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Abstract
We study the best arm identification problem in
linear bandits, where the mean reward of each arm
depends linearly on an unknown d-dimensional
parameter vector θ, and the goal is to identify the
arm with the largest expected reward. We first de-
sign and analyze a novel randomized θ estimator
based on the solution to the convex relaxation of
an optimal G-allocation experiment design prob-
lem. Using this estimator, we describe an algo-
rithm whose sample complexity depends linearly
on the dimension d, as well as an algorithm with
sample complexity dependent on the reward gaps
of the best d arms, matching the lower bound
arising from the ordinary top-arm identification
problem. We finally compare the empirical perfor-
mance of our algorithms with other state-of-the-
art algorithms in terms of both sample complexity
and computational time.

1. Introduction
The stochastic multi-armed bandit (MAB) problems are
an important framework that not only addresses the funda-
mental trade-off between exploration and exploitation in
sequential experiments, but also crystallizes the challenge
of efficiently gathering information before committing to
a final decision. Many authors have investigated the pure
exploration form of the problem with N independent arms,
e.g., to identify the best arm (top arm) ((Carpentier & Lo-
catelli, 2016; Chen et al., 2017b; Even-Dar et al., 2006;
Jamieson et al., 2014; Karnin et al., 2013; Kaufmann et al.,
2016)) as well as identifying the set of best (top) K arms
under different metrics ((Bubeck et al., 2013; Chen et al.,
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2017a; 2014; Kalyanakrishnan & Stone, 2010; Zhou et al.,
2014)).

In this paper, we study the top arm identification problem in
the stochastic linear bandit setting, introduced and studied
in (Auer, 2002; Soare et al., 2014) 1. In the linear bandit
setting, instead of having N independent arms, each of the
N arms is associated with a d-dimensional attribute vector,
and the expected reward is the linear combination of its
own attribute vector and an unknown global vector θ. Each
pull of an arm reports a stochastic reward centered at its
expectation, and the goal is to pull as few times as possible
to identify the arm with the highest expected reward. Due
to the linear structure of the problem, pulling each arm
reveals information about the global vector θ and therefore,
indirectly, about the expected reward of other arms.

Linear bandit problems find many applications in practice.
For example, in online advertising, suppose the goal is to se-
lect an advertisement from a pool to maximize the likelihood
for a group of unknown audience to click. The likelihood
can usually be approximated by a linear function of logical
combinations of various attributes associated with the audi-
ence and the ads (such as age, sex, the domain, keywords, ad
genres, etc.). Now the linear top-arm identification directly
addresses this problem if each ad is abstracted to be an arm
with the known attribute vector. While the regret analysis of
the exploration-and-exploitation linear bandit problem has
been extensively studied (Abbasi-Yadkori et al., 2011; Li
et al., 2010; 2017), this paper studies the pure-exploration
scenario and is devoted to showing a fixed-confidence algo-
rithm with the optimal sample complexity.
Problem formulation. We are given a set of N arms
X = {x1, x2, . . . , xN}. Each arm is associated with a
d-dimensional attribute vector and we overload the notation
by using xi ∈ Rd to denote the vector for the arm xi. We
assume ‖xi‖2 ≤ 1 for all arms. We also assume w.l.o.g.
that the rank of X is exactly d (otherwise we can project the
set of vectors to a smaller-dimensional space).

There is an unknown global vector θ ∈ Rd with ‖θ‖2 ≤ L.
Each pull of arm xi reports a stochastic reward xT

i θ + ε
where ε is an independent κ-subgaussian noise (see Sec-

1Very recently, the problem was also studied independently
in (Xu et al., 2018).
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tion 2 for the necessary definitions).

Given a confidence parameter δ ∈ (0, 1), the goal is to
design an algorithm with as small query complexity Q as
possible that, with probability at least (1− δ), sequentially
makes at most Q pulls of the arms, and then identifies the
arm with the highest mean reward.

Previous results. To make the best arm unambiguously
defined, we assume XT

[1]θ > XT
[i]θ for i > 1 where X[i]

denotes the arm in X whose mean reward (i.e., XT
[i]θ) is the

i-th largest. We let ∆i = XT
[1]θ − XT

[i]θ be the reward gap
between arm X[1] and X[i] for i ≥ 2. In (Soare et al., 2014),
the authors showed a few algorithms to identify the top arm
and their best query complexity is 2

O

(
d

∆2
2

(ln δ−1 + lnN + ln ∆−1
2 ) + d2

)
. (1)

These algorithms were combined with the Explore-Verify
framework proposed in (Karnin, 2016). For very small δ (i.e.
δ = (∆2/N)ω(1)), the sample complexity was improved (in
(Karnin, 2016)) to

O

(
d

∆2
2

(lnN + ln ∆−1
2 ) + ρ∗ ln δ−1 + d2

)
, (2)

where ρ∗ ≥ ∆−2
2 is an information-theoretic lower bound

of the sample complexity on the input instance.

Our contribution and techniques. In this paper, we
show linear top-arm identification algorithms with confi-
dence (1− δ) and sample complexity

O

(
d

∆2
2

(ln δ−1 + lnN + ln ln ∆−1
2 )

)
. (3)

The main improvement compared to (1) is the removal of the
additive d2 term, so that our sample complexity is truly lin-
ear with the dimension. We achieve this goal by proposing
and analyzing a novel estimator of θ described in Section 3.
Both our algorithms and (Soare et al., 2014) carefully choose
the pulling strategy in order to get a better estimate for θ.

2The termination condition of their algorithm is Q ≤ cd(1 +
β)(lnQ + lnN + ln δ−1)/∆2

2, where c is a constant and β =
d2/Q results from the efficient approximation of the NP-Hard
optimal G-allocation experiment design problem. Solving the
inequality for Q gives the sample complexity bound in (1). The
extra d2 term appears in (2) for the same reason.

We also note that there is a gap between the proofs and the
algorithms in (Soare et al., 2014). More specifically, both G-
Allocation andXY-Allocation algorithms adopt a greedy approach
to construct the set of arms to pull. However, the theoretical
analysis (Lemmas 5 and 7 in Appendix C of (Soare et al., 2014)) are
for a different convex-relaxation-and-rounding procedure which
was proposed in (Pukelsheim, 2006).

In (Soare et al., 2014), this is done by (deterministically)
approximating the optimal G-allocation experiment design
(which is NP-Hard (Çivril & Magdon-Ismail, 2009)), and
leads to the additional d2 term in the sample complexity. In
our algorithms, however, we solve the convex relaxation of
the optimal G-allocation problem, and then, based on the
optimal solution, construct a novel randomized estimator
of θ. While our solution does not guarantee to solve the
optimal G-allocation problem, it saves the extra d2 term.

Our algorithms also make significant improvement in terms
of time complexity. The previous algorithms in (Soare et al.,
2014) have to spend Ω(N2d2) time to compare the inverse
of several matrices before each pull. In contrast, the over-
head of our algorithm is to solve the convex relaxation and
compute the inverse of a d× d matrix (which costs roughly
O(Nd2) time), and the remaining time cost before each pull
is negligible.

We also develop fully data-dependent algorithms. For confi-
dence parameter δ, the sample complexity of our algorithm
is

O

(
d∑
i=2

∆−2
i (ln δ−1 + lnN + ln ln ∆−1

i )

)
. (4)

We finally empirically evaluate our algorithms with exten-
sive synthetic and real-world data-sets, and compare the
sample complexity and run time with other state-of-the-art
algorithms in Section 5.

1.1. Related Work

Relation to optimal experiment designs. The problem
is closely related to the optimal G-allocation problem in
experiment design. The greedy approach proposed in
(Soare et al., 2014) was analyzed for different optimal-
ity criteria such as A-optimality ((Bian et al., 2017; Cha-
mon & Ribeiro, 2017a)), E-optimality ((Chamon & Ribeiro,
2017a)), and V -optimality ((Chamon & Ribeiro, 2017b)).
The A,D,E, V, and G-allocation design problems were
also studied using other approximation frameworks (e.g.
(Allen-Zhu et al., 2017)). We also know that exactly solv-
ing the G-allocation design problem is NP-Hard (Çivril &
Magdon-Ismail, 2009).

Relation to the ordinary top-arm identification problem.
As pointed out in (Soare et al., 2014), the ordinary top-arm
identification problem for d independent arms is a special
case of the linear bandit setting when each arm xi is as-
sociated with the i-th unit basis vector in Rd. Therefore,
the sample complexity lower bound (e.g. from (Chen et al.,
2017b)) Ω(

∑d
i=2 ∆−2

i ln δ−1) directly applies to the linear
bandit setting.
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Regret minimization for linear bandits. Regret mini-
mization, another important goal of multi-armed bandit
problems, for linear (and generalized linear) bandits has
been extensively studied (e.g., (Abbasi-Yadkori et al., 2011;
Auer, 2002; Chu et al., 2011; Dani et al., 2008; Filippi et al.,
2010; Li et al., 2017; Rusmevichientong & Tsitsiklis, 2010)).
However, its pure exploration counterpart has been less in-
vestigated. While regret and sample complexity bounds
are not directly comparable, the main technical difference
between our algorithms and most regret minimization algo-
rithms is that our sample strategy is computed by solving
the convex relaxation of an optimal G-allocation problem
beforehand, which is important for achieving linear dimen-
sional dependence and avoiding computationally expensive
matrix inverse updates after each sample.

2. Preliminaries
Throughout the paper, we use bold letters to denote random
variables. Moreover, for any positive semi-definite matrix
A, ‖x‖A is defined to be

√
xTAx. Furthermore, recall that

if A is a d × d positive definite matrix, then A−1 exists
and is also positive definite. So by the Spectral Theorem,
there exists an orthonormal matrix O and a diagonal matrix
D such that A−1 = ODOT with the elements at the diag-
onal of D being the eigenvalues of A−1. Now we define
A−1/2 = OD1/2OT where D1/2 is also a diagonal matrix
with D1/2

ii =
√
Dii for all i ∈ {1, 2, 3, . . . , d}.

We now define subgaussian random variables and spell
out some of the mathematical tools that will be used in the
proofs.
Definition 1 (Subgaussian Random Variable). For any
b > 0, a real-valued random variable X is said to be
b-subgaussian if it has the property that for every t ∈ R one
has E[etX ] ≤ eb2t2/2.
Proposition 2 (Special case of Lemma 2.3.18, (Stroock,
2011)). If X is b-subgaussian, then for any α ∈ R, the
random variable αX is |α|b-subgaussian. Moreover, if
X1,X2 are independent random variables such thatXi is
bi-subgaussian, thenX1 +X2 is

√
b21 + b22-subgaussian.

Proposition 3 (Subgaussian Tail Estimate, special case of
Lemma 2.3.18, (Stroock, 2011)). If X is b-subgaussian,
then for any ε > 0 we have that Pr[|X| ≥ ε] ≤
2 exp

(
− ε2

2b2

)
.

We will find the following concentration inequalities useful.
Proposition 4 (Multiplicative Chernoff Bound). Suppose
Xi’s (1 ≤ i ≤ n) are independent random variables taking
values in [0, 1]. Let X =

∑n
i=1Xi and µ = E[X]. Then

for any δ ∈ [0, 1], it holds that Pr[X ≥ (1 + δ)µ] ≤ e− δ
2µ
3 .

Proposition 5 (Bernstein Inequality). Let Xi (1 ≤ i ≤
n) be independent zero-mean random variables. Sup-
pose that |Xi| ≤ M almost surely, for any i. Then,

for all positive t, it holds that Pr (
∑n
i=1Xi > t) ≤

exp
(
− t2/2∑n

i=1 E[X2
i ]+ 1

3Mt

)
.

Finally, we introduce the following theorem which will be
crucially used in the design of our estimator for θ.
Proposition 6 (Restatement of the Equivalence-Theorem in
(Kiefer & Wolfowitz, 1960)). Given a set of d-dimensional
vectors X ⊆ Rd, for any distribution λ supported on X
such that M(λ) = Ez∼λ[zzT] is non-singular, we define
f(x;λ) = xTM(λ)−1x. The following extremum problems
are equivalent:
(a) Choosing λ so that

λ maximizes detM(λ). (5)

(b) Choosing λ so that
λ minimizes max

x∈X
f(x;λ). (6)

Moreover, since Ex∼λ[f(x;λ)] = d, it follows that
maxx∈X f(x;λ) ≥ d. Therefore, a sufficient condition
for λ to satisfy (6) is

max
x∈X

f(x;λ) = d. (7)

3. Main Theorems on the Estimator
3.1. The New Estimator

Let λ∗ be the solution to the three problems defined in
Proposition 6. Let y1, . . . ,yn be n i.i.d. samples following
from the distribution λ∗, corresponding to the n pulled arms.
Let the corresponding rewards be r1, . . . , rn respectively.
In the setting of linear bandits, we have ri = yT

i θ+εi where
εi is κ-subgaussian. Let bi = riyi and b =

∑n
i=1 bi. Now

we define our estimator θ̂ to be
θ̂ = A−1b, (8)

where A = nM(λ∗).
Remark 1. When y1, . . . , yn are the n sampled arms, the
usual maximum-likelihood estimator used in literature (e.g.
(Li et al., 2017; Soare et al., 2014)) is (

∑n
i=1 yiy

T
i )−1b.

However, it is technically difficult to analyze the (spectral)
concentration properties of (

∑n
i=1 yiy

T
i )−1, and we novelly

use
(
E
[∑n

i=1 yiy
T
i

])−1
= A−1 instead.

3.2. The Key Lemma

For any θ, x ∈ Rd, and ` ≥ 1, we define a θ-dependent
error and a θ-free error, Errλ∗(x, `, θ) and errλ∗(x, `), re-
spectively, as follows:

Errλ∗(x, `, θ) =

√
2 Ez∼λ∗ [(xTM(λ∗)−1z · zTθ)2]

`

+
2(|xTθ|+ L‖x‖M(λ∗)−1

√
d)

3`

+
√

2κ

√
‖x‖2M(λ∗)−1

`

√
3d

`
+
‖x‖2M(λ∗)−1

`
,
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and errλ∗(x, `) =

√
2L‖x‖M(λ∗)−1√

`

+
2L(‖x‖2 + ‖x‖M(λ∗)−1

√
d)

3`

+
√

2κ

√
‖x‖2M(λ∗)−1

`

√
3d

`
+
‖x‖2M(λ∗)−1

`
.

We show the following key lemma.

Lemma 7. When n ≥ ` ln(5/δ) where ` ≥ 3d, for any
fixed vector (not necessarily an arm), with probability at
least 1 − δ, it holds that |xT(θ − θ̂)| ≤ Errλ∗(x, `, θ) ≤
errλ∗(x, `).

Proof. Note that b =
∑n
i=1 riyi =

∑n
i=1(yiy

T
i θ + yiεi).

For any given vector x, the absolute error between the real
reward and the estimated reward is

|xT(θ − θ̂)| = |xT(θ −A−1b)| =∣∣∣∣∣
n∑
i=1

(xTθ/n− xTA−1yiy
T
i θ)−

n∑
i=1

xTA−1yiεi

∣∣∣∣∣ . (9)

For any i ∈ {1, 2, . . . , n}, setYi = xTθ/n−xTA−1yiy
T
i θ

and Zi = xTA−1yiεi, then (9) can be written as∣∣∣∣∣
n∑
i=1

Yi −
n∑
i=1

Zi

∣∣∣∣∣ ≤ |Y |+ |Z|,
where Y =

∑n
i=1 Yi and Z =

∑n
i=1Zi.

The following two claims bound Y and Z respectively. We
provide the proofs of both claims after the proof of this
lemma.

Claim 8. For n ≥ ` ln δ−1, with probability (1 −
δ), we have |Y | ≤

√
2 Ez∼λ∗ [(xTM(λ∗)−1z·zTθ)2]

` +

2(|xTθ|+L‖x‖M(λ∗)−1

√
d)

3` .

Claim 9. For n ≥ ` ln(4/δ) where ` ≥ 3d,
with probability (1 − δ), we have |Z| ≤
√

2κ

√
‖x‖2

M(λ∗)−1

`

√
3d
` +

‖x‖2
M(λ∗)−1

` .

The first inequality of Lemma 7 follows immediately by
combining Claim 8 and Claim 9, and a union bound. The
second inequality of Lemma 7 holds because of ‖z‖2 ≤ 1,
‖θ‖2 ≤ L, and the definition of M(λ∗).

Proof of Claim 8. Let t denote ‖x‖2M(λ∗)−1 and s denote
Ez∼λ∗ [(x

TM(λ∗)−1z ·zTθ)2]. Recall that Yi = xTθ/n−
xTA−1yiy

T
i θ.

It is easy to verify that E[Yi] = 0. We also have

|Yi| ≤ |xTθ/n|+ |xTA−1yiy
T
i θ|

≤ |xTθ|/n+ L|xTA−1yi|,

where the last inequality is due to ‖θ‖2 ≤ L and ‖yi‖2 ≤ 1.
By Cauchy-Schwartz inequality, we have

|xTA−1yi| = |〈A−1/2x,A−1/2yi〉|
≤ ‖A−1/2x‖2 · ‖A−1/2yi‖2

=
√
xTA−1x

√
yT
i A
−1yi ≤

√
td/n2, (10)

where the last inequality is due to the definition of A and
Proposition 6. Hence it holds that

|Yi| ≤ |xTθ|/n+ L
√
td/n2. (11)

Next, we bound
∑n
i=1 E[Y 2

i ]

=

n∑
i=1

E[(xTθ)2/n2 − 2xTθ/n · xTA−1yiy
T
i θ

+ (xTA−1yi · yT
i θ)

2]

≤ (xTθ)2/n−
n∑
i=1

2xTθ/n · xTA−1(Eyiy
T
i )θ

+

n∑
i=1

E[(xTA−1yi · yT
i θ)

2]

= − (xTθ)2/n+ E
z∼λ∗

[(xTM(λ∗)−1z · zTθ)2]/n

≤ s/n, (12)

where the second inequality is due to ‖θ‖2 ≤ L and
‖yi‖2 ≤ 1, and the third equality is due to the definition of
A.

Since E[Yi] = 0, the Yi’s are independent, and also we
have (11) and (12), applying Proposition 5, it holds that

Pr[|Y | > ε] ≤ exp

(
− ε2/2

s/n+ 1
3 (|xTθ|/n+ L

√
td/n2)ε

)

= exp

(
− nε2

2s+ 2
3 (|xTθ|+ L

√
td)ε

)
.

By letting ε =
√

2s
` + 2(|xTθ|+L

√
td)

3` , it holds that

Pr

[
|Y | >

√
2s

`
+

2(|xTθ|+ L
√
td)

3`

]
≤ δ

for n ≥ ` ln δ−1, which concludes the proof.
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Proof of Claim 9. Let t denote ‖x‖2M(λ∗)−1 . Recall that
Zi = xTA−1yiεi.

By Proposition 2, Zi can be seen as a (κσi)-subgaussian

random variable where σi =
√
xTA−1yiyT

i A
−1x. Again

by Proposition 2, Z is a (κσ)-subgaussian random variable
where σ =

√∑n
i=1 σ

2
i .

For a given ε and a realization of σ2, by Proposition 3 we
know Pr[|Z| > ε] ≤ 2 exp(−ε2/(2κ2σ2)). When σ2 ≤

ε2

2κ2 ln(4/δ) , we have Pr[|Z| > ε] ≤ δ/2, which means

Pr

[
|Z| > ε

∣∣∣∣σ2 ≤ ε2

2κ2 ln(4/δ)

]
≤ δ/2. (13)

Next, we give a bound on Pr
[
σ2 ≤ ε2

2κ2 ln(4/δ)

]
. Note that

E[σ2
i ] = E[xTA−1yiy

T
i A
−1x]

= xTA−1 E[yiy
T
i ]A−1x = t/n2 (14)

and by (10) we have

σ2
i = |xTA−1yi|2 ≤ td/n2. (15)

Let λi = σ2
in

2/(td). By (14) we have E[λi] = 1/d and
by (15) we have λi ∈ [0, 1]. Now applying Proposition 4,
for τ ∈ [t/n, 2t/n], we have

Pr
[
σ2 > τ

]
= Pr

[
n∑
i=1

λi > τn2/(td)

]

≤ exp

(
− (τn/t− 1)2 · n/d

3

)
.

Hence, by letting τ = t
n

√
3d ln(2/δ)

n + t
n , it holds that

Pr

[
σ2 ≤ t

n

√
3d ln(2/δ)

n
+
t

n

]
≥ 1− δ/2. (16)

Therefore, combining (13) and (16), we have Pr[|Z| ≤ ε]

≥ Pr

[
|Z| ≤ ε ∧ σ2 ≤ ε2

2κ2 ln(4/δ)

]
= Pr

[
|Z| ≤ ε

∣∣∣∣σ2 ≤ ε2

2κ2 ln(4/δ)

]
Pr

[
σ2 ≤ ε2

2κ2 ln(4/δ)

]
≥ (1− δ/2)(1− δ/2) ≥ 1− δ,

whenever ε2

2κ2 ln(4/δ) ≥ t
n

√
3d ln(2/δ)

n + t
n .

By letting ε =
√

2κ

√
t
`

√
3d
` + t

` , we get

Pr

[
|Z| ≤

√
2κ

√
t
`

√
3d
` + t

`

]
≥ 1− δ for n ≥ ` ln(4/δ),

which concludes the proof of this claim.

3.3. Error Bounds for Every Arm

We first simplify errλ∗(x, `) and get the following lemma.

Lemma 10. Let c0 = max{4L2, 3κ2, 3}, when
n ≥ c0` ln(5/δ) where ` ≥ d, with prob-
ability (1 − δ), we have |xT(θ − θ̂)| ≤√

2‖x‖22+2
√
d‖x‖2‖x‖M(λ∗)−1+(4+2

√
d/`)‖x‖2

M(λ∗)−1

` .

Please refer to Appendix A for the proof of Lemma 10.

If we further make assumptions on ‖x‖M(λ∗)−1 , we have

Lemma 11. When n ≥ c0` ln(5/δ) where ` ≥ d,
and ‖x‖M(λ∗)−1 ≤ c1

√
d where ‖x‖2 ≤ c1, we have

Pr

[
|xT(θ − θ̂)| ≤ c1

√
2+6d+2d

√
d/`

`

]
≥ 1− δ.

Note that ‖x‖M(λ∗)−1 ≤
√
d and ‖x‖2 ≤ 1 for every x ∈

X (by Proposition 6). Applying Lemma 11 for every arm in
X and via a union bound, we have

Theorem 12. When n ≥ c0 · 2+(6+ε)d
ε2 ln(5N/δ) where

ε ≤ 3, we have Pr
[
|xTθ − xTθ̂| ≤ ε,∀x ∈ X

]
≥ 1− δ.

Please refer to Appendix B for the proof of Theorem 12.

Next, we apply Lemma 7 for every y ∈ Y where Y is the
set {x− x′|x, x′ ∈ X}. Via a union bound, we have

Theorem 13. When n ≥ ` ln(5N2/(2δ)) where ` ≥
3d, with probability (1 − δ), we have |yTθ − yTθ̂| ≤
Errλ∗(y, `, θ) ≤ errλ∗(y, `),∀y ∈ Y .

For every y = x − x′ ∈ Y (where x, x′ ∈ X ), by Propo-
sition 6, we have ‖y‖M(λ∗)−1 = ‖x − x′‖M(λ∗)−1 ≤
‖x‖M(λ∗)−1 + ‖x′‖M(λ∗)−1 ≤ 2

√
d. Note that ‖y‖2 ≤ 2.

Similar to Theorem 12, we apply Lemma 11 for every y ∈ Y
and via a union bound, we have

Theorem 14. When n ≥ 4c0
2+(6+ε)d

ε2 ln(5N2/(2δ))
where ε ≤ 7, with probability (1 − δ), we have |yTθ −
yTθ̂| ≤ errλ∗(y, `) ≤ ε, ∀y ∈ Y , where ` = 4c0

2+(6+ε)d
ε2 .

3.4. Bounds for a Significant Number of Arms

We also prove the following theorem and corollary which
work better when we have a significant number of (or in-
finitely many) arms.

Theorem 15. When n ≥ c0` ln(5d/δ) where ` ≥
d, with probability 1 − δ, we have

∣∣∣xT(θ − θ̂)
∣∣∣ ≤√

(2+d)d+(5d+2d
√
d/`)‖x‖2

M(λ∗)−1

` ,∀x ∈ Rd : ‖x‖2 ≤ 1.

Please refer to Appendix C for the proof of Theorem 15.

Corollary 16. When n ≥ c0
(4d+(6+ε)d2)

ε2 ln(5d/δ) where

ε ≤ 3
√
d, we have Pr

[∣∣∣xT(θ − θ̂)
∣∣∣ ≤ ε,∀x ∈ X ] ≥ 1− δ.
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Proof. Note that ‖x‖2M(λ∗)−1 ≤ d for all x ∈ X . We prove
the corollary by applying Theorem 15 with ` = (4d+ (6 +
ε)d2)/ε2.

4. Algorithms
Given a set S of arms, we use λ∗S to represent the solution
to the three problems defined in Proposition 6, which can be
computed by solving the optimization problem stated in (5).

4.1. The Estimator for θ

First we define a procedure, VECTOREST(S, n), that aims
to estimate the underlying unknown θ given a set S of arms
and n samples. VECTOREST(S, n) utilizes the estimator in
(8), and its descbrived in Algorithm 1.

Algorithm 1 VECTOREST(S, n)

1: Input: A set S of arms, and n samples.
2: Let y1, . . . , yn be the n samples acquired from S ac-

cording to the distribution λ∗S .
3: Pull arms y1, . . . , yn, and suppose their corresponding

rewards are r1, . . . , rn respectively.
4: Compute A←n ·∑x∈S λ

∗
S(x)xxT and b←∑n

i=1 riyi.
5: θ̂ ← A−1b.
6: Output: The estimate θ̂.

4.2. X -dependent Algorithm

We now describe an iterative algorithm that eliminates
(|S| − p) suboptimal arms from S with probability at least
(1− δ). We call this algorithm ELIMTILp and present the
details in Algorithm 2. In essence, during the r-th iteration,
ELIMTILp uses VECTOREST to get an εr

2 -close estimate
of xTθ for all x ∈ Sr with probability at least 1− δr, and
then discards all arms whose estimated mean rewards are εr
worse than that of the highest estimated mean. ELIMTILp
continues until at most p arms remain. By letting εr and δr
decrease exponentially, we are able to keep the best arm in
the set of output arms with probability at least (1− δ).

Algorithm 2 ELIMTILp(S, δ)

1: Input: Arms set S and confidence level δ.
2: Initialize S1 ← S, r ← 1.
3: while |Sr| > p do
4: Set εr ← 1/2r, δr ← 6/π2 · δ/r2.
5: θ̂r ← VECTOREST

(
S, c0

2+(6+εr/2)d
(εr/2)2 ln 5|S|

δr

)
.

6: Select arm ar ← argmaxx∈Sr x
Tθ̂r.

7: Sr+1 ← Sr\{x ∈ Sr|xTθ̂r < xT
ar θ̂r − εr}.

8: r ← r + 1.
9: Output: Set Sr.

Lemma 17. With probability at least (1 − δ),
ELIMTILp(S, δ) satisfies the following properties:
(i) the procedure outputs a set of at most p arms with
the best arm included; and (ii) the sample complexity is
O
(

c0d
∆2
p+1

(ln δ−1 + ln |S|+ ln ln ∆−1
p+1)

)
.

Please refer to Appendix D for the proof of Lemma 17.

As a consequence of Lemma 17, we get the following corol-
lary by setting S = X .

Corollary 18. With probability at least (1 − δ),
ELIMTIL1(X , δ) outputs the best arm, and the sample com-

plexity is O
(
c0d
∆2

2
(ln δ−1 + ln |X |+ ln ln ∆−1

2 )
)

.

If we use the bound in Theorem 15 and Corollary 16 instead,
we have the following statement.

Corollary 19. There exists an algorithm that, with proba-
bility at least (1− δ), outputs the best arm, and uses at most

O
(
c0d

2

∆2
2

(ln δ−1 + ln d+ ln ln ∆−1
2 )
)

samples.

4.3. Y-dependent Algorithm

We now present the algorithm Y -ELIMTILp, which has
the same asymptotic sample complexity guarantee as
ELIMTILp, but performs more efficiently in practice. This
improvement is achieved thanks to the following two ideas.

First, when comparing the mean rewards of two arms
(namely x and x′), instead of checking the confidence in-
tervals of the two arms, we turn to the confidence interval
of yTθ (where y = x − x′) and check the corresponding
confidence interval.

Second, by Lemma 7, at the r-th iteration, the confidence
interval of yTθ has length Errλ∗T (y, `r, θ) ≤ errλ∗T (y, `r)
where the latter quantity is an upper estimate of the first one
and does not need the knowledge about θ in advance. At the
r-th iteration, we use θ̂r as an estimate of θ and define

Êrrλ∗T (y, `r) =√
2 Ez∼λ∗T [(yTM(λ∗T )−1z · (|zTθ̂r|+ εr/2))2]

`

+
2((|yTθ̂r|+ εr/2) + L‖y‖M(λ∗T )−1

√
d)

3`

+
√

2κ

√
‖y‖2M(λ∗T )−1

√
3d/`

`
+
‖y‖2M(λ∗T )−1

`
.

We will be able to show that Errλ∗T (y, `r, θ) ≤ Êrrλ∗T (y, `r)
holds with high probability and therefore we also use
Êrrλ∗T (y, `r) as an upper estimate of the length of the confi-
dence interval which in many cases proves to be tighter than
errλ∗T (y, `r).
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We present the details of Y -ELIMTILp in Algorithm 3. Note
that our theoretical analysis does not require θ̂r for different
values of r to be independent. Therefore, the samples may
be reused across different invocations of VECTOREST.

Algorithm 3 Y -ELIMTILp(S, T, δ)

1: Input: Set S of active arms (the ones not yet elimi-
nated), set T ⊇ S of arms those can be pulled, and
confidence level δ.

2: Initialize S1 ← S, r ← 1.
3: while |Sr| > p do
4: Set δr ← 6/π2 · δ/r2, `r ← 4c0(2 + (6 +

4/1.1r)d)(1.1r/4)2.
5: θ̂r ← VECTOREST(T, `r ln(5|S|2/(2δr))).
6: Select arm ar ← argmaxx∈Sr x

Tθ̂r.
7: Sr+1 ← Sr\{x ∈ Sr|(xar − x)Tθ̂r >

min{errλ∗T (xar − x, `r), Êrrλ∗T (xar − x, `r)}.
8: r ← r + 1.
9: Output: Set Sr.

Lemma 20. With probability at least (1 − δ),
Y -ELIMTILp(S, T, δ) satisfies the following proper-
ties: (i) the procedure outputs a set of at most p arms in S
with the best arm included; and (ii) the sample complexity
is O

(
c0d

∆2
p+1

(ln δ−1 + ln |S|+ ln ln ∆−1
p+1)

)
.

Please refer to Appendix E for the proof of Lemma 20.
Lemma 20 gives the following corollary by setting S and T
to X .

Corollary 21. With probability at least (1 − δ),
Y -ELIMTIL1(X ,X , δ) outputs the best arm, and the sam-

ple complexity is O
(
c0d
∆2

2
(ln δ−1 + ln |X |+ ln ln ∆−1

2 )
)

.

4.4. Fully Data-dependent Algorithm

Using the Y -ELIMTIL algorithm as a subroutine, we intro-
duce an algorithm that outputs the best arm with probability
at least (1− δ) and whose sample complexity depends on
∆1, . . . ,∆d. To achieve this goal, the algorithm runs in
rounds. During each round r, it invokes Y -ELIMTIL to
identify the top-(d/2r) arms and discards the remaining
arms. We call this algorithm ALBA and include the details
in Algorithm 4.

Algorithm 4 Adaptive Linear Best Arm, ALBA(X , δ)
1: Input: Arms set X and confidence level δ.
2: Initialize S0 ← X .
3: for r ← 0 to blog2 dc do
4: Set δr ← 6/π2 · δ/((r + 1)2).
5: Sr+1←Y -ELIMTILbd/2rc(Sr,X ∩ span(Sr), δr).3

6: Output: Arm in Sr+1.

Theorem 22. With probability at least (1 − δ),
the following are true: (i) ALBA(X , δ) outputs
the best arm; and (ii) the sample complexity is
O
(∑d

i=2
c0
∆2
i
(ln δ−1 + ln |X |+ ln ln ∆−1

i )
)

.

Please refer to Appendix F for the proof of Theorem 22.

5. Experiments
We test our algorithms Y -ELIMTIL1(X ,X , δ) and
ALBA(X , δ), and compare them with the state-of-the-art
algorithms XY-Allocation (Figure 2 of (Soare et al., 2014))
and XY-Adaptive (Figure 3 of (Soare et al., 2014)). We do
not include the Explore-Verify algorithm in (Karnin, 2016)
as its main contribution is considered to be theoretical.

In the implementation of our algorithms, we use the entropic
mirror descent method introduced in (Beck & Teboulle,
2003) to compute the optimal solution λ∗X defined in Propo-
sition 6(a) (see Appendix G for details). In the XY-
Adaptive algorithm, we set α = 1/10 following the choice
made in (Soare et al., 2014). All algorithms are implemented
in Python 3, and are tested without parallelization.

We test the algorithms using both synthetic (similar to that
in (Soare et al., 2014), and random data) and real-world data.
We fix the confidence parameter δ = 0.05, and report the
total number of samples and time used by each algorithm
and their empirical failure probabilities (i.e. to fail to identify
the best arm). For each setting, the reported numbers are
averaged over 100 runs.

5.1. Synthetic Data Set 1

In this experiment, we consider a set X ⊂ Rd of
arms, with |X | = d + 1. X includes the canonical ba-
sis {e1, . . . , ed} of Rd, and an additional arm xd+1 =
[cos(ω), sin(ω), 0, . . . , 0]T. We choose θ = [2, 0, . . . , 0]T,
and fix ω = 0.1, so that x1 is the best arm and ∆2 =
(x1 − xd+1)Tθ is the minimum reward gap. Also, we set
the noise ε ∼ N (0, 1) independently for each pull. We test
the algorithms for d = 2, . . . , 10, and report the number of
samples used in Figure 1(a). In Table 1, we summarize the
runtime needed by the algorithms, from which we can see
the improvement made by our algorithms. The empirical
failure probability for each of the algorithms is 0.

5.2. Synthetic Data Set 2: Random Vectors

In this data set, the feature vectors of the |X | = 100 arms
are independently uniformly random sampled from Sd−1,
the unit sphere centered at the origin. We pick the two
closest arms x, y ∈ X and set θ = x + α · (y − x) with

3Changing this step to Sr+1 ← ELIMTILbd/2rc(Sr, δr) does
not make a difference in the theoretical guarantee of the algorithm
(i.e., Theorem 22). However, Y -ELIMTIL leads to better empirical
performance.
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(a) Synthetic Data Set 1
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(b) Synthetic Data Set 2
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(c) Real-world Data Set

Figure 1: Number of samples needed to identify the best arm for each data set. Half of each vertical black line represents
the standard deviation. Notice that the sample complexity may not be monotonically increasing on d. For (c), the ∆2

corresponding to d = 60 is much smaller than the other cases (see Table 3), and so it may need more samples.

α = 0.01 so that x becomes the best arm. We also set
the noise ε ∼ N (0, 1) independently for each pull. We
report the samples used by our algorithms in Figure 1(b)
and more information (e.g. runtime and ∆2 of each data
point) in Table 2. The empirical failure probabilities for
both algorithms are 0. No results are reported for XY-
Allocation and XY-Adaptive as both failed to terminate
within one hour.

5.3. Real-world Data Set

We now work with candidate arms generated from the ad-
vertisement placement dataset provided in (Lefortier et al.,
2016). Given dimensional parameter d, we select d fea-
tures with the highest variance and then randomly pick
|X | = 200 identical vectors from the data set and normalize
every vector to unit vectors. We also pick the two closest
arms x, y ∈ X and set θ = x+ α · (y − x) with α = 0.01
so that x becomes the best arm. We also set the noise
ε ∼ N (0, 1) independently for each pull. We now report
the samples used by our algorithms in Figure 1(c) and more
information (e.g. runtime and ∆2 of each data point) in Ta-
ble 3. The empirical failure probabilities for both algorithms
are 0. Again, no results are shown for XY-Allocation and
XY-Adaptive as they failed to terminate within one hour.

6. Conclusion
Via exploiting the global linear structure of the problem, we
have shown that the sample complexity of identifying the
best arm in linear bandit only depends on the reward gaps
of the top d arms (where d is the dimension and up to a
logarithmic factor). The experimental results also demon-
strate the substantial improvement made by our algorithms
in terms of both sample complexity and computational time.

However, it remains open to design algorithms with
instance-wise optimal sample complexity. In (Soare
et al., 2014), the authors proposed ρ∗ = ρ∗(Y ∗) =

minλ∈∆X maxy∈Y ∗
yT Ez∼λ[zzT]−1y

(yTθ)2 (where Y ∗ = {x −

X[1] | x 6= X[1]}) as an information-theoretic lower bound
on every input instance. It is a very interesting question
to explore whether this lower bound is achievable by an
algorithm, or some stronger lower bound exists.

Table 1: The average runtime (in seconds) needed for Syn-
thetic Data Set 1.

d XY -ALLOC. XY -ADAPT. Y -ELIMTIL1 ALBA

2 11.3 6.2 0.2 0.3
3 35.7 12.2 0.2 0.3
4 56.3 19.6 0.2 0.3
5 122.8 26.4 0.2 0.3
6 229.0 22.7 0.2 0.3
7 699.0 18.9 0.2 0.3
8 1015.3 27.5 0.2 0.3
9 1391.7 37.2 0.2 0.3

10 1869.0 44.4 0.2 0.3

Table 2: Experimental results for Synthetic Data Set 2.

d ∆2

#samples used
d ·∆−2

2

Runtime (secs)

Y-ELIMTIL1 ALBA Y-ELIMTIL1 ALBA

60 0.52 268.56 270.99 5.2 5.6
70 0.55 318.94 259.73 3.8 4.6
80 0.57 340.17 302.95 4.6 5.3
90 0.59 353.94 306.51 4.1 4.6

100 0.67 383.91 302.99 2.4 3.7

Table 3: Experimental results for the Real-world Data Set.

d ∆2

#samples used
d ·∆−2

2

Runtime (secs)

(×10−3) Y-ELIMTIL1 ALBA Y-ELIMTIL1 ALBA
60 3.386 0.84 0.32 18.6 22.7
70 9.850 3.04 0.32 43.8 46.8
80 7.567 2.71 0.19 20.0 22.9
90 9.655 2.56 0.20 39.4 42.1

100 9.850 6.57 0.71 20.0 21.0
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