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1. Proof of Lemma 1
Lemma 1. Objective function (#3)1 is equivalent to the
trace maximization problem

max tr(FTZTZF). (1)

Proof. It turns out that the k-th column of ZFFT is exactly
mj (i.e., the mean of the j-th stage of class c) that the k-
th column zk of Z is aligned to. Therefore, the objective
function (#3) can also be written as

min
∥∥Z− ZFFT

∥∥2
F

⇔ min tr(ZTZ)− tr(FTZTZF)
⇔ max tr(FTZTZF)

.

2. Proof of Lemma 2
Lemma 2. Objective function (#7) is equivalent to the
trace maximization problem

max tr(FTZTW(WTZZTW)−1WTZF). (2)

Proof. If the data has zero-centered,
Nt∑
i=1

zi/Nt = 0, (oth-

erwise we can remove the overall mean of all the vectors in
all the training sequences), then St and Sb can be reformu-
lated as

St = ZZT ,
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Since Sb + Sw = St, the objective (#7) is equivalent to

max tr((WTSwW)−1WTSbW)
⇔ max tr((WTStW)−1WTSbW)

, (3)

which can further be reformulated as

tr((WTStW)−1WTSbW)
= tr((WTZZTW)−1WTZFFTZTW)
= tr(FTZTW(WTZZTW)−1WTZF)

.

3. Proof of Theorem 1
Theorem 1. The LT-LDA algorithm (Alg. 2) is guaranteed
the converge.

Proof. In the first stage, LT-LDA optimizes over P by fix-
ing W using Alg. 1. According to Lemma 1, this actual-
ly learns the abstract template from the whitened and pro-
jected feature sequences by optimizing max tr(FT ẐT ẐF).

Ẑ = Γ
− 1

2
w WTZ is the whitened and projected data matrix,

and Γw = WTZZTW is the total scatter of the projected
data. Thus we have

tr(FT ẐT ẐF)
= tr(FTZTW(WTZZTW)−1WTZF)

,

which is exactly the objective Eq. (2).

In the second stage, LT-LDA optimizes over W for given
P. According to Lemma 2, this also optimizes Eq. (2).

Both iterative stages decrease the objective value of Eq. (2)
monotonically. Since F is an orthogonal matrix, the objec-
tive (2) is bounded from above. This guarantees the conver-
gence of Alg. 2.

4. Proof of Theorem 2
Theorem 2. Let G = ZTZ be the Gram matrix. When
the dimensionality is reduced to a specific value d′ =
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min(CL, d,Nt) and a regularization term δINt is added
to the total scatter St, where INt is the Nt-order identity
matrix, if W∗ and F∗ are the optimal solutions of the trace
maximization problem (2):

max
W,F

tr(FTZTW(WT (ZZT + δINt)W)−1WTZF)

(4)

then F∗ is also the optimal solution of the problem

max
F

tr(FT (INt − (INt +
1

δ
G)−1)F) (5)

Proof. We follow the proof in (Ye et al., 2007). Accord-
ing to the representer theorem (Schölkopf & Smola, 2002),
the optimal projection matrix W has the form W = ZA,
where A is a coefficient matrix. The objective (4) is trans-
formed to

tr(FTZTZA(ATZT (ZZT + δINt)ZA)−1ATZTZF)
= tr(FTGA(AT (GG+ δG)A)−1ATGF)
= tr(ATGFFTGA(AT (GG+ δG)A)−1)

(6)

By defining Γb = GFFTG and Γw = GG + δG, we
can find that Eq. (6) has a similar form with the gener-
alized LDA problem (Ye, 2005), which can be solved by
constructing a matrix Q that simultaneously diagonalizes
Γb and Γw. Q is constructed as follows.

G is symmetric and positive semi-definite. If the d-
dimensional features are not linearly dependent (otherwise
we can remove the linearly correlated dimensions), the rank
is of G is r = min(d,Nt). The SVD of G has the form

G = UΣUT = UrΣrU
T
r ,

where U is an orthogonal and square matrix, Σ =
diag(λ1, · · · , λr, 0, · · · , 0), Ur is consist of the first r
columns of U, and Σr = diag(λ1, · · · , λr) contains on-
ly the non-zero singular values.

Define V = (Σ2
r + δΣr)

− 1
2ΣrU

T
r F. The SVD of V is de-

noted as V = MΣV N
T , where M and N are orthogonal

matrices, ΣV is a diagonal matrix of d′-th order, and d′ is
the rank of V. d′ = min(rank(Sb), r) = min(CL, d,Nt).
By constructing Q as

Q = Udiag((Σ2
r + δΣr)

− 1
2M, INt−r),

Γb and Γw are simultaneously diagonalized by Q.

QTΓbQ = diag(Σ2
V ,0Nt−r),

QTΓwQ = diag(Ir,0Nt−r).
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Figure 1. Different performances with the rank pooling and the
SVM classifier as functions of (a) the length of the abstract tem-
plate L and (b) the control factor a on the Chalearn Gesture
dataset.

From Theorem 3.1 in (Ye, 2005), the solution of maximiz-
ing the objective (6) over A is given by A∗ consisting of
the first d′ columns of Q, and the maximum of the objec-
tive (6) equals tr((GG+ δG)†(GFFTG)). Therefore,

tr((AT (GG+ δG)A)−1ATGFFTGA)
≤ tr((GG+ δG)†(GFFTG))
= tr(FTG(GG+ δG)†GF)
= tr(FT (INt − (INt +

1
δG)−1)F)

The equality holds when A = A∗, where the dimensional-
ity is implicitly reduced to d′.

5. Experimental Setup on Another Dataset
“Spoken Arabic Digits (SAD)” dataset from the U-
CI Machine Learning Repository (Bache & Lichman,
2013). This dataset consists of 8,800 vector sequences
from ten classes. The vectors in sequences are 13 mel-
frequency cepstrum coefficients (MFCCs) corresponding
to spoken Arabic digits. The ten spoken Arabic digits were
repeated ten times by 44 males and 44 females Arabic na-
tive speakers and hence there are 880 sequence samples per
digit class. The length of sequences varies from 4 to 93
frames. The dataset has already been split into training and
test sets, where 660 samples from each class are used for
training and the remaining 220 sequences are used for test-
ing.

For the SAD dataset, each spoken digit has also been repre-
sented by a sequence of 13-dimensional frame-wide MFCC
features.

6. Influence of Parameters
In this section we evaluate the influence of the parameters
on the ChaLearn gesture dataset. Similar to the MSR Ac-
tion3D dataset, different performance measures including
accuracy, MAP, and F-score with the rank pooling and the
SVM classifier are evaluated by increasing L from 3 to 21
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Figure 2. Comparisons of the proposed LT-LDA without and with
the joint learning of the latent alignments. (a) Accuracies with the
DTW classifier and (b) MAPs with the rank pooling and the SVM
classifier as functions of the dimensionality of the subspace on the
Chalearn Gesture dataset.
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Figure 4. Comparisons of the proposed LT-LDA without and with
the joint learning of the latent alignments. (a) Accuracies and (b)
MAPs with the rank pooling and the SVM classifier as function-
s of the dimensionality of the subspace on the Olympic Sports
dataset.

with an interval of 3 while fixing a to 2, and increasing a
from 1 to 5 with an interval of 0.5 while fixing L to 8, re-
spectively. The results on the dataset are shown in Fig. 1,
where the reduced dimensionality is fixed to 45.

The optimal parameters are generally the same for multi-
class indicators including accuracy, precision, recall and
F-score, but are different for MAP. On the ChaLearn
dataset, LT-LDA is insensitive to L for multi-class indica-
tors. When L = 12, LT-LDA achieves the highest MAP.
ATs with more stages help to discriminate the subtle differ-
ences among fine gesture actions in this dataset. LT-LDA
is also not very sensitive to a on this dataset. It seems that
allowing larger warping leads to better results because the
subtle differences can be captured more easily by more flex-
ible alignments.

7. Effects of the Joint Learning of the
Subspace and the Latent Alignments

In this section we compare LT-LDA and ini-LT-LDA on
more datasets. On both the ChaLearn dataset and the MSR
Action3D dataset, the frame-wide features are based on the
relative 3D joint positions, and we only show the compari-

son results on the Chalearn dataset in Fig. 2. We can find
that the optimal results of LT-LDA among all dimension-
s with both the DTW classifer and the SVM classifer are
better than those of the ini-LT-LDA.algothithm, but the im-
provements are quite small. The parameter C of the SVMs
is fixed to 100 here, and tuning C by cross validation can
further improve the performances of LT-LDA as shown in
Fig.4 of the main text.

Fig. 3 shows the comparisons on the SAD dataset by differ-
ent classifiers. The improvements of LT-LDA over ini-LT-
LDA are still limited on accuracies by the HMM classifer
and the DTW classifer, but are more significant on MAPs
and multi-class recalls by the SVM classifier. This is be-
cause LT-LDA optimizes the overall separability between
sequence classes, and hence sequences from different class-
es get better separated en bloc. However, as to a specific
text sequence, it may be distributed on the boundary of a
nearby class and confuse the classifier.

The comparisons of the two algorithms by the SVM classi-
fier on the large scale Olympic Sports dataset are shown in
Fig. 4. We can find LT-LDA significantly outperforms ini-
LT-LDA by a much larger margin than the Kinect based
datasets. This is because the depth information and the
locations of human joints are available for the ChaLearn
dataset. Thus the alignments in the original space are ac-
curate and should be preserved in the optimal subspace.
After the refinement of LT-LDA, the alignments remain n-
early unchanged and the performance changes are small.
On the Olympic dataset, only the raw videos with complex
backgrounds are available. The initial alignments are quite
noisy, and refining them by LTLDA improves the perfor-
mances significantly.

In summary, in nearly all cases, the best results among
all these dimensions of LT-LDA outperform those of ini-
LT-LDA. Jointly learning the latent alignments associated
with the subspace does help to improve the classification
performance in the subspace. This is because the temporal
structures and the alignments may change from those in the
original space. In the learned subspace of ini-LT-LDA, al-
though different classes get better separated under the align-
ments in the original space, additional confusions may be
introduced due to the change of alignments. While for LT-
LDA, since the separability is maximized in the subspace
under the corresponding alignments, the learned subspace
gets joint optimality among all possible subspaces.

We can also observe that on some datasets with some clas-
sifiers, the performances of LT-LDA are lower that those
of ini-LT-LDA in some dimensions. This is because the
aligned paths of each class are learned without discriminat-
ing other classes, and the objective of LT-LDA is not di-
rectly related to a classification performance measure. For
some dimensions, although our joint learning leads to bet-
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Figure 3. Comparisons of the proposed LT-LDA without and with the joint learning of the latent alignments. (a) Accuracies with the
HMM classifier (b) Accuracies with the DTW classifier (c) MAPs with the rank pooling and the SVM classifier and (b) Multi-class
average recalls with the rank pooling and the SVM classifier as functions of the dimensionality of the subspace on the SAD dataset.
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Figure 5. (a) Accuracies with the HMM classifier (b) accuracies with the DTW classifier and (c) MAPs with the rank pooling and the
SVM classifier as functions of the dimensionality of the subspace on the SAD dataset.

ter separation of temporal structures, it may interfere the
classifier, as the discrimination of the classifier may not
necessarily accord to such separation but rather to other
aspects of some local or global properties of sequences.
Thus updating the paths may cause some fluctuates in ac-
curacy. However, it generally leads to more discriminative
subspace, because the entire sequences are more likely to
get better separation if the temporal structures are better
separated.

8. Comparison with Different Dimensionality
Reduction Methods

In this section we compare LT-LDA with other dimen-
sionality reduction methods on the two additional dataset-
s. Fig. 5 depicts the performances by the three classifiers
as functions of the dimensionality of the learned subspace
on the SAD dataset, respectively. We can observe that the
proposed LT-LDA achieves the best performances among
all these dimensionality reduction methods by all the three
classifiers with different evaluation measures on nearly al-
l the datasets. On the SAD dataset, by the HMM classi-
fier and the SVM classifier, LSDA performs comparative-
ly with LT-LDA. This is because sufficient training sam-
ples are available on this dataset, and the dimensionality
of frame-wise features is low. Therefore, LSDA can also
reliably train HMMs to obtain sequence statistics.
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