
Supplementary Material of
Neural Program Synthesis from Diverse Demonstration Videos

Shao-Hua Sun * 1 Hyeonwoo Noh * 2 Sriram Somasundaram 1 Joseph J. Lim 1

A. Detailed Network Architectures

The details descriptions of our proposed architecture
are as follows. To alleviate the difficulty of repro-
ducing our results, we make the code available at
https://github.com/shaohua0116/demo2program/.

A.1. DEMONSTRATION ENCODER

The demonstration encoder consists of a stack of convo-
lutional layers and an LSTM. The stack of convolutional
layers consists of three layers for Karel environment, which
can be represented as: C{3,2,16} → C{3,2,32} → C{3,2,48},
where Ck,s,n denotes a convolutional layer with a kernel
size k, stride s, and a number of channel n. For ViZDoom,
to handle input frames with increased visual complexity, we
stack two more convolutional layers C{3,2,48} afterwards.
All the convolutional layers have LeakyReLu (Maas et al.,
2013) as a non-linear activation, followed by a batch nor-
malization layer (Ioffe & Szegedy, 2015). Then, the feature
maps are flatten and passed to an LSTM. We experiment
with RNN, GRU, and LSTM and found that LSTM works
the best. A single layer LSTM with 512 hidden dimensions
is used for all the experiments.

A.2. SUMMARIZER MODULE

For the relation network of the summarizer module, we em-
ploy two fully-connected layers with 512 hidden dimensions
as a function gθ(v

i
demo, v

j
demo), and LeakyReLu is used as a

non-linear activation. For the first summarization, we exper-
iment with RNN, GRU, and LSTM for summarizer module
and found that LSTM works the best. A single layer LSTM
with 512 hidden dimensions is used for the experiment.
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A.3. PROGRAM DECODER

To build a token embedding function that is used for pro-
ducing embedding vectors of program tokens, we create an
embedding lookup with a hidden size of 128. An LSTM
with a hidden size of 512 is utilized to decode program
tokens. We experiment decoding program tokens while at-
tending to all demonstrations or encoding the demonstration
vector with attention mechanisms proposed in (Luong et al.,
2015; Xu et al., 2015), but they do not show improvement.
We believe it is partially because our summarizer module
learns how to effectively summarize all demonstrations as a
single compact vector.

B. Training Details

We implement the proposed model and its submodules in
TensorFlow (Abadi et al., 2016) and trained it using a fixed
learning rate of 10−3 with Adam optimizer (Kingma & Ba,
2015). The batch size that is used for training models is 128
for the Karel environment and 32 for ViZDoom.

C. Program Induction Baseline

To evaluate the effectiveness of explicitly modeling underly-
ing programs, we implement a program induction baseline
based on the One-shot imitation learning model proposed
in (Duan et al., 2017). Since the model proposed in the
original paper is not able to:

1. Incorporate multiple seen specification demonstration
sequences

2. Handle a varying-length number of demonstrations

3. Deal with visual input

We make modifications as follows:

1. Augment the demonstration encoder with a stack of
convolutional layers to process visual input

2. Remove temporal dropout, temporal convolution, and
neighborhood attention

3. Add an LSTM with an attention mechanism (Luong
et al., 2015). We also experimented with the mono-
tonic attention mechanism (Raffel et al., 2017) and
empirically found (Luong et al., 2015) works better.
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4. Replace the context network with an average pooling
layer to handle a varying-length number of demonstra-
tions

5. Change the manipulation network to an LSTM decoder,
which optimizes the predictions of one-hot action vec-
tors at each time step

To make sure this baseline is well-trained, we extensively
searched proper network architectures as well as ran a hy-
perparameter sweep on learning rate, learning rate schedule,
etc., to select the induction baseline model that performs
the best on each environment.

D. Program Accuracy

The program accuracy requires comparison of the synthe-
sized program and the ground truth program in the program
space, which is too huge to enumerate and make compar-
isons. An alternative to the program space is to make com-
parisons in the code space while identifying all program
aliases to check whether a ground truth code is an alias of
the synthesized code. However, this approach is intractable
as well because the enumeration of all aliased programs
itself is an intractable problem in general.

While intractable in general, the program accuracy is com-
putable when the DSL is relative simple and some assump-
tion is made, because the identification of all aliased pro-
grams become possible. For example, we assume the maxi-
mum iteration of the while statement, which could be altered
to a finite number of repetitive if statements. We exploit the
syntax and relation of the perception and action; for exam-
ple, “if markersPresent” has “if not noMarkersPresent” as
an aliased program. Based on these assumptions, we design
enumeration rules to identify all program aliases and make
comparisons.

E. Dataset Details

Both Karel and Vizdoom environment share the same con-
trol flow which is defined as follows:

Program m := def run() : s
Statement s := while(b) : (s) | s1; s2 | a | repeat(r) : (s)

| if(b) : (s) | ifelse(b) : (s1) else : (s2)

Repetition r := Number of repetitions
Condition b := percept | not b

Perception p := Domain dependent perception primitives
Action a := Domain dependent action primitives

Here, the only difference in the control flow is the number
of repetitions used for the repeat statement, where the Karel
environment uses the repetition in the range of [0, 19] and
the ViZDoom environment uses the repetition in the range
of [2, 4].

E.1. KAREL

We use 5 action primitives and 5 perception primitives for
Karel, which is formally defined as follows:

action := move | turnRight | turnLeft | pickMarker
| putMarker

perception := frontIsClear | leftIsClear | rightIsClear
| markersPresent | noMarkersPresent

For Karel environment, we use 8× 8× 16 state representa-
tion, where each channel of the state representation has its
own meaning.

0 : agent facing north | 1 : agent facing south‖
2 : agent facing west | 3 : agent facing east |
4 : wall or empty | 5 ∼ 15 : 0 ∼ 10markers

E.2. VIZDOOM

ViZDoom model contains 7 action primitives and 6 percep-
tion primitives, which is formally defined as follows:

action := moveBackward | moveForward | moveLeft
| moveRight | turnLeft | turnRight |attack

perception := isThere m | inTarget m
monster m := demon | hellKnight | revenant

ViZDoom environment has 120×160×3 images as a state
representations. We resize them to 80× 80× 3 to feed to
our model as an input.

To generate meaningful programs and collecting diverse
behavior we use heuristics to sample codes and demonstra-
tions. Given each state we sequentially increase the program
length by adding more statements. At the same time action
is instantly taken in the environment and the state transition
is performed. Whenever the statement with condition is sam-
pled for the program, we give higher sampling probability
to perception that makes current state more diverse.
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