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Abstract
While training a machine learning model using
multiple workers, each of which collects data
from its own data source, it would be useful
when the data collected from different workers
are unique and different. Ironically, recent anal-
ysis of decentralized parallel stochastic gradient
descent (D-PSGD) relies on the assumption that
the data hosted on different workers are not too
different. In this paper, we ask the question: Can
we design a decentralized parallel stochastic gra-
dient descent algorithm that is less sensitive to the
data variance across workers? In this paper, we
present D2, a novel decentralized parallel stochas-
tic gradient descent algorithm designed for large
data variance among workers (imprecisely, “de-
centralized” data). The core of D2 is a variance
reduction extension of D-PSGD. It improves the

convergence rate from O

(
σ√
nT

+ (nζ2)
1
3

T 2/3

)
to

O
(

σ√
nT

)
where ζ2 denotes the variance among

data on different workers. As a result, D2 is robust
to data variance among workers. We empirically
evaluated D2 on image classification tasks, where
each worker has access to only the data of a lim-
ited set of labels, and find that D2 significantly
outperforms D-PSGD.

1. Introduction
Training machine learning models in a decentralized way
has attracted intensive interests recently (Lian et al., 2017a;
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Yuan et al., 2016; Colin et al., 2016). In the decentralized
setting, there is a set of workers, each of which collects data
from different data sources. Instead of sending all data to
a centralized place, these workers only communicate with
their neighbors. The goal is to get a model that is the same as
if all data are collected in a centralized place. Decentralized
learning algorithms are important in scenarios where the
centralized communication is expensive or impossible, or
the underlying communication network has high latency.

For decentralized learning to provide benefits, each user
should provide data that is somehow unique, i.e., the vari-
ance of data collected from different workers are large. How-
ever, many recent theoretical results (Lian et al., 2017a;b;
Nedic & Ozdaglar, 2009; Yuan et al., 2016) assume a
bounded data variance across workers — when data hosted
on different workers are very different, these approaches
converge slowly, both empirically and theoretically. In this
paper, we aim at bringing this discrepancy between the cur-
rent theoretical understanding and the requirements from
some practical scenarios.

In this paper, we present D2, a novel decentralized learning
algorithm designed to be robust under high data variance.
D2 is built upon decentralized parallel stochastic gradient
descent (D-PSGD), but benefits from an additional variance
reduction component. In D2, each worker stores the stochas-
tic gradient and its local model in the previous iterate and
linearly combines them with the current stochastic gradient
and local model. It results in an improved convergence rate
over D-PSGD by eliminating the data variation among work-
ers. In particular, the convergence rate is improved from

O

(
σ√
nT

+ (nζ2)
1
3

T 2/3

)
toO

(
σ√
nT

)
where ζ2 is the data vari-

ation among all workers, σ2 is the data variance within each
worker, n is the number of workers, and T is the number of
iterations. We empirically show D2 can significantly out-
perform D-PSGD by training an image classification model
where each worker has access to only the data of a limited
set of labels.

Throughout this paper, we consider the following decentral-
ized optimization:

min
x∈RN

f(x):=
1

n

n∑
i=1

=:fi(x)︷ ︸︸ ︷
Eξ∼Di

Fi(x; ξ), (1)
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where n is the number of workers and Di is the local data
distribution for worker i. All workers are connected through
a connected graph. Each worker can only exchange infor-
mation with its neighbors.

Definitions and notation Throughout this paper, we use
following notation and definitions:

• ‖ · ‖F denotes the Frobenius norm of matrices.

• ‖ · ‖ denotes the `2 norm for vectors and the spectral
norm for matrices.

• ∇f(·) denotes the gradient of a function f .

• f∗ denotes the optimal solution of (1).

• λi(·) denotes the ith largest eigenvalue of a matrix.

• x(i) denotes the local model of worker i.

• ∇Fi(x(i); ξ(i)) denotes a local stochastic gradient of
worker i.

• 1 = [1, 1, · · · , 1]> ∈ Rn denotes the all-one vector.

• In order to organize the algorithm more clearly, here we
define the concatenation of all local variables, stochas-
tic gradients, and their averages respectively:

X :=[x(1), . . . ,x(n)] ∈ RN×n,

X :=X
1

n
=

1

n

n∑
i=1

x(i),

G(X; ξ) :=[∇F1(x(1); ξ(1)), . . . ,∇Fn(x(n); ξ(n))]

∈ RN×n,

G(X, ξ) :=G(X, ξ)
1

n
=

1

n

n∑
i=1

∇Fi(x(i); ξ(i)),

∇f(X) :=
n∑
i=1

1

n
∇fi

(
X
)
,

∇f(X) :=
1

n

n∑
i=1

∇fi(x(i)),

where ξ is the collection of randomly sampled data
from all workers.

Organization This paper is organized as follows: Sec-
tion 2 reviews related work about the proposed approach;
Section 3 introduces the state-of-the-art decentralized
stochastic gradient descent method and its convergence rate;
Section 4 introduces the proposed algorithm and its intuition
why it improves the state-of-the-art approach; Section 5 pro-
vides the theoretical guarantee; and Section 6 validates the
proposed approaches via empirical study; and Section 7
concludes this paper.

2. Related work
In this section, we review the stochastic gradient descent
algorithm and its decentralized variants, decentralized algo-
rithms, and previous variance reduction technologies.

Stochastic gradient descent (SGD) The SGD ap-
proahces (Ghadimi & Lan, 2013; Moulines & Bach, 2011;
Nemirovski et al., 2009) is quite powerful for solving large-
scale machine learning problems. It achieves a convergence
rate of O

(
1/
√
T
)

. As an implementation of SGD, the Cen-
tralized Parallel Stochastic Gradient Descent (C-PSGD),
has been widely used in parallel computation. In C-PSGD,
a central worker, whose job is to perform the variable up-
dates, is connected to many leaf workers that are used to
compute stochastic gradients in parallel. C-PSGD has been
applied to many deep learning frameworks, such as CNTK
(Seide & Agarwal, 2016), MXNet (Chen et al., 2015), and
TensorFlow (Abadi et al., 2016). The convergence rate of C-
PSGD is O

(
1√
nT

)
, which shows that it can achieve linear

speedup with regards to the number of leaf workers.

Decentralized algorithms Centralized algorithms re-
quire a central server to communicate with all other work-
ers (Suresh et al., 2017). In contrast, decentralized algo-
rithms work on any connected network and only rely on the
information exchange between neighbor workers (Kashyap
et al., 2007; Lavaei & Murray, 2012; Nedic et al., 2009).

Decentralized algorithms are especially useful under a net-
work with limited bandwidth or high latency. It is more
favorable when data privacy is sensitive. These advantages
have led to successful applications. The decentralized ap-
proach for multi-task reinforcement learning was studied
in Omidshafiei et al. (2017); Mhamdi et al. (2017). In Colin
et al. (2016), a dual based decentralized algorithm was pro-
posed to solve the pairwise function optimization. Shi et al.
(2014) and Mokhtari & Ribeiro (2015) analyzed the decen-
tralized version of the ADMM optimization algorithm. An
information theoretic approach was used to analyze decen-
tralization in Dobbe et al. (2017). The decentralized version
of (sub-)gradient descent was studied in Nedic & Ozdaglar
(2009); Yuan et al. (2016). Its O(1/

√
T ) convergence re-

quires a diminishing stepsize or a constant stepsize that
depends on the total number of iterations. This phenomenon
happens because of the variance between the data in differ-
ent workers, which we call “outer variance” to differentiate
it from the variance in SGD. Recently, there are several
deterministic decentralized optimization algorithms that al-
lows a constant stepsize. For example, EXTRA (Shi et al.,
2015a) is the first modification of decentralized gradient
descent that converges under a constant stepsize. Later this
algorithm is extended for problems with the sum of smooth
and nonsmooth functions at each node (Shi et al., 2015b).
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The algorithm DIGing is proposed in Nedić et al. (2017),
where two exchanges are needed in each iteration. However,
their stepsizes depend on both the Lipschitz constant of the
differentiable function and the network structure. NIDS is
the first algorithm that has a constant network independent
stepsize (Li et al., 2017). This algorithm was simultaneously
proposed by Yuan et al. (2017) for the smooth case only
using a different approach.

Decentralized parallel stochastic gradient descent (D-
PSGD) The D-PSGD algorithm (Nedic & Ozdaglar, 2009;
Ram et al., 2010a;b) requires each worker to compute a
stochastic gradient and exchange its local model with neigh-
bors. In Duchi et al. (2012), a dual averaging based method
is proposed for solving the constrained decentralized SGD
optimization. In Yuan et al. (2016), the convergence rate for
D-PSGD was analyzed when the gradient is assumed to be
bounded. In Lan et al. (2017), a decentralized primal-dual
type method was proposed with a computational complex-
ity of O

(
n/ε2

)
for general convex objectives. Lian et al.

(2017a) proved that D-PSGD can admits linear speedup with
respect to the number of workers with a similar convergence
rate as C-PSGD.

Variance reduction technology There have been many
methods developed for reducing the variance in SGD, includ-
ing SVRG (Johnson & Zhang, 2013), SAGA (Defazio et al.,
2014), SAG (Schmidt et al., 2017), MISO (Mairal, 2015),
and mS2GD (Konečnỳ et al., 2016). However, most of
these technologies are designed for centralized approaches.
The DSA algorithm (Mokhtari & Ribeiro, 2016) applied
the variance reduction similar to SAGA on strongly convex
decentralized optimization problems and proved a linear
convergence rate. However, the speedup property is unclear
and a table of all stochastic gradients need to be stored.

3. Preliminary: decentralized stochastic
gradient descent

The decentralized stochastic gradient descent (Lian et al.,
2017a; Zhang et al., 2017; Shahrampour & Jadbabaie, 2017)
allows each worker (say worker i) maintaining its own local
variable x(i). During each iteration (say, iteration t), each
worker performs the following steps:

1. Query its neighbors’ local variables.

2. Take weighted average with its local variable and its
neighbors’ local variables:

x
(i)

t+ 1
2

=

n∑
j=1

Wijx
(j)
t ,

where Wij is the (i, j) element of the matrix W .
Wij = 0 means worker i and worker j are not con-

nected.

3. Perform one stochastic gradient descent step

x
(i)
t+1 = x

(i)

t+ 1
2

− γ∇F (x
(i)
t ; ξ

(i)
t ),

where ξ(i)t represents the data sampled in worker i at
the iteration t following the distribution Di.

From a global point of view, the update rule of D-PSGD
can be viewed as

Xt+1 = XtW − γG(Xt; ξt).

It admits the following rate shown in Theorem 1.

Theorem 1 (Convergence rate of D-PSGD (Lian et al.,
2017a)). Under certain assumptions, the output of D-PSGD
admits the following inequality

1− γL
2T

T−1∑
t=0

E
∥∥∇f(Xt)

∥∥2 +
D1

T

T−1∑
t=0

E
∥∥∇f (Xt

)∥∥2
≤f(0)− f∗

γT
+
γL

2n
σ2 +

γ2L2nσ2

(1− λ)D2
+

9γ2L2nς2

(1−
√
λ)2D2

,

where ρ reflects the property of the network, D1 and D2 are
defined to be

D1 :=

(
1

2
− 9γ2L2n

(1−√ρ)2D2

)
,

D2 :=

(
1− 18γ2

(1−√ρ)2
nL2

)
,

and σ and ς measure the variation within each worker and
among all workers respectively

Eξ∼Di
‖∇Fi(x; ξ)−∇fi(x)‖2 6σ2, ∀i,∀x, (2)

1

n

n∑
i=1

‖∇fi(x)−∇f(x)‖2 6ζ2, ∀i,∀x. (3)

Choosing the optimal steplength γ = 1

L+σ
√

K
n +n

1
3 ζ

2
3 T

1
3

we have the following convergence rate:

1

T

T∑
t=1

E(‖∇f(Xt)‖2) ≤ O

(
σ√
nT

+
n

1
3 ζ

2
3

T
2
3

+
1

T

)
.

The proposed D2 algorithm can improve the convergence
rate by removing the dependence to the global bound of
outer variance ζ.
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Algorithm 1 The D2 algorithm

1: Input: Initial point x(i)
0 = 0, step length γ > 0, con-

fusion matrix W , and the total number of iterations
T .

2: for t = 0,1,2,. . . ,T do
3: Randomly sample ξ(i)t from the local data of the ith

worker.
4: Compute a local stochastic gradient based on ξ(i)t and

current variable x
(i)
t : ∇Fi(x(i)

t ; ξ
(i)
t ).

5: if t=0 then
6: x

(i)

t+ 1
2

= x
(i)
t − γ∇Fi(x

(i)
t ; ξ

(i)
t ),

7: else
8: x

(i)

t+ 1
2

= 2x
(i)
t − x

(i)
t−1 − γ∇Fi(x(i)

t ; ξ
(i)
t ) +

γ∇Fi(x(i)
t−1; ξ

(i)
t−1).

9: end if
10: Each worker sends x(i)

t+ 1
2

to its neighbors and takes
the weighted average

x
(i)
t+1 =

n∑
j=1

Wijx
(j)

t+ 1
2

,

where x
(j)

t+ 1
2

is from the worker j.
11: end for
12: Output: 1

n

∑n
i=1 x

(i)
T

4. The D2 algorithm
In D2 algorithm, each worker (say, worker i) repeats the
following updating rule (say, at iteration t):

1. Compute a local stochastic gradient∇F (x
(i)
t ; ξ

(i)
t ) by

sampling ξ(i)t from distribution D(i);

2. Update the local model x
(i)

t+ 1
2

← 2x
(i)
t − x

(i)
t−1 −

γ∇Fi
(
x
(i)
t ; ξ

(i)
t

)
+ γ∇Fi

(
x
(i)
t−1; ξ

(i)
t−1

)
using the lo-

cal models and stochastic gradients in both the tth
iteration and the (t− 1)th iteration.

3. When the synchronization barrier is met, exchange
x
(i)

t+ 1
2

with neighbors:

x
(i)
t+1 =

n∑
j=1

Wijx
(j)

t+ 1
2

.

From a global point of view, the update rule of D2 can be
viewed as:

Xt+1 = (2Xt −Xt−1 − γG(Xt; ξt) + γG(Xt−1; ξt−1))W.

The complete algorithm is summarized in Algorithm 1.

D2 essentially runs the stochastic gradient descent step.
To understand the intuition of D2, let us consider the mean
value Xt, which is updated just like the standard stochastic
gradient descent:

Xt+1 =(2Xt −Xt−1 − γG(Xt; ξt) + γG(Xt−1; ξt−1))W
1n

n
,

Xt+1 =2Xt −Xt−1 − γG(Xt; ξt) + γG(Xt−1; ξt−1),

or equivalently

Xt+1 −Xt

=Xt −Xt−1 − γG(Xt; ξt) + γG(Xt−1; ξt−1),

=X1 −X0 − γ
t∑

k=1

(
G(Xt; ξt)−G(Xt−1; ξt−1)

)
=− γG(Xt; ξt). (X1 = X0 − γG(X0; ξ0)). (4)

Why D2 improves the D-PSGD? We may notice that D-
PSGD also essentially updates in the form of stochastic gra-
dient descent in (4). Then why D2 can improve D-PSGD?

Assume that Xt has achieved the optimum X∗ := x∗1>

with all local models equal to the optimum x∗ to (1). Then
for D-PSGD, the next update will be

Xt+1 = X∗ − γG(X∗; ξt).

It shows that the convergence when we approach a solution
is affected by E[‖G(X∗; ξt‖2F ], which is bounded by

O(σ2 + ζ2),

as we can see from the following:

E[‖G(X∗; ξt‖2F ]

=E
n∑
i=1

∥∥∥(∇Fi(x∗; ξ(i)t+1)−∇fi(x∗)
)

+∇fi(x∗)
∥∥∥2

≤2E
n∑
i=1

∥∥∥(∇Fi(x∗; ξ(i)t+1)−∇fi(x∗)
)∥∥∥2

+ 2 ‖∇fi(x∗)−∇f(x∗)‖2

≤2σ2 + 2ζ2.

Next we apply a similar analysis for D2 by assuming that
both Xt−1 and Xt have reached the optimal solution X∗.
The next update for D2 will be:

Xt+1 = (X∗ − γG(X∗; ξt)− γG(X∗; ξt−1))W.

It shows that for D2, the convergence when we approach
a solution relies on the magnitude of E[‖G(X∗; ξt) −
G(X∗; ξt−1)‖2F ], which is bounded by:

O(σ2),
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which can be seen from:

E[‖G(X∗; ξt)−G(X∗; ξt−1)‖2F

=E
n∑
i=1

∥∥∥∇Fi(x∗; ξ(i)t )−∇fi(x∗)
∥∥∥2

− E
n∑
i=1

∥∥∥∇Fi(x∗; ξ(i)t−1)−∇fi(x∗)
∥∥∥2

≤2σ2.

5. Theoretical guarantee
This section provides the theoretical guarantee for the pro-
posed D2 algorithm. We first give the assumptions required
below.

Assumption 1. Throughout this paper, we make the follow-
ing commonly used assumptions:

1. Lipschitzian gradient: All function fi(·)’s are with
L-Lipschitzian gradients.

2. Bounded variance: Assume bounded variance of
stochastic gradient within each worker

Eξ∼Di ‖∇Fi(x; ξ)−∇fi(x)‖2 6σ2, ∀i,∀x.

3. Symmetric confusion matrix: The confusion matrix
W is symmetric and satisfies W1 = 1.

4. Spectral gap: Let the eigenvalues of W ∈ Rn×n be
λ1 ≥ λ2 ≥ · · · ≥ λn. Denote by for short

λ := max
i∈{2,··· ,n}

λi = λ2.

We assume λ < 1 and λn > − 1
3 .

5. Initialization: W.l.o.g., assume all local variables are
initialized by zero, that is, X0 = 0.

Existing decentralized consensus algorithms (Shi et al.,
2015b; Li et al., 2017) use a modification of the doubly
stochastic matrix such that λ > 0, i.e., choose W =
(W̃ + I)/2 where W is a doubly stochastic matrix. Re-
cently, Li & Yan (2017) show that λn > −1/3 is optimal
in the convergence of EXTRA. However, the optimal λn
for NIDS (Li et al., 2017) is unknown. In this paper, we
proved that− 1

3 is the infimum of λn, and when it reduces to
deterministic case, this condition is weaker than that in (Li
et al., 2017). This is important, because we actually can use
a W that performs better.

Given Assumption 1, we have following convergence guar-
antee for D2:

Theorem 2 (Convergence of Algorithm 1). Choose the
steplength γ in Algorithm 1 to be a constant satisfying 1−
24C2γ

2L2 > 0. Under Assumption 1, we have the following
convergence rate for Algorithm 1:

A1‖∇f(0)‖2 +

T−1∑
t=1

(
E‖∇f(Xt)‖2 +A2E‖∇f(Xt)‖2

)
≤2(f(0)− f∗)

γ
+
LTγ

n
σ2 +

6L2C1γ
2ζ20

C3

+
12L2C2γ

2σ2T

C3
+

6L2C2γ
4L2σ2T

nC3
+

6L2C1γ
2σ2

C3
,

(5)

where

ζ0 :=
1

n

n∑
i=1

‖∇fi(0)−∇f(0)‖2,

v :=λn −
√
λ2n − λn,

C1 := max

{
1

1− |v|2
,

1

(1− λ)2

}
≥ 1,

C2 := max

{
λ2n

(1− |v|2)
,

λ2

(1−
√
λ)2(1− λ)

}
,

C3 :=1− 24C2γ
2L2,

A1 :=1− 6L2C1γ
2

C3
,

A2 :=1− Lγ − 6L2C2γ
4L2

C3
.

By appropriately specifying the step length γ, we reach the
following corollary:

Corollary 3. Choose the step length γ in Algorithm 1 to be
γ = 1

8
√
C2L+6

√
C1L+σ

√
T
n

, where C1 and C2 are defined in

Theorem 2. Under Assumption 1, the following convergence
rate holds

1

T

T∑
t=0

E‖∇f(Xt)‖2 .
σ√
nT

+
1

T
+

ζ20
T + σ2T 2

+
σ2

1 + σ2T
,

where ζ0 is defined in Theorem 2 and we treat f(0)− f∗, L,
λn, and λ as constants.

Note that we can obtain even better constants by choosing
different parameters and applying tighter inequalities, how-
ever, the main result of this corollary is to show the order of
the convergence. We highlight a few key observations from
our theoretical results in the following.

Tightness of the convergence rate Setting σ = 0 and
ζ0 = 0, which reduces the VR-SGD to a normal GD



Decentralized Training over Decentralized Data

algorithm, we shall see that the convergence rate be-
comes O

(
1
T

)
, which is exactly the rate of GD.

Linear speedup Since the leading term of the convergence
rate is O

(
1√
nT

)
, which is consistent with the conver-

gence rate of C-PSGD, this indicates that we would
achieve a linear speed up with respect to the number
of nodes.

Consistent with NIDS In NIDS (Li & Yan, 2017), the
term depends on ζ0 in the convergence rate is O

(
ζ20
T

)
.

While the corresponding term in D2 is O
(

ζ20
T+σ2T 2

)
,

which indicates when our algorithm is consistent with
NIDS because in NIDS σ is considered to be 0.

Superiority over D-PSGD When compared to D-PSGD,
the convergence rate of D2 only depends on ζ0, and
the corresponding decaying rate is ζ0

T 2 . Whereas in
D-PSGD (Lian et al., 2017a), we need to assume an
upper bound for the global variance between different
nodes’ dataset, and its influence can be compared to
σ2, the inner variance of each node itself. This means
we can always achieve a much better convergence rate
than D-PSGD.

6. Experiments
We evaluate the effectiveness of D2 by comparing it with
both centralized and decentralized SGD algorithms.

6.1. Experiment Settings

We conduct experiments in two settings.

1. TRANSFERLEARNING: We test the case that each
worker has access to a local pre-trained neural network
as feature extractor, and we want to train a logistic
regression model among all these workers. In our ex-
periment, we select the first 16 classes of ImageNet and
use InceptionV4 as the feature extractor to extract 2048
features for each image. We conduct data augmenta-
tion and generate a blurblack version for each image.
In total this dataset contains 16×1300×2 images.

2. LENET: We test the case that all workers collabora-
tively train a neural network model. We train a LeNet
on the CIFAR10 dataset. In total this dataset contains
50,000 images of size 32×32.

One caveat of training more recent neural networks is that
modern architectures often have a batch normalization layer,
which inherently assumes that the data distribution is uni-
form across different batches, which is not the case that we
are interested in. In principle, we could also flow the batch

information through the network in a decentralized way;
however, we leave this as future work.

By default, each worker only has exclusive access to a subset
of classes. For TRANSFERLEARNING, we use 16 workers
and each worker has access to one class; for LENET, we
use 5 workers and each worker has access to two classes.
For comparison, we also consider a case when the datasets
is first shuffled and then uniformly partitioned among all
the workers, we call this the shuffled case, and the default
one the unshuffled case. We use a ring topology for both
experiments.

Parameter Tuning. For TRANSFERLEARNING, we use
constant learning rates and tune it from {0.01, 0.025, 0.05,
0.075, 0.1}. For LENET, we use constant learning rate 0.05
which is tuned from {0.5, 0.1, 0.05, 0.01} for centralized
algorithms and batch size 128 on each worker.

Metrics. In this paper, we mainly focus on the convergence
rate of different algorithms instead of the wall clock speed.
This is because the implementation of D2 is a minor change
over the standard D-PSGD algorithm, and thus they has
almost the same speed to finish one epoch of training, and
both are no slower than the centralized algorithm. When the
network has high latency, if a decentralized algorithm (D2 or
D-PSGD) converges with a similar speed as the centralized
algorithm, it can be up to one order of magnitude faster (Lian
et al., 2017a). However, the convergence rate depending on
the “outer variance” is different for both algorithms.

6.2. Unshuffled Case

variation across workers is maximized. Figure 1 shows the
result. In the unshuffled case, we see that D-PSGD con-
verges slower than the centralized case. This is consistent
with the original D-PSGD paper (Lian et al., 2017a). On the
other hand, D2 converges much faster than D-PSGD, and
achieves almost the same loss as the centralized algorithm.
For the LeNet case, each worker only has access to data
of assigned two labels, which means the data variation is
very large. The D-PSGD does not converge with the given
learning rate 0.05.1

6.3. Shuffled Case

As a sanity check, Figure 2 shows the result of three differ-
ent algorithms on the shuffled data. In this case, the data
variation among workers is small (in expectation, they are
drawn from the same distribution). We see that, all strategies
have similar convergence rate. This validate that D2 is more
effective for larger data variation between different workers.

1We can tune the learning rate 50x smaller for D-PSGD to
converge in this case, but doing so will make D-PSGD stuck at the
starting point for quite a long time.
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Figure 1. Convergence of Different Distributed Training Algorithms (Unshuffled Case).
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Figure 2. Convergence of Different Distributed Training Algorithms (Shuffled Case).

7. Conclusion
In this paper, we propose a decentralized algorithm, namely,
D2 algorithm. D2 algorithm integrates the D-PSGD algo-
rithm with the variance reduction technology, by which we
improves the convergence rate of D-PSGD. The variance
reduction technology used in this paper is different from the
commonly used ones such as SVRG and SAGA, that are
designed for centralized approaches. Experiments validate
the advantage of D2 over D-PSGD — D2 converges with
a rate that is similar to centralized SGD while D-PSGD

does not converge to a solution with a similar quality when
the data variance is large. While being robust to large data
variance among workers, the same performance benefit of
D-PSGD over the centralized strategy still holds for D2.
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dual averaging for decentralized optimization of pair-
wise functions. In International Conference on Machine
Learning, pp. 1388–1396, 2016.

Defazio, A., Bach, F., and Lacoste-Julien, S. Saga: A
fast incremental gradient method with support for non-
strongly convex composite objectives. In Advances in
neural information processing systems, pp. 1646–1654,
2014.

Dobbe, R., Fridovich-Keil, D., and Tomlin, C. Fully decen-
tralized policies for multi-agent systems: An information
theoretic approach. In Advances in Neural Information
Processing Systems, pp. 2945–2954, 2017.

Duchi, J. C., Agarwal, A., and Wainwright, M. J. Dual aver-
aging for distributed optimization: Convergence analysis
and network scaling. IEEE Transactions on Automatic
control, 57(3):592–606, 2012.

Ghadimi, S. and Lan, G. Stochastic first- and zeroth-order
methods for nonconvex stochastic programming. SIAM
Journal on Optimization, 23(4):2341–2368, 2013. doi:
10.1137/120880811.

Johnson, R. and Zhang, T. Accelerating stochastic gradient
descent using predictive variance reduction. In Advances
in neural information processing systems, pp. 315–323,
2013.
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