
Supplementary Material for
“Knowledge Transfer with Jacobian Matching”

Suraj Srinivas 1 François Fleuret 1

1. Proof for Proposition 1
Proposition. Consider the squared error cost function for
matching soft targets of two neural networks with k-length
targets (∈ Rk), given by `(T (x),S(x)) =

∑k
i=1(T i(x)−

Si(x))2, where x ∈ RD is an input data point. Let ξ (∈
RD) = σ z be a scaled version of a unit normal random
variable z ∈ RD with scaling factor σ ∈ R. Then the
following is locally true.

Eξ

[
k∑

i=1

(
T i(x+ ξ)− Si(x+ ξ)

)2]

=

k∑
i=1

(
T i(x)− Si(x)

)2
+ σ2

k∑
i=1

‖∇xT i(x)−∇xSi(x)‖22

+O(σ4)

Proof. There exists σ and ξ small enough that first-order
Taylor series expansion holds true

Eξ

[
k∑

i=1

(
T i(x+ ξ)− Si(x+ ξ)

)2]

= Eξ

[
k∑

i=1

(
T i(x) + ξT∇xT i(x)− Si(x)− ξT∇xSi(x)

)2]
+O(σ4)

=

k∑
i=1

(
T i(x)− Si(x)

)2
+Eξ

[
k∑

i=1

[
ξT
(
∇xT i(x)−∇xSi(x)

)]2]
+O(σ4) (1)

To get equation 1, we use the fact that mean of ξ is zero. To

1Idiap Research Institute & EPFL, Switzerland. Correspon-
dence to: Suraj Srinivas <suraj.srinivas@idiap.ch>.

Proceedings of the 35 th International Conference on Machine
Learning, Stockholm, Sweden, PMLR 80, 2018. Copyright 2018
by the author(s).

complete the proof, we use the diagonal assumption on the
covariance matrix of ξ.

Proofs of other statements are similar. For proof for cross-
entropy loss of Proposition 2, use a second order Taylor
series expansion of log(·) in the first step.

2. Proof for Proposition 3
Proposition. From the notations in the main text, we have

1

|Dl|
∑
x∼Dl

`(f(x), g(x)) ≤ max
x∼Ds

`(f(x), g(x))

+ KHa(Dl,Ds)

Proof. Let us denote ρ(x) = `(f(x), g(x)) for conve-
nience. Assume Lipschitz continuity for ρ(x) with Lip-
schitz constant K, and distance metric ψx(·, ·) in the input
space -

‖ρ(x1)− ρ(x2)‖1 ≤ Kψx(x1,x2)

=⇒ ρ(x1) ≤ ρ(x2) + Kψx(x1,x2)

Assuming that ρ(x1) ≥ ρ(x2). Note that it holds even
otherwise, but is trivial.

Now, for every datapoint xl ∈ Dl, there exists a point
xs ∈ Ds such that ψx(xs,xl) is the smallest among all
points in Ds. In other words, we look at the point in Ds

closest to each point xl. Note that in this process only a
subset of points ds ⊆ Ds are chosen, and individual points
can be chosen multiple times. For these points, we can write

ρ(xl) ≤ ρ(xs) + Kψx(xs,xl)

=⇒ 1

|Dl|
∑

xl∼Dl

ρ(xl) ≤
1

|Dl|
∑

xs closest to xl

ρ(xs)

+
1

|Dl|
∑

xs closest to xl

Kψx(xs,xl)

Knowledge Transfer with Jacobian Matching

We see that 1
|Dl|

∑
xs
ρ(xs) ≤ maxx∼ds

ρ(x) ≤
maxx∼Ds ρ(x), which is a consequence of the fact that the
max is greater than any convex combination of elements.

Also, we have ψx(xl,xs) ≤ Ha(Dl,Ds), which is the max-
imum distance between any two ‘closest’ points from Dl to
Ds (by definition).

Applying these bounds, we have the final result.

2.1. Proof for Corollary

Corollary. For any superset D′s ⊇ Ds of the target dataset,
Ha(Dl,D′s) ≤ Ha(Dl,Ds)

Proof. From the previous proof, we have ρ(xl) ≤ ρ(xs) +
Kψx(xs,xl) for an individual point xl. Now if we have
D′s ⊇ Ds, then we have ρ(xl) ≤ ρ(x′s) + Kψx(x

′
s,xl),

where x′s is the new point closest to xl. It is clear that
ψx(x

′
s,xl) ≤ ψx(xs,xl) for all xl. Hence it follows that

Ha(Dl,D′s) ≤ Ha(Dl,Ds).

3. Justification for Jacobian loss
We use the following loss term for Jacobian matching for
transfer learning.

Match Jacobians =

∣∣∣∣∣∣∣∣ ∇xf(x)

‖∇xf(x)‖2
− ∇xg(x)

‖∇xg(x)‖2

∣∣∣∣∣∣∣∣2
2
(2)

We can show that the above loss term corresponds to
adding a noise term ξf ∝ ‖∇xf(x)‖−12 for f(x) and
ξg ∝ ‖∇xg(x)‖−12 for g(x) for the distillation loss.
From the first order Taylor series expansion, we see that
g(x + ξ) = g(x) + ξg∇xg(x). Thus for networks f(·)
and g(·) with different Jacobian magnitudes, we expect dif-
ferent responses for the same noisy inputs. Specifically,
we see that Eξg

‖g(x + ξg) − g(x)‖22 = σ2
g‖∇xg(x)‖22 =

σ2 ‖∇xg(x)‖22
‖∇xg(x)‖22

= σ2 for a gaussian model with covariance
matrix being σ times the identity.

4. Experimental details
4.1. VGG Network Architectures

The architecture for our networks follow the VGG design
philosophy. Specifically, we have blocks with the following
elements:

• 3× 3 conv kernels with c channels of stride 1

• Batch Normalization

• ReLU

Whenever we use Max-pooling (M), we use stride 2 and
window size 2.

The architecture for VGG-9 is - [64 −M − 128 −M −
256 − 256 − M − 512 − 512 − M − 512 − 512 − M].
Here, the number stands for the number of convolution
channels, and M represents max-pooling. At the end of
all the convolutional and max-pooling layers, we have a
Global Average Pooling (GAP) layer, after which we have a
fully connected layer leading up to the final classes. Similar
architecture is used for the case of both CIFAR and MIT
Scene experiments.

The architecture for VGG-4 is - [64 −M − 128 −M −
512−M].

4.2. Loss function

The loss function for distillation experiments use the follow-
ing form.

`(S, T) = α×(CE)+β×(Match Activations)+γ×(Match Jacobians)

In our experiments, α, β, γ are either set to 1 or 0. In other
words, all regularization constants are 1.

Here, ‘CE’ refers to cross-entropy with ground truth la-
bels. ‘Match Activations’ refers to squared error term over
pre-softmax activations of the form (ys − yt)

2. ‘Match
Jacobians’ refers to the same squared error term, but for
Jacobians.

For the MIT Scene experiments, α, β, γ are either set to 10
or 0, depending on the specific method. To compute the
Jacobian, we use average pooling over a feature size/5
window with a stride of 1. We match the Jacobian after
the first residual block for resnet, and after the second max-
pool for VGG. This corresponds to feature level “1” in the
ablation experiments.

4.3. Optimization

For CIFAR100 experiments, we run optimization for 500
epochs. We use the Adam optimizer, with an initial learning
rate of 1e−3, and a single learning rate annealing (to 1e−4)
at 400 epochs. We used a batch size of 128.

For MIT Scenes, we used SGD with momentum of 0.9,
for 75 epochs. The initial learning rate is 1e− 3, and it is
reduced 10 times after 40 and 60 epochs. We used batch
size 8. This is because the Jacobian computation is very
memory intensive.

