribution is 0.

Combining the above two components, we obtain the Levi-Civita connection

�µ
↵� =

1

�2

oX

i=1

gµ⌫Eq(x)[@⌫yi@↵@�yi].

B.2. Binary Cross-Entropy

The binary cross-entropy loss is induced from negative log-likelihood of the probabilistic model

p✓(t | x) =
oY

i=1

ytii (1� yi)
1�ti ,

and the log-likelihood is

ln p✓(t | x) =
oX

i=1

ti ln yi + (1� ti) ln(1� yi).

According to the definition of Fisher information matrix,

gµ⌫ = Eq(x)[Ep✓(t|x)[@µ ln p✓(t | x)@⌫ ln p✓(t | x)]]

= Eq(x)

2

4Ep✓(t|x)

2

4
X

ij

(ti � yi)(tj � yj)

yiyj(1� yi)(1� yj)
@µyi@⌫yj

3

5

3

5

= Eq(x)

2

4
X

ij

�ij
yi(1� yi)

yiyj(1� yi)(1� yj)
@µyi@⌫yj

3

5

=
oX

i=1

Eq(x)

1

yi(1� yi)
@µyi@⌫yj

�
.

To compute the Levi-Civita connection �µ
↵� , we first calculate the following component

Ep✓(t|x)[@⌫ ln p✓(t | x)@↵@� ln p✓(t | x)]

=Ep✓(t|x)

✓ oX

i=1

ti � yi
yi(1� yi)

@µyi

◆✓ oX

j=1

�
(tj � yj)2

y2j (1� yj)2
@↵yj@�yj +

tj � yj
yj(1� yj)

@↵@�yj

◆�

=Ep✓(t|x)

2

4�
X

ij

(ti � yi)(tj � yj)2

yi(1� yi)y2j (1� yj)2
@µyi@↵yj@�yj +

X

ij

(ti � yi)(tj � yj)

yi(1� yi)yj(1� yj)
@µyi@↵@�yj

3

5

=Ep✓(t|x)

"
�

oX

i=1

(ti � yi)3

y3i (1� yi)3
@µyi@↵yi@�yi +

oX

i=1

(ti � yi)2

y2i (1� yi)2
@µyi@↵@�yi

#

=�
oX

i=1

(1� yi)3yi + (�yi)3(1� yi)

y3i (1� yi)3
@µyi@↵yi@�yi +

oX

i=1

1

yi(1� yi)
@µyi@↵@�yi

=
oX

i=1

2yi � 1

y2i (1� yi)2
@µyi@↵yi@�yi +

oX

i=1

1

yi(1� yi)
@µyi@↵@�yi.

where in the first line we use the equality (tj � yj)2 = (tj � 2tjyj + y2j) which holds given that tj 2 {0, 1}.

Accelerating Natural Gradient with Higher-Order Invariance

The second component of �µ
↵� is

Ep✓(t|x)

1

2
@⌫ ln p✓(t | x)@↵ ln p✓(t | x)@� ln p✓(t | x)

�

=
1

2

X

ijk

Ep✓(t|x)

(ti � yi)(tj � yj)(tk � yk)

yiyjyk(1� yi)(1� yj)(1� yk)
@⌫yi@↵yj@�yk

�

=
1

2

oX

i=1

Ep✓(t|x)

(ti � yi)3

y3i (1� yi)3
@⌫yi@↵yi@�yi

�

=
oX

i=1

1� 2yi
2y2i (1� yi)2

@⌫yi@↵yi@�yi,

Combining the above two components, we obtain the Levi-Civita connection

�µ
↵� = gµ⌫

oX

i=1

Eq(x)

2yi � 1

2y2i (1� yi)2
@⌫yi@↵yi@�yi +

1

yi(1� yi)
@⌫yi@↵@�yi

�
.

B.3. Multi-Class Cross-Entropy

The multi-class cross-entropy loss is induced from negative log-likelihood of the probabilistic model

p✓(t | x) =
oY

i=1

ytii ,

and the log-likelihood is

ln p✓(t | x) =
oX

i=1

ti ln yi.

According to the definition of Fisher information matrix,

gµ⌫ = Eq(x)[Ep✓(t|x)[@µ ln p✓(t | x)@⌫ ln p✓(t | x)]]

= Eq(x)

2

4Ep✓(t|x)

2

4
X

ij

titj
yiyj

@µyi@⌫yj

3

5

3

5

= Eq(x)

"
oX

i=1

Ep✓(t|x)

t2i
y2i

�
@µyi@⌫yi

#

=
oX

i=1

Eq(x)

1

yi
@µyi@⌫yi

�
.

To compute the Levi-Civita connection �µ
↵� , we first calculate the following component

Ep✓(t|x)[@⌫ ln p✓(t | x)@↵@� ln p✓(t | x)]

=Ep✓(t|x)

✓ oX

i=1

ti
yi
@⌫yi

◆✓ oX

j=1

�
tj
y2j

@↵yj@�yj +
tj
yj

@↵@�yj

◆�

=Ep✓(t|x)

 oX

i=1

�
t2i
y3i

@⌫yi@↵yi@�yi +
t2i
y2i

@⌫yi@↵@�yi

�

=
oX

i=1

�
1

y2i
@⌫yi@↵yi@�yi +

1

yi
@⌫yi@↵@�yi.

Accelerating Natural Gradient with Higher-Order Invariance

The second component of �µ
↵� we have to consider is

Ep✓(t|x)

1

2
@⌫ ln p✓(t | x)@↵ ln p✓(t | x)@� ln p✓(t | x)

�

=Ep✓(t|x)

2

4
X

ijk

titjtk
2yiyjyk

@⌫yi@↵yj@�yk

3

5

=Ep✓(t|x)

"
oX

i=1

t3i
2y3i

@⌫yi@↵yi@�yi

#

=
oX

i=1

1

2y2i
@⌫yi@↵yi@�yi.

Combining the above two components, we obtain the Levi-Civita connection

�µ
↵� = gµ⌫

oX

i=1

Eq(x)

1

yi
@⌫yi@↵@�yi �

1

2y2i
@⌫yi@↵yi@�yi

�
.

C. Computing Connection Products via Backpropagation
It is not tractable to compute �µ

↵� for large neural networks. Fortunately, to evaluate (7) we only need to know �µ
↵� �̇

↵�̇� .
For the typical losses in Proposition 2, this expression contains two main terms:

1.
Po

i=1 �i@⌫yi@↵@�yi�̇↵�̇� . Note that @↵@�yi�̇↵�̇� is the directional second derivative of yi along the direction of �̇
(it’s a scalar).

2.
Po

i=1 �i@⌫yi@↵yi@�yi�̇↵�̇� . Note that @↵yi@�yi�̇↵�̇� = (@↵yi�̇↵)2 (recall Einstein’s notation), where @↵yi�̇↵ is the
directional derivative of yi along the direction of �̇.

After obtaining the directional derivatives of yi (scalars µi), both terms have the form of
Po

i=1 �iµi@⌫yi. It can be computed
via backpropagation with loss function L =

Po
i=1 �iµiyi while treating �iµi as constants.

Inspired by the “Pearlmutter trick” for computing Hessian-vector and curvature matrix-vector products (Pearlmutter, 1994;
Schraudolph, 2002), we propose a similar method to compute directional derivatives and connections.

As a first step, we use the following notations. Given an input x and parameters ✓ = (W1, · · · ,Wl, b1, · · · , bl), a feed-
forward neural network computes its output y(x, ✓) = al by the recurrence

si = Wiai�1 + bi (18)
ai = �i(si), (19)

where Wi is the weight matrix, bi is the bias, and �i(·) is the activation function. Here ai, bi and si are all vectors of
appropriate dimensions. The loss function L(t,y) measures the distance between the ground-truth label t of x and the
network output y. For convenience, we also define

D(v) =
dL(t,y)

dv

Rv(g(✓)) = lim
✏!0

1

✏
[g(✓ + ✏v)� g(✓)]

Sv(g(✓)) = lim
✏!0

1

✏2
[g(✓ + 2✏v)� 2g(✓ + ✏v) + g(✓)]

= Rv(Rv(g(✓))),

which represents the gradient of L(t,y), directional derivative of g(✓) and directional second derivative of g(✓) along the
direction of v respectively.

The following observation is crucial for our calculation:

Accelerating Natural Gradient with Higher-Order Invariance

Proposition 3. For any differentiable scalar function g(✓), g1(✓), g2(✓), f(x) and vector v, we have

Rv(g1 + g2) = Rv(g1) +Rv(g2)

Rv(g1g2) = Rv(g1)g2 + g1Rv(g2)

Rv(f(g)) = f 0
Rv(g)

Sv(g1 + g2) = Sv(g1) + Sv(g2)

Sv(g1g2) = Sv(g1)g2 + 2Rv(g1)Rv(g2) + g1Sv(g2)

Sv(f(g)) = f 00
Rv(g)

2 + f 0
Sv(g)

Using those new notations, the directional derivatives @↵@�yi�̇↵�̇� , @↵yi�̇↵ can be written as S�̇(yi) and R�̇(yi). We can
obtain recurrent equations for them by applying Proposition 3 to (18) and (19). The results are

R�̇(si) = R�̇(Wi)ai�1 +WiR�̇(ai�1) +R�̇(bi)

R�̇(ai) = �0(si)�R�̇(si)

S�̇(si) = S�̇(Wi)ai�1 + 2R�̇(Wi)R�̇(ai�1)

+WiS�̇(ai�1) + S�̇(bi)

S�̇(ai) = �00(si)�R�̇(si)
2 + �0(si)� S�̇(si),

which can all be computed during the forward pass, given that R�̇(Wi) = �̇ and S�̇(Wi) = 0. Based on the above recurrent
rules, we summarize our algorithms for those two terms of connections in Alg. 1 and Alg. 2.

Algorithm 1 Calculating
Po

i=1 �i@⌫yi@↵@�yi�̇↵�̇� (term 1)
Require: �̇. Here we abbreviate R�̇ to R and S�̇ to S .

1: a0 x
2: R(a0) 0
3: S(a0) 0

4: for i 1 to l do . forward pass
5: si Wiai�1 + bi
6: ai �i(si)
7: R(si) R(Wi)ai�1 +WiR(ai�1) +R(bi)
8: R(ai) �0(si)�R(si)
9: S(si) S(Wi)ai�1 + 2R(Wi)R(ai�1) +WiS(ai�1) + S(bi)

10: S(ai) �00(si)�R(si)2 + �0(si)� S(si)
11: end for

12: Compute ~� from al
13: D(al) = ~�S(al)

14: for i = l to 1 do . backward pass
15: D(si) D(ai)� �0(si)
16: D(Wi) D(si)a

|
i�1

17: D(bi) D(si)
18: D(ai�1) W |

i D(si)
19: end for

return (D(W1), · · · ,D(Wl),D(b1), · · · ,D(bl)).

D. Practical Considerations
Practically, the Fisher information matrix could be ill-conditioned for inversion. In experiments, we compute [gµ⌫ +
✏ diag(gµ⌫)]�1@⌫L instead of (gµ⌫)�1@⌫L, where ✏ is the damping coefficient and diag(gµ⌫) is the diagonal part of gµ⌫ .

Accelerating Natural Gradient with Higher-Order Invariance

Algorithm 2 Calculating
Po

i=1 �i@⌫yi@↵yi@�yi�̇↵�̇� (term 2)
Require: �̇. Here we abbreviate R�̇ to R.

1: a0 = x
2: R(a0) = 0

3: for i 1 to l do . forward pass
4: si Wiai�1 + bi
5: ai �(si)
6: R(si) R(Wi)ai�1 +WiR(ai�1) +R(bi)
7: R(ai) �0(si)�R(si)
8: end for

9: Compute ~� from al
10: D(al) = ~�R(al)2

11: for i = l to 1 do . backward pass
12: D(si) D(ai)� �0(si)
13: D(Wi) D(si)a

|
i�1

14: D(bi) D(si)
15: D(ai�1) W |

i D(si)
16: end for

return (D(W1), · · · ,D(Wl),D(b1), · · · ,D(bl)).

When gµ⌫ is too large to be inverted accurately, we use truncated conjugate gradient for solving the corresponding linear
system.

Moreover, in line with the pioneering work of Martens (2010), we use backtracking search to adaptively shrink the step size
and adopt a Levenberg-Marquardt style heuristic for adaptively choosing the damping coefficient.

As pointed out in Ollivier (2013), there are also two other sources of invariance loss, initialization and damping. Simple
random initialization obviously depends on the network architecture. Unfortunately, there is no clear way to make
it independent of parameterization. Large damping wipes out small eigenvalue directions and swerves optimization
towards naı̈ve gradient descent, which is not invariant. When the damping coefficient selected according to the Marquardt
heuristic (Marquardt, 1963) is very large, it becomes meaningless to use either midpoint integrator or geodesic correction.
In the experiments of training deep neural networks, we found it beneficial to set a threshold for the damping coefficient and
switch off midpoint integrator or geodesic correction at the early stage of optimization when damping is very large.

E. Additional Details on Experimental Evaluations
E.1. Settings for Deep Neural Network Training

For the deep network experiments, we use the hyper-parameters in Martens (2010) as a reference, the modifications are that
we fix the maximum number of CG iterations to 50 and maximum number of epochs to 140 for all algorithms and datasets.
The initial damping coefficient is 45 across all tasks, and the damping thresholds for CURVES, MNIST and FACES are
set to 5, 10 and 0.1 respectively. As mentioned in Appendix D, we use a threshold on the damping to switch on / off our
corrections. However, in reality our methods will only be switched off for a small number of iterations in the early stage of
training. Note that more careful tuning of these thresholds, e.g., using different thresholds for different acceleration methods,
may lead to better results.

Since both midpoint integrator and geodesic correction are direct modifications of natural gradient method, we incorporate
all the improvements in Martens (2010), including sparse initialization, CG iteration backtracking, etc. For determining the
learning rate h�, we use the default value h� = 1 with standard backtracking search. To highlight the effectiveness of the
algorithmic improvements we introduced, the same set of hyper-parameters and random seed is used across all algorithms

Accelerating Natural Gradient with Higher-Order Invariance

on all datasets.

For deep autoencoders, network structures are the same as in Hinton & Salakhutdinov (2006) and Martens (2010) and we
adopt their training / test partitions and choice of loss functions. For deep classifiers on MNIST, the network structure is
784-1000-500-250-30-10, all with fully connected layers, and as preprocessing, we center and normalize all training and test
data.

Deep autoencoders for CURVES and MNIST datasets are trained with binary cross-entropy losses while FACES is trained
with squared loss. All results are reported in squared losses. Although there is discrepancy between training and test losses,
they align with each other pretty well and thus we followed the setting in (Martens, 2010). According to our observation,
performance is robust to different random seeds and the learning curves measured by errors on training and test datasets are
similar, except that we slightly overfitted FACES dataset.

Our implementation is based on the MATLAB code provided by (Martens, 2010). However, we used MATLAB Parallel
Computing Toolbox for GPU, instead of the Jacket package used in (Martens, 2010), because Jacket is not available anymore.
Computation times are not directly comparable as the Parallel Computing Toolbox is considerably slower than Jacket. The
programs were run on Titan Xp GPUs.

E.2. Settings for Model-Free Reinforcement Learning

We consider common hyperparameter choices for ACKTR as well as our midpoint integrator and geodesic correction
methods, where both the policy network and the value network is represented as a two layer fully-connected neural network
with 64 neurons in each layer. Specifically, we consider our methods (and subsequent changes to the hyperparameters) only on
the policy networks. We select constant learning rates for each environment since it eliminates the effect of the learning rate
schedule in (Wu et al., 2017) over sample efficiency. The learning rates are set so that ACKTR achieves the highest episodic
reward at 1 million timesteps. We select learning rates of 1.0, 0.03, 0.03, 0.03, 0.3, 0.01 for HalfCheetah, Hopper,
Reacher, Walker2d, InvertedPendulum, InvertedDoublePendulum respectively. We set momentum to be
zero for all methods, since we empirically find that this improves sample efficiency for ACKTR with the fixed learning rate
schedule. For example, our ACKTR results for the Walker2d environment is over 1500 for 1 million timesteps, whereas
(Wu et al., 2017) reports no more than 800 for the same number of timesteps (even with the learning rate schedule).

The code is based on OpenAI baselines (Dhariwal et al., 2017) and connection-vector products are computed with
TensorFlow (Abadi et al., 2016) automatic differentiation.

F. Experiments on the Small-Curvature Approximation
Our geodesic correction is inspired by geodesic acceleration (Transtrum et al., 2011), a method to accelerate the Gauss-
Newton algorithm for nonlinear least squares problems. In (Transtrum & Sethna, 2012), geodesic acceleration is derived
from a high-order approximation to Hessian under the so-called small-curvature assumption. In this section, we demonstrate
empirically that the small-curvature approximation generally does not hold for deep neural networks. To this end, we need
to generalize the method in (Transtrum & Sethna, 2012) (which is only applicable to square loss) to general losses.

F.1. Derivation Based on Perturbation

It can be shown that Fisher information matrix is equivalent to the Gauss-Newton matrix when the loss function is
appropriately chosen. Let’s analyze the acceleration terms from this perspective.

Let the loss function be L(y, f) and zi(x; ✓), i = 1, · · · , o be the top layer values of the neural network. To show the
equivalence of Gauss-Newton matrix and Fisher information matrix, we usually require L to also include the final layer
activation (non-linearity) applied on z (Pascanu & Bengio, 2013; Martens, 2014). Hence different from y, z is usually the
value before final layer activation function. To obtain the conventional Gauss-Newton update, we analyze the following
problem:

min
�✓

X

(x,y)2S

L(y, z + @jz�✓
j) + Fij�✓

i�✓j ,

where S is the training dataset and F is a metric measuring the distance between two models with parameter difference �✓.

Accelerating Natural Gradient with Higher-Order Invariance

Note that without loss of generality, we omit
P

(x,y)2S in the sequel.

By approximating L(y, ·) with a second-order Taylor expansion, we obtain

L(y, z) + @kL(y, z)@jz
k�✓j +

1

2
@m@nL(y, z)@iz

m@jz
n�✓i�✓j + Fij�✓

i�✓j .

The normal equations obtained by setting derivatives to 0 are

(@m@nL@iz
m@jz

n + 2Fij) �✓
j = �@kL(y, z)@iz

k,

which exactly gives the natural gradient update

�✓j1 = � (@m@nL@iz
m@jz

n + �Fij)
�1 @kL(y, z)@iz

k.

where we fold 2 to �. Hence natural gradient is an approximation to the Hessian with linearized model output z + @jz�✓j .

Now let us correct the error of linearizing z using higher order terms, i.e.,

L

✓
y, z + @jz�✓

j +
1

2
@j@lz�✓

j�✓l
◆
+ �Fij�✓

i�✓j .

Expanding L(y, ·) to second-order gives us

L(y, z) + @kL(y, z)

✓
@jz

k�✓j +
1

2
@j@lz

k�✓j�✓l
◆
+

1

2
@m@nL(y, z)

✓
@jz

m�✓j +
1

2
@j@lz

m�✓j�✓l
◆✓

@kz
n�✓k +

1

2
@k@pz

n�✓k�✓p
◆
+ �Fij�✓

i�✓j .

The normal equations are

@kL(y, z)@µz
k + (@kL(y, z)@µ@jz

k + @m@nL(y, z)@µz
m@jz

n + �Fµj)�✓
j+

✓
@m@nL(y, z)@µ@jz

m@kz
n +

1

2
@m@nL(y, z)@j@kz

m@µz
n

◆
�✓j�✓k = 0.

Let �✓ = �✓1 + �✓2 and assume �✓2 to be small. Dropping in �✓1 will turn the normal equation to

(@kL(y, z)@i@jz
k + @m@nL(y, z)@iz

m@jz
n + �Fij)�✓

j
2 + @kL(y, z)@i@jz

k�✓j1+✓
@m@nL(y, z)@µ@jz

m@kz
n +

1

2
@m@nL(y, z)@j@kz

m@µz
n

◆
�✓j1�✓

k
1 = 0.

The approximation for generalized Gauss-Newton matrix is @kL(y, z)@i@jzk = 0. After applying it to �✓2, we have

�✓µ2 = �(@m@nL(y, z)@iz
m@jz

n + �Fij)
�1

✓
@m@nL(y, z)@µ@jz

m@kz
n +

1

2
@m@nL(y, z)@j@kz

m@µz
n

◆
�✓j1�✓

k
1 + @kL(y, z)@µ@jz

k�✓j1

�
. (20)

If we combine @kL(y, z)@µ@jzk�✓
j
1 and [@m@nL(y, z)@µ@jzm@kzn]�✓

j
1�✓

k
1 and use the following small-curvature approx-

imation (Transtrum & Sethna, 2012)

@lL[�ml � (@↵@�L@if
↵@kf

�)�1@if
l@m@nL@kz

n]@µ@jz
m = 0,

we will obtain an expression of �✓2 which is closely related to the geodesic correction term.

�✓µ2 = �
1

2
(@m@nL(y, z)@iz

m@jz
n + �Fij)

�1 (@m@nL(y, z)@j@kz
m@µz

n) �✓j1�✓
k
1 . (21)

Accelerating Natural Gradient with Higher-Order Invariance

The final update rule is

�✓ = �✓1 + �✓2.

Whenever the loss function satisfies L(y, z) = � log r(y | z) = �z|T (y) + logZ(z) we have F✓ =P
(x,y)2S @m@nL(y, z)@i@jzmzn, i.e., Gauss-Newton method coincides with natural gradient and the Fisher informa-

tion matrix is the Gauss-Newton matrix.

Here are the formulas for squared loss and binary cross-entropy loss, where we follow the notation in the main text and
denote y as the final network output after activation.

Proposition 4. For linear activation function and squared loss, we have the following formulas

@m@nL(t, f)@µ@jz
m@kz

n�✓j1�✓
k
1 =

1

�2
@µ@jy

m@ky
m�✓j1�✓

k
1

1

2
@m@nL(t, f)@j@kz

m@µz
n�✓j1�✓

k
1 =

1

2�2
@j@ky

m@µy
m�✓j1�✓

k
1

@kL(t, f)@µ@jz
k�✓j1 =

1

�2
(yk � tk)@µ@jy

k�✓j1.

In this case, (21) is equivalent to �
1
2�

µ
jk�✓

j
1�✓

k
1 , which is our geodesic correction term for squared loss.

Proposition 5. For sigmoid activation function and binary cross-entropy loss, we have the following terms

yi := sigmoid(z) :=
1

1 + e�zi

@m@nL(t, f) = �mnym(1� ym)

@m@nL(t, f)@µ@jz
m@kz

n�✓j1�✓
k
1 =

1

ym(1� ym)
@µ@jym@kym+

2ym � 1

y2m(1� ym)2
@µym@jym@kym

�
�✓j1�✓

k
1

1

2
@m@nL(t, f)@j@kz

m@µz
n�✓j1�✓

k
1 =

1

2

1

ym(1� ym)
@j@kym@µym

+
2ym � 1

y2m(1� ym)2
@jym@kym@µym

�
�✓j1�✓

k
1

@kL(t, f)@µ@jz
k�✓j1 =

1

yk(1� yk)
@µ@jyk +

2yk � 1

y2k(1� yk)2
@µyk@jyk

�
(yk � tk)�✓

j
1

In this case, (21) will give a similar result as geodesic correction, which is �
1
2�

(1)µ
jk �✓j1�✓

k
1 . The only difference is using

1-connection �(1)µ
jk (Amari et al., 1987) instead of Levi-Civita connection �µ

jk.

We also need an additional algorithm to calculate �i@⌫@↵yi@�yi✓̇↵✓̇� , as provided by Alg. 3.

F.2. Empirical Results

If the small curvature approximation holds, (20) should perform similarly as (21). The power of geodesic correction can
thus be viewed as a higher-order approximation to the Hessian than natural gradient / Gauss-Newton and the interpretation
of preserving higher-order invariance would be doubtful.

In order to verify the small curvature approximation, we use both (20) (named “perturb”) and (21) (named “geodesic”)
for correcting the natural gradient update. The difference between their performance shows how well small curvature
approximation holds. Using the same settings in main text, we obtain the results on CURVES, MNIST and FACES.

As shown in Figure 5, (20) never works well except for the beginning. This is anticipated since Newton’s method is
susceptible to negative curvature and will blow up at saddle points (Dauphin et al., 2014). Therefore the direction of
approximating Newton’s method more accurately is not reasonable. The close match of (20) and (21) indicates that the

Accelerating Natural Gradient with Higher-Order Invariance

Algorithm 3 An algorithm for computing �i@⌫@↵yi@�yi✓̇↵✓̇� (term 3)

Require: ✓̇. We abbreviate R✓̇ to R.

1: R(a0) 0 . Since a0 is not a function of the parameters

2: for i 1 to l do . forward pass
3: R(si) R(Wi)ai�1 +WiR(ai�1) +R(bi) . product rule
4: R(ai) R(si)�0

i(si) . chain rule
5: end for

. By here we have computed all @�yi✓̇�

6: Compute ~� from al
7: Let L =

Po
i=1 �iR(ail)yi

8: R(D(al)) R

@L
@y

����
y=al

!
= @2L

@y2

����
y=al

R(al) = 0

9: Dal
@L
@y

����
y=al

= (�1(Ra1l), · · · ,�o(Raol))

10: for i l to 1 do
11: D(si) D(ai)� �0

i(si)
12: D(Wi) D(si)a

|
i�1

13: D(bi) D(si)
14: D(ai�1) W |

i D(si)
15: R(D(si)) R(D(ai))� �0

i(si) +D(ai)�R(�0
i(si)) = R(D(ai))� �0

i(si) +D(ai)� �00
i (si)�R(si)

16: R(D(Wi)) R(D(si))a
|
i�1 +D(si)R(a|i�1)

17: R(D(bi)) R(D(si))
18: R(D(ai�1)) R(W |

i)D(si) +W |
i R(D(si))

19: end for
return �i@⌫@↵yi@�yi✓̇↵✓̇� = (R(D(Wi)), · · · ,R(D(Wl)),R(D(b1)), · · · ,R(D(bl)))

Figure 5. Study of small curvature approximation on different datasets.

Accelerating Natural Gradient with Higher-Order Invariance

small curvature assumption indeed holds temporarily, and Newton’s method is very close to natural gradient at the beginning.
However, the latter divergence of (20) demonstrates that the effectiveness of geodesic correction does not come from
approximating Newton’s method to a higher order.

