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A Theorem 1

See our remarks in Section E.1 after Theorem 7.

B Proof of Lemma 2

Proof. Let us assume ‖f‖2HX = ‖g‖2HY = 1. By slight abuse of notation, we have

〈f, VXY g〉HY = 〈g, C−1/2
Y Y CXY C

−1/2
XX f〉HY (1)

= 〈C−1/2
Y Y g, CXY (C

−1/2
XX f)〉HY (2)

= cov(C
−1/2
Y Y g, C

−1/2
XX f) (3)

= corr(C−1/2
Y Y g, C

−1/2
XX f). (4)

We have the last equality by

var(C−1/2
XX f(X)) = 〈C−1/2

XX f, CXXC
−1/2
XX f〉HX (5)

= 〈f, C−1/2
XX CXXC

−1/2
XX f〉HX (6)

= 〈f, f〉HX (7)

= ‖f‖2HX = 1. (8)
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C Proof of Proposition 3

Proof. By definition, we have

cov(C
−1/2
XX ei, C

−1/2
XX ej) (9)

= 〈C−1/2
XX ei, CXX(C

−1/2
XX ej)〉HX (10)

= 〈ei, (C−1/2
XX CXXC

−1/2
XX )ej〉HX (11)

= 〈ei, ej〉HX (12)
= δij . (13)

D Proof of Corollary 4

Proof. By the definition of Hilbert-Schmidt norm, we have

‖VXY ‖2HS =
∑
i

∑
j

〈VXY ei, fj〉H (14)

=
∑
i

∑
j

{corr(C−1/2
XX ei, C

−1/2
Y Y fi)}2, (15)

where we have used Lemma 2.

E Proof of Proposition 5

Lemma 6. Under the above notations, ∀h ∈ L2
Y , L

2(µp,q(y)) and j > 1 we have

corr(ej(X), h(Y )) = 0. (16)

Proof. Let
ci : L2

X → R, i ∈ Z+ (17)
be the projection functions wrt E , that is to say

f =

∞∑
i=1

ci(f)ei,∀f ∈ L2
X . (18)

It is easy to see ci takes the form

ci(f) = EX [f(X)ei(X)]. (19)

Recall that Y is binary ({−1,+1}) and all h ∈ L2
Y have zero mean. This implies that for all h ∈ L2

Y ,
there exist a constant Kh ∈ R such that

h(y) = Khy. (20)

With this insight, we only need to prove cov(ej(X), Y ) = 0 for all j > 1.

cov(Y, f(X)− c1(f)e1(X)) (21)
= EX,Y [Y (f(X)− c1(f)e1(X))] (22)
= EX [EY |X [Y (f(X)− c1(f)e1(X))]] (23)
= EX [(f(X)− c1(f)e1(X))E[Y |X]] (24)
= EX [f(X)E[Y |X]]− c1(f)EX [e1(X)E[Y |X]] (25)
= EX [f(X)φ(X)]− c1(f)EX [e1(X)φ(X)] (26)

(φ(x) = c1(φ)e1(x))

= c1(φ)EX [f(X)e1(X)]− c1(f)c1(φ) (27)
= c1(f)c1(φ)− c1(f)c1(φ) (28)
= 0 (29)
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Now we can easily show cov(ej(X), Y ) = 0 for j > 1. Let f(x) = ej(x) (j > 1), we have
cov(Y, ej(X)) = cov(Y, ej(X)− c1(ej)︸ ︷︷ ︸

=0

e1(X)) = 0, (30)

where we have use the fact c1(ej) = EX [ej(X)e1(X)] = 0 since e1 and ej are orthogonal to each
other for j > 1. This concludes our proof. �

Proof of Proposition 5.

(i)⇔ (ii)

This is a direct result of [5], Theorem 4 (included below as Theorem 7 for completeness).

(iv)⇔ (vi)

Since gχ(x) = φ(x)
‖φ(x)‖µ , we know corr(gχ(X), Y ) = corr(φ(X), Y ). Recall from Lemma 4 that

∀h ∈ L2
Y have the form h(y) = Khy where Kh ∈ R is a constant, and notice

var(Y ) =
1

2
· 12 +

1

2
· (−1)2 = 1,

so the identity mapping Id(y) = y is the orthonormal basis for L2
Y . Since gχ(x) and Id(y) all have

unit length in L2 norm, we have
corr(gχ(X), Id(Y )) = EX,Y [gχ(X)Y ]

= 1
2 (EX1∼p[gχ(X1)]− EX2∼q[gχ(X2)]).

(31)

Taking the square on each side of the above equation and swap corr(gχ(X), Y ) with corr(φ(X), Y )
prove the result.

(i)⇔ (iv)

By the definition of ‖VXY ‖2HS, we have

‖VXY ‖2HS =
∑
i,j

{corr(ei(X), fj(Y ))}2, (32)

where E = {ei} and F = {fj} are respectively the CONS for L2
X and L2

Y . By Lemma 6, we know

‖VXY ‖2HS = {corr(e1(X), Y )}2. (33)
We conclude the proof by noticing e1(x) ∝ φ(x) and corr(·, ·) is invariant to affine transformations.

(ii)⇔ (iii)

First note

φ(x) =
p(x)− q(x)

p(x) + q(x)
. (34)

From [13], Theorem 1 (included below for completeness), we know that
Dχ(p, q) = EX∼p[fχ(X)]− EX∼q[fχ(X)]

=
∫
X fχ(x)(p(x)− q(x)) dx, (35)

where

fχ(x) =
2φ(x)

Dχ(p, q)
. (36)

This readily leads to
1

2
{Dχ(p, q)}2 =

∫
X
φ(x)(p(x)− q(x)) dx (37)

We already know

MIχ = 1
4

{∫
X gχ(x)(p(x)− q(x)) dx

}2

= 1
4‖φ(x)‖2µ

{∫
X φ(x)(p(x)− q(x)) dx

}2
,

(38)

and plugin the integral proves the result.

(iv)⇔ (v)

It is easy to show that φ(x) = 2ψ(x)− 1, and we know corr(·, ·) is invariant to the affine transforma-
tions. �
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E.1 Normalized cross-covariance operator and χ2 mutual information

In [5], the authors consider RKHS, and therefore the function spaces are denoted as H·. PX⊥⊥Y
denotes the the joint of (X,Y ) under independence.

Theorem 7. [[5], Theorem 4] If (HX⊗HY )+R is dense inL2(PX⊥⊥Y ), and VXY is Hilbert-Schmidt,
then we have

‖VY X‖2HS =

∫∫
X×Y

(
pXY (x, y)

pX(x)pY (y)
− 1

)2

pX(x)pY (y) dx dy.

In our case, we considerH = L2, which satisfies the condition in the above Theorem.

F Complete algorithm for joint matching of multiple distributions

Without loss of generality, let us assume we are matching the distribution of M generators
{G(z; θm)}Mm=1, where θm denotes the generator specific parameters. We denote all generator
parameters collectively as Θ. Let D(x;ω) = Softmax(T (x;ω)) ∈ [0, 1]M be the discriminator that
describes the conditional distribution of the label given sample x. We denote µX and ΣX respectively
as the expectation and covariance of first the (M −1)-dimension of D(x;ω). This is because D(x;ω)
is linearly dependent as

∑
m[D(x;ω)]m = 1, where we have used [a]k to denote the k-th dimension

of a vector a. We continue to use Γ(y) and ΣY for the label basis functions and the corresponding
covariance described in Sec. 2.5, and use one-hot encoding y ∈ {0, 1}M for the labels. The complete
algorithm for multi-distribution matching χ2-GAN is given in Algorithm SM 1, where we have used
(Θt, ωt) to denote the parameter values at iteration t. Note that apart from the cross-entropy loss to
train the critic D(x;ω), we can also use a multi-output least squares regression similar to Algorithm
1 in the maintext. Instead of Y ∈ {±1}, the output target for multi-output least squares regression
becomes (2ym − 1M ) for a sample from the m-th distribution, where 1M denotes a vector of ones.

F.1 The covariance ΣY for Γ(y)

Proof. We want to compute [ΣY ]ij = EY [γi(Y )γj(Y )]. For i = j, we have

[ΣY ]ij =
1

M
γi(yi)γj(yi) +

1

M

∑
l 6=i

γi(yl)γj(yl) (39)

=
1

M
+
M − 1

M

1

(M − 1)2
=

1

M − 1
. (40)

And for i 6= j, we have

[ΣY ]ij =
1

M
γi(yi)γj(yi) +

1

M
γi(yj)γj(yj) +

1

M

∑
l/∈{i,j}

γi(yl)γj(yl) (41)

= − 2

M(M − 1)
+
M − 2

M

1

(M − 1)2
= − 1

(M − 1)2
. (42)

This concludes our proof. �

F.2 Generalization for multiple critic functions

The use of multiple critic functions can be motivated from the following perspectives: 1) robustness,
a single critic function may get trapped in a local optimum and stoping providing useful info to the
generator; 2) efficiency, a group of simple critic functions may collectively offer the same discrim-
inative power as one single sophisticated critic function, but much easier to optimize (parallelize).
The potential gains by introducing additional critic functions have been investigated in the literature
[4]. Algorithm SM 1 can be easily modified to work with multiple critic functions. One simply
concatenates the output of critic functions as ˜Φ(x), and then take care of the multicollinearity. More
explicitly, we can compute the cross-correlation matrix C between the critic vector and Γ(y), then
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Algorithm SM 1: χ2-GAN-Multi.
Input: batchsize b, decay ρ, learning rate δ.
for t = 1, 2, 3, . . . do

1. Sample minibatch {zm,i ∼ p(z)}bi=1,m = 1, · · · ,M
2. Generate the samples: xi,m = G(zi,m; θm,t−1)
3. Update the critic D(x;ω) to improve (minimize) the cross-entropy loss

−
∑
m

∑
i log[D(xi,m;ω)]m

4. Update the mean and covariance estimates

d(x) = [D(xi,m;ωt)]1:(M−1) ∈ RM−1

di,m = d(xi,m), µ̂t = (1− ρ)µ̂t−1 +
ρ

Mb

∑
i,m

di,m

Σ̂t = (1− ρ)Σ̂t +
ρ

Mb

∑
i,m

(di,m − µ̂t)T (di,m − µ̂t)

5. Update the χ2 estimate

V (Θt) =
1

Mb

∑
i,m

Σ̂
−1/2
t {d(G(zi,m; θm,t−1))− µ̂t}Γ(yi,m)TΣ

−1/2
Y

V (Θt−1) = (1− ρ)Vt−1 + ρV (Θt−1), v(Θt−1) = ‖V (Θt−1)‖2Fro

6. Update the generators {G(z; θm)}m
Θt = Θt−1 + δGradClip (∇Θvt(Θt−1))

end for

compute its singular-value decomposition C = ŨSṼ T . Denoting U as the (M − 1) left-eigenvectors
wrt non-vanishing singular vectors, and Φ(x) as the mean-centered, variance normalized Φ̃(x), then
UTΦ(x) gives the normalized critic Ψ(x) used in Vχ2 .

G Connection between MMD and the χ2 GAN objective

Recall that HSIC = ‖CXY ‖2HS is the unnormalized version of χ2 objective ‖VXY ‖2HS. We now prove
the equivalence between MMD and HSIC in the generative modeling setting.

Proposition 8. For empirical distributions

µn = n−1
n∑
i=1

δ(xi,yi), pn = n−1
n∑
i=1

δxi , qn = n−1
n∑
i=1

δyi , (43)

we have
HSIC(µn) =

1

4
MMD(pn, qn). (44)

Proof.

MMD(pn, qn) =
1

n2

 n∑
i,i′=1

κ(xi, xi′)− 2
∑
i,j

κ(xi, x̃j) +
∑
j,j′

κ(x̃j , x̃j′)

 (45)

=
1

n2
tr(K(n)

p,q Ln) (46)

HSIC(µn) =
1

4n2
tr(H2nK

(n)
p,qH2nH2nLnH2n) (47)
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Since
tr(AB) = tr(BA), Ln = H2nLnH2n, (H2n)2 = H2n, (48)

we therefore have
HSIC(µn) =

1

4n2
tr(K(n)

p,q Ln) =
1

4
MMD(pn, qn). (49)

H Computing importance weights from critics of divergence-based models

We consider the f -GAN formulation [15], which optimizes the variational objective

Vf (D,G) = EX∼pd [D(X;ω)]− EX′∼pG [f∗(D(X ′;ω))], (50)

where D(x;ω) is the parameterized critic, pG(x) is implicitly defined by the parameterized generator
G(z; θ) and latent variable Z ∼ p(z), f(x) is the convex function that defines the f -divergence, and

f∗(u) , sup
x∈suppf

{ux− f(x)} (51)

is the Fenchel conjugate of f(x). When {D(x;ω), ω ∈ Ω} approximates arbitrary functions, the
maximizer of (50) with generator fixed writes

D∗(x) = f ′
(
pd(x)

pG(x)

)
, (52)

where f ′(x) is the derivative of f(x) and we have the equality [14]

Vf (D∗, G) = Divf (pd ‖ pG). (53)

As such, to estimate the importance weight w(x) = pd(x)
pG(x) , we only need to take the inverse of f ′(x)

wrt the learned critic D̂(x), i.e.
ŵ(x) = f ′

−1
(D̂(x)). (54)

For example, when optimizing the KL-divergence (f(x) = − log(x)), then f ′(x) = −1/x and
f ′
−1

(x) = −1/x, and therefore w(x) = −1/D(x).

I Additional historical notes on correlation and independence metrics

The idea of maximal correlation measures of dependence at least dates back to the 1930s [8]. Later
[17] set forth a list of desirable properties for a measure of statistical dependence, and showed that
the maximal correlation measure

sup
f,g
{corr(f(X), g(Y ))}, (55)

where f and g are Borel measurable, satisfies such properties. The constraint on the function space
later was relaxed from Borel spaces to L2 spaces, and the resulting statistics was termed Φ2 measure
of dependency [11], which coincides with the χ2 statistics we investigated here. [2]’s seminal work on
kernel independence criteria, where they have used generalized kernel canonical correlation analysis
to approximate Shannon mutual information, marks the beginning of the development of modern
RKHS solutions to probabilistic problems. [6] derived the first rigorous RKHS independence criteria
using the cross-covariance theory developed by [3]. This work is generalized by [5], establishing
its connections to information theoretic measures. The works of Brownian correlations [19] can be
shown to be equivalent to RKHS independence measures, which provides an alternative view from
the perspective of stochastic process.

J Discussion on specific techniques reporting state-of-the-art results

In terms of unsupervised Inception Score on Cifar10, the GAN variants summarized in Table SM 1
have reported better results. DFM-GAN uses the reconstruction error of a denoising autoencoder as
an energy regularization to encourage the generation of low energy (more plausible) samples. This
leads to a biased generator that possibly cheats IS metric (unpublished results). PG-GAN follows
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Model IS

DFM-GAN [21] 7.72± .13
PG-GAN [9] 8.80
SN-GAN [12] 7.58± .12
SN-GAN ResNet [12] 8.42± .08
OT-GAN [18] 8.47± .12

Table SM 1: Unsupervised Inception Score on Cifar10 of GANs with specific techniques

a specific training strategy: progressively “grow” a low resolution generator into a high resolution
generator. While reporting unprecedented results, PG-GAN can only be applied to datasets that
can be hierarchically factorized, and requires careful tuning and extensive computational resource.
SN-GAN advocates a novel solution to constrain the Lipschitz constant of discriminator, which is of
paramount importance to Wasserstein GAN variants. We found integrating SN techniques into our
χ2 GAN further improves results (results not shown). OT-GAN proposed a adaptive adversarial OT
game. However, the Skinkhorn algorithm used is very sensitive to the mini-batch size. The best result
reported uses 8k samples per “mini”-batch, and OT-GAN failed to give competitive results (IS < 7)
when more reasonable mini-batch size (64 ∼ 256) were used.

K Detailed experimental setup

model architecture, batch size, learning rate, etc. We use gradient clip by norm 0.1 on Cifar and
CelebA experiments.

K.1 Toy model

To make fair comparison with other GAN models, we follow the same toy model network architecture
as https://github.com/igul222/improved_wgan_training/. We only implement our model
under its framework, and keep all the parameters unchanged.

K.2 MNIST

The model architecture on MNIST task is shown in Table 2

Decoder z to X Discriminator

Input latent code z Input two 28× 28 Gray Image

MLP output 1024, BN 5× 5 conv. 32 ReLU, stride 2, BN
MLP output 3136, BN 5× 5 conv. 64 ReLU, stride 2, BN

5× 5 deconv. 64 ReLU, stride 2, BN 5× 5 conv. 128 ReLU, stride 2, BN
input z through MLP output 1024, ReLU

5× 5 deconv. 1 ReLU, stride 2, sigmoid MLP output 1

Table SM 2: Architecture of the models for χ2 GAN on MNIST.

K.3 Cifar10

We use DCGAN framework and WGAN-GP ResNet framework for our Cifar generation task . The
learning rate for both architecture is 10−4.

K.4 CelebA

We use DCGAN framework for our face generation task. The learning rate is 10−4.

K.5 ImageNet

The detailed architecture is shown in Table 3

7
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Decoder z to X Discriminator

Input z Input X

5× 5 conv. 64 ReLU, stride 2, BN
MLP output 1024, lReLU, BN 5× 5 conv. 128 ReLU, stride 2, BN
MLP output 8192, lReLU, BN 5× 5 conv. 256 ReLU, stride 2, BN

5× 5 conv. 512 ReLU, stride 2, BN
5× 5 deconv. 256 lReLU, stride 2, BN Input z through MLP, output 2046, ReLU
5× 5 deconv. 128 lReLU, stride 2, BN concat two features from X and z
5× 5 deconv. 64 lReLU, stride 2, BN
5× 5 deconv. 3 tanh, stride 2, BN MLP output 1

Table SM 3: Architecture of the models for χ2 GAN on ImageNet.

K.6 Edges2shoes

In the experiment, we used the model architecture from the Disco-GAN paper [10]. Following the
practice of Disco-GAN, we also initialized model parameters by optimizing a reconstruction loss.
This has been proven necessary due to the size of dataset, and we verified that χ2 GAN’s ability to
translate image is not a direct result of this initialization.

L More experimental results

L.1 Generation result on cifar10

We give the unconditional generation result on ImageNet in Figure SM 1.

Figure SM 1: More generated images on Cifar-10. Left: unsupervised generation; right: supervised
generation.

L.2 Generation result on CelebA

We give the unconditional generation result on standard CelebA (64× 64) in Figure SM 2.
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Figure SM 2: Generated images on CelebA

L.3 Generation result on high-resolution CelebA

We give the unconditional generation result on high-resolution CelebA (128× 128) in Figure SM 3
to demonstrate χ2-GAN’s scalability wrt image resolution.

Figure SM 3: Generated high-resolution images on CelebA

L.4 Generation result on ImageNet

We give the unconditional generation result on ImageNet in Figure SM 4.

Figure SM 4: Generated images on ImageNet (unsupervised).
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25 Gaussians CIFAR (CNN) CIFAR (ResNet) CelebA

Model parameters (million) 1.06M 9.69M 2.26M 9.75M

WGAN-GP per 100 iteration 1.93s 55.6s 46.5s 150.1s
χ2GAN per 100 iteration 0.63s 13.7s 11.5s 26.5s

Speed-up 3.06 3.21 4.04 5.68

Table SM 4: Wall time comparison between WGAN-GP and χ2 GAN.

L.5 Bag and shoe sketch dataset

In this experiment, we use a mixture of bag sketches and shoe sketches to verify the robustness and
efficacy of χ2 GAN. Generated samples from the learned distributions with DCGAN, WGAN-GP
and χ2 GAN are given in Figure 5. We extensively tuned hyperparameters and experimented with
different stablizing architecture for DCGAN, but it is still unable to learn the target distribution.
WGAN-GP was able to learn some features of the target distribution after significant tuning, but
still outputs a significant portion of unrealistic images. Our χ2 GAN quickly learns the distribution,
generating realistic and diverse samples without any intervention. χ2 GAN successfully learned the
distribution for a wide range of different hyperparameters we experimented with.

Figure SM 5: Learned distribution on mixture of shoe and bag sketches dataset (unsupervised).

M Computational efficiency

In Table SM 4 we further compare the training efficiency of WGAN-GP and χ2 GAN. We report the
average of per 100 iteration walltime for different network architectures used in this work. While
giving better, or comparable results, χ2 GAN generally achieves 3 ∼ 6 times speedup.

N Additional quantitative results for Cifar10

Table SM 5 summarizes FID scores on Cifar10 .

O Quantitative evaluation for importance resampling

In Figure SM 6 we provide quantitative results for importance resampling on Cifar10. In this
experiment we vary the acceptance ratio, and accept the corresponding proportion of samples using
the importance resampling algorithm described in main text. IS score improved as we reduce the
acceptance ratio, visual inspection also confirmed the improvement of sample quality.
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Figure SM 6: Inception score vs resample ratio

Model FID

DCGAN [16] 55.7
WGAN † [1] 42.6
WGAN-GP † [7] 40.2

χ2-GAN (ours) 29.4

Table SM 5: Unsupervised FID on CIFAR-10 (DCGAN architecture). † Results collected from [12].

P Additional evaluations on CelebA

To verify that generator trained with χ2 GAN indeed learn the target distribution rather than remem-
bering the training samples, we visually compare the generated samples with their closest neighbours
from the training sample. We tried a few metrics to evaluate image similarity, and found Structural
Similarity (SSIM) [20] correlates best with human judgement. As such, we use SSIM to characterise
image similarity. See Figure SM 7 for the neighbour comparison results. While we can identify
commonalities between the fakes and their neighbouring samples from the real, these samples do not
look similar at all. We further validate the hypothesis that χ2 GAN learns generalisable features via
latent space interpolation. More specifically, we first draw two random samples, and then linearly
interpolate the two samples in the latent space. We show some of the results in Figure 8.
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Figure SM 7: Nearest neighbours in the training set for generated samples on CelebA. First column:
generated samples; other columns: training samples most similar to the fake sample.

Figure SM 8: CelebA latent space interpolation. First and last column: generated samples; intermedi-
ate columns: linear interpolations in the latent space.
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