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Abstract

Many important datasets in physics, chemistry,
and biology consist of noisy sequences of im-
ages of multiple moving overlapping particles.
In many cases, the observed particles are indis-
tinguishable, leading to unavoidable uncertainty
about nearby particles’ identities. Exact Bayesian
inference is intractable in this setting, and previ-
ous approximate Bayesian methods scale poorly.
Non-Bayesian approaches that output a single
“best” estimate of the particle tracks (thus dis-
carding important uncertainty information) are
therefore dominant in practice. Here we propose
a flexible and scalable amortized approach for
Bayesian inference on this task. We introduce
a novel neural network method to approximate
the (intractable) filter-backward-sample-forward
algorithm for Bayesian inference in this setting.
By varying the simulated training data for the net-
work, we can perform inference on a wide variety
of data types. This approach is therefore highly
flexible and improves on the state of the art in
terms of accuracy; provides uncertainty estimates
about the particle locations and identities; and has
a test run-time that scales linearly as a function
of the data length and number of particles, thus
enabling Bayesian inference in arbitrarily large
particle tracking datasets.

1. Introduction

In many biological and physical experiments it is necessary
to track the movement of many isolated particles in a video
datastream. This is an essential task in biomedical research,
for example, to reveal the biophysical properties of both
the imaged particles (e.g., single molecules) and the bio-
logical substrate (e.g., cell membrane) that the particles are
traversing. Effective particle tracking algorithms have wide
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applications in both fundamental and applied biology, and
more generally in chemistry and physical applications.

Previous scalable approaches to this task have largely in-
volved non-Bayesian methods aiming at estimating a single
“best” path of the underlying particles. However, in many
applications particles have indistinguishable shapes under
light microscopic resolution. This leads to a fundamen-
tal non-identifiability: if two particles pass close by each
other (“meet”) then it is impossible to deterministically link
the pre-meeting paths with the correct post-meeting paths
(see Figure 1 below for an illustration). This motivates a
Bayesian approach for assigning posterior probabilities over
all the possible sets of particle paths consistent with the
observed data.

Formally, at each timestep we observe a noisy, blurry image
recording the particles’ current positions. In the simplest
case, we can cast the tracking task in a factorial hidden
Markov Model (HMM) framework, where each particle
evolves according to a Markov process and thus multiple
HMMs (one per particle) jointly determine the observed
image data. The classic HMM inference approach is the
forward-backward algorithm (Rabiner, 1990), but the com-
plexity of forward-backward scales superlinearly with the
number of particles here.

In this work, we propose an amortized inference approach
utilizing a specialized recurrent neural network architecture
to approximate the posterior particle transition densities
inferred by forward-backward. After network training, pos-
terior inference can be performed very quickly: given a new
video dataset, the network outputs the conditional particle
initialization and transition densities, and then we can sim-
ply sample forward from the resulting Markov chain to draw
samples from the posterior particle paths.

We apply the method to simulated and real data. We show
that the method robustly performs approximate Bayesian
inference on the observed data, and provides more accurate
results than competing methods that output just a single
“best” path. Our approach is much more scalable than previ-
ously proposed Bayesian approaches, scaling linearly in the
number of frames and in the number of observed pixels.
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2. Model

To set the stage we describe the simplest concrete model
for particle tracking data; we will generalize this model
below. We have J indistinguishable particles: each particle

j appears at some time t57“*" and disappears at some later

j
time t;i”“p PEAT The particles move according to indepen-

dent Gauss-Markov processes, with no interactions between
particles. On each frame ¢ we observe a blurred noisy sum
of the particles that are visible at time ¢. The observation
likelihood depends on the details of the experimental setup;
the most common model is the Gaussian blur + Poisson
noise model:

Y(t,z) ~ Poisson[A(t,z) + Ao
Alt, ) = Z Glz —s; (1)),

where Y (¢, z) denotes the image data observed at pixel z at
time ¢, \g is a background “dark noise” Poisson intensity,
G].] is a Gaussian point spread function (psf), s, (t) repre-
sents the location of particle 5 at time ¢, and the sum is over
all particles that are alive at time .

The model described above is a factorial HMM (Ghahra-
mani & Jordan, 1996). However, this simple model can
be generalized significantly. There may be multiple distin-
guishable classes of particles that have different shapes or
colors. In many datasets particles can interact: they might
merge, collide, split, etc. Individual particles often move in
a non-Markovian manner (e.g., switching between several
different latent dynamical modes). There may be strong
dependencies between the motion of different particles, due
e.g. to substrate motion. Finally, the observation noise may
be highly non-Poisson, with correlations and strong inho-
mogeneities across the field of view. Thus it is critical to
develop flexible inference approaches that do not depend on
strong factorial HMM assumptions.

3. Related work on particle tracking

The literature on particle tracking methods is vast, and dates
back to early physics studies of Brownian motion in flu-
ids; see e.g. (Manzo & Garcia-Parajo, 2015) for a review,
and (Chenouard et al., 2014) for a quantitative comparison
of many algorithms. We will not attempt to review all of
these methods here, but note that many algorithms split the
tracking problem into a “detect” followed by a “link™ step.
The “detect” step outputs estimated particle locations given
each image Y;. Various nonlinear filtering, thresholding,
deconvolution, and neural network approaches have been
employed for this task (Chenouard et al., 2014). Most such
detection algorithms take just single frames Y; as input, and
therefore they do not integrate useful information across
multiple frames to perform detection; (Newby et al., 2017)

is a recent counterexample that demonstrates that better per-
formance can be achieved if multiple frames Y; are utilized
in the detection step.

The “link” step then attempts to fuse these detected loca-
tions, to estimate the tracks that each visible particle took
over the length of the observed movie. This linkage step
is solved by some matching algorithm; see e.g. (Jagaman
et al., 2008) for an influential example of this approach, and
(Chenouard et al., 2014; Turner et al., 2014; Wilson et al.,
2016) for discussion of some other linking methods.

As we emphasized in the introduction, deterministic de-
tection and linking approaches are statistically suboptimal,
since they ignore the irreducible uncertainty of the tracking
problem that results when two or more visibly indistinguish-
able particles pass closer than a fraction of a psf-width of
each other. Ignoring this uncertainty leads to non-robust
results, in which tiny changes to the data can lead to discon-
tinuous changes in the estimated particle tracks. Moreover,
it is clear that the linkage and detection should not be sepa-
rated: if we know the tracks of particles at times (1 : ¢ — 1)
and (t + 1 : T'), then we have very strong prior information
about the locations of particles at time ¢, and ignoring this
useful prior information will lead to suboptimal results. (See
e.g. (Sun et al., 2017), where similar points were made in
the context of a related super-resolution application.)

Similar points have been made in the Bayesian signal pro-
cessing literature; for example, sequential Monte Carlo (par-
ticle filtering) methods have been applied to perform proba-
bilistic inference in this setting (Smal et al., 2008). These
approaches have the advantage of a proper grounding in
standard Bayesian computational methodology, but scale
poorly in the number of visible particles.

Finally, there is also a very large literature on “multi-target
tracking,” e.g., tracking multiple people visible on security
cameras. In this literature the different targets are typically
distinguishable (e.g., different people visible on a camera
will have different faces, gaits, clothing, etc.), whereas in
this paper we focus on the case that the particles to be
tracked are indistinguishable. Of course a middle ground ex-
ists in which particles have some distinguishing features but
some posterior uncertainty about particle identity remains
due to noisy or incomplete observations; however, to keep
our presentation simple we focus exclusively on the most
challenging fully-indistinguishable case here.

4. Methods

4.1. Overview

Our conceptual starting point is the standard filter-backward-
sample-forward algorithm for sampling from the posterior
distribution p(Q|Y") of the hidden state Q@ = {g;} of an
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Figure 1. Overview of the conditional transition density network. Inputs to the network include the observed data
Yi— e+, with M = 2 here (top), the locations of particles sampled at time ¢ — 1 (lower left), the particles that have
been sampled so far at time ¢ (lower middle), and the identity of the particle we are currently sampling (indicated by the
yellow box). The network outputs the probability that the sampled particle survives to time ¢, and the conditional probability
density of the particle’s next position. See the sampling process video for further illustration of the network processing data.
In this video, the particles are restricted to move in the horizontal direction only (to facilitate plotting of the results in the
following section); different particles are marked by different colors. The lower right panel displays the probability map

p(silgi1,{q]};<i,Y) output by the network at each iteration.

HMM conditional on the observed data Y (Rabiner, 1990).
This algorithm has two steps: (1) combine the observed data
Y with the prior distribution p(Q) of the hidden Markov
state () to obtain a new Markov chain p(Q|Y), and (2)
sample forward from this new Markov chain. Once (1) is
complete, we can call (2) as often as we like to generate
new sample paths from p(Q|Y).

This approach is attractive in our setting because sampling
forward from a Markov chain is a fast operation once the
conditional initial and transition densities (p(¢q1]|Y") and
p(qt|Y, qi—1), respectively) are in hand, where the hidden
state g, is the configuration of the locations and identities of
all of the particles alive at time ¢. Thus in principle we can
simply run (2) repeatedly to compute probabilities of any
quantity we care about (e.g., the probability that a particle
is in location z at time ¢, or the probability that particle ¢ in
frame s should be linked with particle j in frame ¢).

Unfortunately, as emphasized above, computing (1) exactly
is intractable in our context; thus we need to approximate
the conditional initial and transition densities. Our strategy
is to train neural networks to approximate these probabilities.

This approach is highly flexible; given enough training data,
we can handle a wide variety of non-standard data, well
beyond the simplest Gaussian blur + Poisson noise factorial
HMM described above, since the learned probabilities do
not lean heavily on special assumptions about e.g. the noise
model or the precise details of the graphical model under-
lying the data'. In turn, we can generate as much training
data as we need by simulating ground truth particle tracks
along with the resulting observed data videos Y.

It is convenient to split the network into three parts: the
conditional transition density that governs how samples
move from timestep ¢ to ¢ 4 1; the conditional birth density
that governs the probability that a new particle appears at
time ¢; and the conditional initial density that governs the
positions of the particles at timestep 1. We describe each of
these in turn below.

'"The main assumption we make is that the posterior p(Q|Y")
can be well-approximated as Markovian, so that our resulting
Markovian sampler can provide good approximations to true sam-
ples from the posterior. This assumption is reasonable in the
majority of particle-tracking applications we have in mind.


https://drive.google.com/file/d/1DWJeb1HOdbeRQ1B4B7b0gCZEOKpbRhnA/view?usp=sharing

Scalable Approximate Bayesian Inference for Particle Tracking Data

4.2. Conditional transition density network

This network is illustrated in Figure 1. The task of this
network is to combine the observed data Y with the previous
particle configuration ¢;_; and to output probabilities that
govern the particle configuration ¢; in the next time step.
This is a nontrivial task, since the dimensionality of ¢; can be
large and varies with time ¢ as particles appear or disappear.
Similarly, the observed image Y; is often large (hundreds
of pixels on a side), and in principle we need to observe
multiple frames before and after time ¢ to perform optimal
inference.

Thus, for scalability, we break the problem up into a se-
quence of smaller pieces and work convolutionally. We
begin by choosing a random ordering of the particles in
g:—1. Then, for each of these particles indexed by i, we
input three types of data: (1) a local patch of the observed
movie data (in a spatial neighborhood around the ¢-th par-
ticle location s¢_;, and in a temporal context of M frames
before and after the current frame ¢; (2) a binary mask
indicating the locations of the particles at time ¢ — 1 in
the same spatial neighborhood as particle 7; and (3) a sec-
ond binary mask indicating the locations of the particles j
that have been sampled at time ¢ prior to sampling parti-
cle i>. The network is then trained to output a probability
map p(st|q—1,{q]};j<i,Y) indicating the likely location
st, along with an auxiliary probability that the particle dis-
appears (and is therefore no longer present at time ¢). Once
these transition probabilities are learned, we can sample
forward one particle and time-step at a time, as illustrated
in the sampling process video and detailed in Algorithm 1;
thus at test time inference scales linearly in the number of
particles and time steps in the movie.

Note that we have slightly diverged from the vanilla filter-
backward-sample-forward algorithm, which propagates in-
formation all the way back from the final observation Y to
determine the state g;. Instead, we exploit the fact that only
a local context around time ¢ is necessary to infer ¢;, and
thus we restrict our attention at time ¢ to the local context
Y-+ m- (Weuse M = 2 throughout this paper.)

4.3. New birth networks and initialization

The network described above moves particles forward from
timestep ¢ — 1 to ¢, and decides which particles should dis-
appear at time ¢t. However, new particles can enter the field

This input lets the network avoid placing two particles to
explain a single observed bump in Y;; if a previously-sampled
particle j already explains the bump well, then the network will
prefer to put particle ¢ elsewhere. Also note that the input data Y
and output probability maps don’t need to have the same number
of pixels (i.e., we could attempt to resolve the particle locations at
higher spatial resolution than the observed data), but we have not
pursued this direction in detail.

Algorithm 1 Conditional sampling network
Initialize: S; = Initializer(Y7.p741, []) # Sec. 4.3

# Sec. 4.2
fort=2,3,4...do
Se=11

for ¢ in Permutation{S;_;} do
p; = ConditionalProbability (Y;—as.e4- a1, St—1, %, %)
particle ¢ disappears with prob. 1 — [ p;
otherwise ¢’ is sampled from p;
Insert i’ to Sy
end for
Nt = NCWBirth(}/;ng;t+M7 St,h St) # Sec. 4.3
Insert N; to .S;
Si—1=15;
end for

of view at any time, and therefore we need a method for
adding new particles to ¢;. Thus after running the update de-
scribed above to ¢;, we run a second convolutional network
that takes the same inputs as above (i.e., the local context
of ¢:—1, q:+, and Y, now at each location in the image in-
stead of just at the previously-sampled particle locations)
and outputs the probability that a new particle is born at
each location at time ¢. Then we iteratively sample from this
density and update ¢; until no further particles are added.

The same strategy can be used to initialize ¢;; the only
difference is that the inputs now don’t include g;_1 or the
context of Y prior to Y.

4.4. Network architecture and training

To handle the temporal and spatial dependencies in this data,
we chose a combination of bi-directional 2D convolution
LSTM and 3D convolutional layers; see Appendix. Overall,
when the network is sampling forward, we can think of the
resulting algorithm as a recurrent neural network (since the
sampled output is then read back into the network to define
the next state transition), with the somewhat non-standard
feature that the network remains at timestep ¢ for a random
number of iterations (depending on how many particles
need to be updated and how many particles are born at each
timestep).

To train the network we generated simulated ground truth
particle tracks ¢; and corresponding observed movies Y.
(We will discuss the training data in more detail in the fol-
lowing section.) Then we formed minibatches of training
data, where each data sample included the inputs to the
network (the local context of Y, ¢;_1, and a random subset
of g;) along with the true particle location s, which served
as the target output of the network. We trained the network
(using default learning rate settings in Keras) to minimize
the binary cross-entropy between the target mask (zero ex-
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cept at s;, or all zeros if all the particles in ¢; were already
sampled and no further particles should be added) and the
network’s output probability mask. Code is available here.

5. Results

5.1. One-dimensional example

We begin with a simple simulated experiment in which the
particles are restricted to move in the horizontal direction
only. This makes it easier to view and understand the re-
sults, by simply plotting the horizontal positions of the (true
vs. inferred) particles as a function of time. The results are
illustrated in Figure 2; the same data are shown in Figure 1
and the sampling process video.

In this example we see the appearance and disappearance of
a couple particles, and two “meeting” events in which one
particle overlaps significantly with another particle. Since in
this example all the particles have identical shapes and are
undergoing independent and identically distributed Brow-
nian motions, there is no way to deterministically “link”
particles before and after these meeting events; i.e., the
“correct” linker here must output a probabilistic answer.

In panels 2-4 of Figure 2 we display three conditional sam-
ple paths drawn by our algorithm. Sample O (panel 2) recov-
ers the ground truth accurately, and Sample 1 and 2 (panels
3 and 4) give different — but also valid — sets of tracks.
Panel 5 shows an average of 100 samples overlaid together,
with the colors indicating relative probabilities of the chosen
tracks. Note that at the beginning of the trial, where the two
visible particles are well-isolated, the sampler essentially
outputs a deterministic estimate, with all samples assigned
to the left (red) or the right (blue). However, after the “meet-
ing” near t = 15, the colors blend, indicating probabilistic
assignment of tracks following this event, as desired.

For comparison, we also show the output of two existing
particle tracking methods, both of which output determinis-
tic particle identities. Our approach provides visibly more
robust outputs on this example, with fewer dropped particle
detections and false particle appearances or disappearances.

5.2. Two-dimensional example

Next we turn to a small-scale simulated two-dimensional
example; the results are illustrated in the moving particles
video, Figure 3, and the 3D view video. As in the previous
one-dimensional example, we find that our proposed ap-
proach accurately detects the particle locations and appear-
ance/disappearance times, and successfully assigns identi-
ties probabilistically following particle meetings.

Ground Truth
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Figure 2. One-dimensional simulated example. We test the per-
formance of the proposed algorithm on a simplified example where
the particles are restrained to move in one dimension, to facilitate
visualization. See the sampling process video for the raw data.
Top: Ground truth tracks. New particles appear near ¢ = 13 and
t = 20; a particle disappears near ¢ = 20; “meetings” between
two particles occur near t = 14 and ¢ = 22. Panels 2-4: sample
tracks output by our proposed method. Colors indicate particle
identity. Note that the detected locations track the ground truth
locations and appearance/disappearance times accurately, and iden-
tity is assigned probabilistically following particle meetings, as
desired. (The network output corresponding to Sample 0 is shown
in Figure 1 and the sampling process video, with colors matched
across the figures and video.) Panel 5: mean over 100 examples;
the blended colors following particle meeting times indicate the
relative probabilities of the identity assignments. Bottom two
panels: output from two deterministic particle tracking methods,
by (Jagaman et al., 2008) and (Wilson et al., 2016), respectively.
Several detection errors are visible in the output of these methods,
leading to oversegmentation of the output tracks.
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Figure 3. Two dimensional example. This figure displays a single frame of the moving particles video; view the video for
further details. First panel: observed data Y;. Top middle: a time-lapse trace of the ground truth particle tracks; plus marks
the current particle position, and the tails mark the recent history. Other panels: four sample estimated particle tracks
output by our proposed method. As can be seen in the moving particles video, as particles meet the particle identities are
assigned probabilistically and the identities across different samples diverge, even if some identities were initially the same
across some samples. (Colors of sampled tracks are assigned according to total proximity of each track to the ground truth
tracks, each of which is assigned a random color.) We show another representation of these samples in the 3D view video;
the first frame of this video shows the ground truth tracks and each remaining frame shows a single sample in 3d (two spatial
dimensions and one time dimension), with colors matched to those shown in this figure and in the moving particles video;

thick lines indicate ground truth tracks for comparison.

5.3. Large scale examples and evaluation

To establish a more quantitative evaluation, we compared
against two baseline methods: the popular Utrack approach
(Jagaman et al., 2008) and the method proposed in (Wil-
son et al., 2016), which performed well on the perfor-
mance metrics established in the review / competition paper
(Chenouard et al., 2014). We generated large-scale two-
dimensional simulated data whose parameters matched a
pair of challenging datasets in (Chenouard et al., 2014), and
then computed the suite of performance metrics (measuring
various facets of detection accuracy, linking quality, etc.)
introduced in the same paper (averaging over 100 draws
from our sampler for each dataset). Results are shown in
Table 1: we find that our proposed method outperforms the

baselines on both datasets examined, on all the performance
metrics computed here.

It is worth emphasizing that these performance metrics were
designed for deterministic tracking algorithms, and there-
fore entirely miss one of the major advantages of our ap-
proach (the fact that it outputs not just a single “best” track
estimate but instead estimates the posterior distribution over
all tracks). How can we evaluate the quality of our ap-
proximation to the posterior here (and quantitatively com-
pare between different algorithms that attempt to approxi-
mate this posterior)? One natural approach is to estimate
the Kullback-Leibler divergence Dy [f(Q); p(Q]Y)] be-
tween our approximate posterior f () and the true posterior
p(Q]Y") on the state space @ given the observed data Y. Of
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Figure 4. Real data. Performance on real data (TIR-FM imaged clathrin-coated pits in a BSC1 cell) (Jagaman et al., 2008).
Left: raw image sequence. Middle: raw image sequence overlaid with detection markers and tails indicating the recent
location history. Colors indicate three different samples from our algorithm. Right: a zoomed in patch. Image size: 150 x
170 pixels, pixel size: 67 nm. For more details see the real data video.

course, this is not quite tractable, due to the intractability of

p(Q|Y), but we can estimate D 1,[f(Q); p(Q|Y)] up to a
constant in f(Q) by sampling from f(Q):

Dirl[f(Q)sp(QY)] = Epq) logp(fé?Q;)
S (o) B
= Ey(q)log 2 Q)p(Y]Q) * e

Ll (@)
N 2% gnvgy T o)

where {Q?)};—1.v are N samples from f(Q). Here p(Q?)
and p(Y'|Q?) can be evaluated explicitly if the prior p(Q) is
e.g. Markovian; for our approach f(Q*) can also be evalu-
ated directly since f(Q) has an explicit Markov form. This
provides us a method for scoring any Bayesian particle
tracking algorithm for which we can explicitly evaluate
the approximate posterior f(Q). (We do not perform this
scoring on the baselines examined here, since for any deter-
ministic algorithm f(Q) is a delta function, leading to an
infinite Kullback-Leibler score if we treat ¢; as a continuous
random variable — i.e., the probabilistic approach trivially
outperforms deterministic approaches.)

5.4. Real data example

Finally, we tested the performance of our algorithm on real
data. The data are TIR-FM imaged clathrin-coated pits in a
BSCI1 cell (Jagaman et al., 2008). We trained the network
on simulated data whose parameters (signal-to-noise ratio,
particle density and speed, psf width, etc.) were coarsely
matched to the real data; see the comparison video for
details. We plot three samples from our algorithm using
different colors in Fig. 4 and the real data video. While

ground truth is unavailable in this case, by visual inspection
the algorithm seems to effectively follow the particles in
the video, without excessive oversegmentation of the tracks;
the output here seems consistent with the behavior of the
algorithm on the previous simulated datasets.

6. Discussion
6.1. Related machine learning work

In the introduction we emphasized the importance of the
particle tracking problem; we believe that the more robust,
accurate, and probabilistic tracking methods developed here
will have a significant impact in a wide range of biological
and physical applications.

More generally, from a machine learning point of view, the
major novelty of our work is the incorporation of neural
network methods to provide a flexible and scalable approx-
imation of Bayesian inference via efficient sampling in a
large graphical model.

Of course, interactions between Bayesian analysis and neu-
ral network methods comprise a very rich thread of research
these days. The work of (Snell & Zemel, 2017) is highly
relevant: this paper describes a neural network approach to
sample multiple segmentations that are consistent with an
observed image, much as we use neural networks to sample
multiple particle tracks that are consistent with an observed
video.

As another example, variational autoencoders (Kingma &
Welling, 2013; Rezende et al., 2014) and variants thereof
(Johnson et al., 2016; Gao et al., 2016; Fraccaro et al., 2017,
Krishnan et al., 2017) have become very popular recently for
performing inference in nonlinear HMMs. These methods
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| SNR=5
Assign error RMSE COV Alpha Beta JSC JSCy
Network | 7.28 £1.05 0.08+0.01 0.69+0.05 0.82+0.06 0.81+0.03 0.68+0.06 0.99+0.02
Utrack 8.88 0.189 0.574 0.778 0.748 0.523 0.769
Wilson 11.83 0.214 0.385 0.704 0.667 0.339 0.741
SNR=4
Network | 8.23 +1.12 0.074+0.01 0.63+0.07 0.76+0.03 0.70+0.04 0.55+0.08 0.82+0.05
Utrack 12.78 0.10 0.32 0.62 0.59 0.29 0.68
Wilson 14.42 0.34 0.36 0.58 0.55 0.32 0.63

Table 1. Comparison of three particle tracking methods: our proposed approach (“network”), Utrack from (Jagaman et al., 2008), and the
method proposed in (Wilson et al., 2016). Bold indicates best performance; we find that the proposed network approach achieves the best
performance over both datasets and all performance metrics computed here. RMSE: Root Mean Square Error; COV: Coverage; JSC:
Jaccard similarity coefficient; all quantities are as defined in (Chenouard et al., 2014).

are most effective when the latent state variable is low-
dimensional. In the particle tracking problem the latent
dynamical variable is very high-d (scaling with the number
of particles) and more importantly the latent dimensionality
is time-varying, as particles are born, die, merge, split, enter,
or leave the focal plane. We are not aware of variational
autoencoder approaches that would be easily applicable to
the particle tracking problem.

Another related thread involves amortized inference using
neural networks for sequential Monte Carlo; see e.g. (Paige
& Wood, 2016). Again, it is not clear how well these meth-
ods would scale to the large-scale multiple-particle tracking
problems of interest here.

Finally, our work is an example of a broad theme in the cur-
rent image processing literature: start with “ground truth”
images, then simulate observed data that can be generated
as some kind of corruption of this ground truth, and then
use this simulated data to train a neural network that can
“denoise” (or super-resolve, or deblur, or infill, etc.) this cor-
ruption. A (highly non-exhaustive) list of recent examples
includes: (Parthasarathy et al., 2017), which applies this
idea to approximate Bayesian decoding of neuronal spike
train data; (Yoon et al., 2017), to segmentation of three-
dimensional neuronal images; and (Weigert et al., 2017), to
denoising of microscopy images.

6.2. Future work

At test time, as emphasized above, the inference approach
proposed here is highly scalable, but the network training
time is relatively slow (taking on the order of hours for the
experiments presented here). This is typical of “amortized
inference” approaches: we pay with relatively long training
times for fast test times. Thus our proposed approach is most
valuable in settings where we have repeated experimental
samples from a similar data regime (instead of training a
new inference network for each new experimental dataset).

We have not expended serious effort optimizing over net-
work architectures here; we could likely find lighter archi-
tectures that perform similarly, which would speed up both
testing and training. Similarly, we could distill/compress the
network to further speed up test times, if necessary e.g. for
online experimental designs.

Similarly, we have not yet attempted to develop automated
procedures for choosing parameters for generating training
data. In practice we have found that these parameters (e.g.,
the amplitude, density, variance/speed of particles, plus
noise levels, point-spread width, etc.) are fairly straightfor-
ward to choose, and the inference results are not highly sen-
sitive to small misspecifications of these parameters (recall
Figure 4 and the corresponding comparison video). It would
be useful to develop a simple interface that would allow
experimentalists to easily generate training data, followed
by generation of a network trained to perform inference on
their data.

An alternative approach would be to include data parame-
ters as extra inputs for the network. Then in principle there
would be no need to train a new network for each new type
of data; instead we could perhaps just train a single big
network on many different data types (with the correspond-
ing data parameters included as inputs to the network) and
then when presented with a new datatype we just provide
the network with the required parameters and let it perform
inference. This is an ambitious but important direction for
future work>.

3Note that a slightly different philosophy is espoused in (Newby
et al., 2017), who trained a single deterministic network for par-
ticle detection that can be applied to a wide range of data, but
without including any parameters describing the data generation
mechanism as inputs to the network. This approach makes it easy
for experimentalists to use the network (since no training or pa-
rameter estimation is required), but likely sacrifices some accuracy
compared to a network that is provided information about the pa-
rameters governing the generation of the data. We hope to run
more detailed comparisons of these approaches in the future.


https://drive.google.com/file/d/1tgoK70ZodaCTgXbPWj5IJYHArSdBcdr5/view?usp=sharing
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