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Abstract
To assess the difference between real and syn-
thetic data, Generative Adversarial Networks
(GANs) are trained using a distribution discrep-
ancy measure. Three widely employed measures
are information-theoretic divergences, integral
probability metrics, and Hilbert space discrep-
ancy metrics. We elucidate the theoretical connec-
tions between these three popular GAN training
criteria and propose a novel procedure, called χ2-
GAN, that is conceptually simple, stable at train-
ing and resistant to mode collapse. Our procedure
naturally generalizes to address the problem of
simultaneous matching of multiple distributions.
Further, we propose a resampling strategy that sig-
nificantly improves sample quality, by repurpos-
ing the trained critic function via an importance
weighting mechanism. Experiments show that the
proposed procedure improves stability and con-
vergence, and yields state-of-art results on a wide
range of generative modeling tasks.

1. Introduction
Learning to sample from complicated distributions has at-
tracted considerable recent interest, with many important
applications (Zhu et al., 2017; Ledig et al., 2017; Yu et al.,
2017; Hu et al., 2017). Likelihood-free models avoid the
need to explicitly assume a particular parametrization of
the data-generating distribution pG(x). Such models implic-
itly define a distribution via generator G(z; θ) : Z → X ,
and a latent random variable Z with pre-specified distribu-
tion q(z). Samples from the generator are produced by first
drawing Z ∼ q(z) and then feeding it through the generator.

To match pG(x) to the true data distribution pd(x), one es-
timates a discrepancy measure, d(pd, pG). In the GAN
framework, the discrepancy is first estimated by maxi-
mizing an auxiliary variational functional V (pd, pG;D) :
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P × P → R between distributions pd(x) and pG(x) sat-
isfying d(pd, pG) = maxD V (pd, pG;D), where P is the
space of probability distributions and V (pd, pG;D) is esti-
mated using samples from the two distributions. Function
D(x;ω), parameterized by ω and known as the critic func-
tion, is intended to maximally discriminate between samples
of the two distributions. One seeks to match the generator
distribution pG(x) to the unknown true distribution pd(x)
by solving a minimax game between the critic and the gen-
erator: minG maxD V (pd, pG;D).

Following ideas from the original GAN (Goodfellow et al.,
2014), which optimizes the Jensen-Shannon divergence,
much recent work has focused on information-theoretic
divergences, such as the KL-divergence (Sønderby et al.,
2017). Many other studies have investigated the gener-
alized f -divergence (Csiszár, 1963), Divf (pd ‖ pG) ,∫
f
(
pd(x)
pG(x)

)
pG(x) dx, where f(·) : R → R is a convex

function satisfying f(1) = 0, that summarizes the local dis-
crepancy between pd(x) and pG(x). Nowozin et al. (2016)
proposed an algorithm based on the variational formula-
tion of Divf (pd ‖ pG), Uehara et al. (2016) explored in
depth its density-ratio formulation, and Nock et al. (2017)
further generalized it from an information-geometric per-
spective. Interestingly, Mao et al. (2017) showed that a
specific type of f -divergence, namely the χ2-divergence,
can be directly optimized for GAN learning, by recasting it
as a least-squares regression problem.

However, Arjovsky & Bottou (2017) showed that when us-
ing divergence-based objectives, the parameter updates for
the generator can be either uninformative or numerically
unstable, and divergence-based objectives may not be contin-
uous wrt the generator parameters. These issues motivated
development of GAN formulations based on Integral Prob-
ability Metrics (IPMs) (Müller, 1997). IPM models seek
to optimize an objective of the form VIPM(pd, pG;D) =
EX∼pd [D(X;ω)] − EX′∼pG [D(X ′;ω)], where EX∼pd [·]
denotes the expectation wrt to distributions pd(x). When
the critic D(x;ω) is chosen from a unit ball of Lipschitz-1
functions (‖D‖Lip ≤ 1), the IPM reduces to the Wasserstein-
1 or earth mover’s distance (Rubner et al., 2000). In this
case, the challenge with dIPM(pd, pG) lies in constraining
the critic function Lipschitz constant (Arjovsky et al., 2017;
Gulrajani et al., 2017; Miyato et al., 2017).
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Separately, Reproducing Kernel Hilbert Space (RKHS) the-
ory has motivated development of a powerful set of methods
to handle probability problems (Muandet et al., 2017). In
particular, the embedding of probability measures via ker-
nels (Sriperumbudur et al., 2010) has attracted significant
interest. Let κ(·, ·) be a positive definite function known as
the kernel function. The kernel embedding of distribution
p(x) is given by νp(x) , EX∼p[κ(x,X)] . The Maximal
Mean Discrepancy MMD(pd, pG) , ‖νpd − νpG‖H, de-
fines a distance metric on distributions pd(x) and pG(x),
where ‖ · ‖H is the kernel-induced norm in H, a Hilbert
space. MMD readily translates into an algorithm that does
not require the adversarial game for generative modeling (Li
et al., 2015; Dziugaite et al., 2015). However, RKHS-based
generative models have high computational cost, while in
the case of generative models, also struggling when deal-
ing with complex distributions (Bińkowski et al., 2018). In
practice, good performance can be achieved with careful
hyperparameter tuning and by introducing auxiliary loss
terms to the objective (Zhang et al., 2017; Li et al., 2017b).

From a pragmatic perspective, GANs rarely converge to
the desired equilibrium (Arora & Zhang, 2018), instead
settling for a sub-optimal local solution, where samples
produced by the trained generative model often lack di-
versity (Salimans et al., 2016). To alleviate these issues,
most existing studies focus on seeking more stable architec-
tures (Radford et al., 2016), enforcing heuristically-derived
or theoretically-inspired regularized objectives (Salimans
et al., 2016; Warde-Farley & Bengio, 2017; Mescheder et al.,
2017b; Roth et al., 2017), and procedures that leverage care-
fully designed optimization paths (Karras et al., 2018).

We present new theoretical insights on GAN-based gener-
ative modeling, the cause of some of its difficulties, and
principled solutions to address associated challenges. Our
key contributions include: (i) We present theory connecting
three major generative modeling frameworks: divergence-,
IPM- and kernel-based approaches. (ii) A novel, conceptu-
ally simple procedure is introduced, termed χ2-GAN, that
is stable at training and embraces sample diversity during
generation. (iii) It is demonstrated that our formulation
naturally generalizes to problems requiring simultaneous
matching of multiple distributions. (iv) We propose to fully
exploit the learned critic function, by repurposing it as a
weighting mechanism in a resampling procedure, leveraging
useful information from the critic to improve sample quality.

2. Learning χ2 GANs
2.1. Distribution Mixture and Generative Modeling

Consider joint random variables (X,Y ), where X is drawn
from mixture distribution [p(x) + q(x)]/2, and Y is a ran-
dom variable identifying the mixture component from which

X is drawn; Y = 1 if X is drawn from p(x), with Y = −1
if X is drawn from q(x). We denote the joint density for
(X,Y ) as µ(x, y; p, q); to avoid notational clutter, we of-
ten omit its dependency on (p, q) when the context is clear.
Further, let µ(x) and µ(y) be the marginals of µ(x, y).

It can be readily verified that X and Y from µ(x, y) are
statistically independent if and only if p(x) and q(x) match.
For subsequent generative modeling, p(x) is the true data
distribution, pd(x), and q(x) is the generator distribution,
pG(x). We can therefore cast the problem of learning the pa-
rameters of a generative model G(x; θ) as seeking to match
our generator distribution to that of the data, by minimizing
the statistical dependency between the data variable, X , and
its label, Y .

More generally, random variables (X,Y ) are manifested
with X drawn from mixture model 1

M

∑M
m=1 pm(x) and

with Y ∈ {1, . . . ,M} identifying the mixture component
from which X is drawn. Extending the ideas discussed
above, we can jointly match M > 2 distributions {pm(x)},
by minimizing the statistical dependency between data X
and mixture-component label Y .

2.2. Covariance Operator and Statistical Dependency

Let f(x) : X → R and g(y) : Y → R be two square-
integrable functions defined over the domains of X and Y ,
respectively. The covariance wrt the joint density µ(x, y) is

cov(f, g) = EX,Y∼µ[(f(X)− E[f ])(g(Y )− E[g])],

where E[f ] = EX [f(X)] is the marginal mean of f(x),
similarly defined for E[g]. When X and Y are statistically
independent, i.e. µ(x, y) = µ(x)µ(y), cov(f, g) = 0 for
every choice of f(x) and g(y). We show below that the
statistical independency between X and Y is implied when
cov(f, g) = 0 holds for every f(x) and g(y) chosen from a
sufficiently rich function space.

Let HX and HY be two Hilbert spaces for functions de-
fined on X and Y , equipped with inner products 〈·, ·〉HX
and 〈·, ·〉HY respectively. In an RKHS, the kernel function
defines the inner product, i.e., 〈·, ·〉H = κ(·, ·). The cross-
covariance operator wrt the triplet {µ(x, y),HX ,HY } is
defined as the operator CXY : HX → HY satisfying

〈g, CXY f〉HY = cov(f(X), g(Y )),

for all f(x) ∈ HX and g(y) ∈ HY . The existence of
CXY is a direct result of the Riesz representation theorem
(Yoshida, 1974). One can further define the covariance
operator CXX : HX → HX as

〈f1, CXXf2〉HX = cov(f1(x), f2(x)), (1)

and similarly for CY Y .
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Further assume HX and HY are separable and let E =
{ei}∞i=1 and F = {fi}∞i=1 be their respective Complete
Orthonormal Systems (CONS). The Hilbert-Schmidt norm
‖ · ‖HS of an operator A : HX → HY is defined as

‖A‖2HS :=

∞∑
i,j=1

〈Aei, fj〉2HY , (2)

which is independent of the choice of the CONS (Adams &
Fournier, 2003). It can be readily verified that for the cross-
covariance operator ‖CXY ‖2HS = 0 implies cov(f, g) = 0
for f(x) ∈ HX and g(y) ∈ HY . To understand when does
it imply independence, let us further denote the space of
square integrable functions wrt random variable X as L2

X .
The following result, adapted from Theorem 4 of Gretton
et al. (2005a), states that whenHX andHY are sufficiently
rich, a vanishing ‖CXY ‖2HS implies the statistical indepen-
dence of X and Y , and vice versa.

Theorem 1. If HX and HY are dense in L2
X and L2

Y , re-
spectively, then ‖CXY ‖2HS = 0 if and only if X and Y are
statistically independent.

Proofs for all theoretical results are found in the Supplemen-
tary Material (SM).

The cross-covariance operator norm ‖CXY ‖2HS in (2) is
at the core of the Hilbert-Schmidt Independence Crite-
ria (HSIC) (Gretton et al., 2012); we are interested in
such criteria to assess the independence of X and Y dis-
cussed in Sec. 2.1. In an RKHS, let K̃(n)

X be the Gram
matrix of samples {xi}ni=1, whose entries are defined as
[K̃

(n)
X ]ij = κ(xi, xj), then the centralized Gram matrix is

given by K(n)
X = HnK̃

(n)
X Hn, where Hn , In − 1

n1n1
T
n

is the centralizing matrix, with a similar definition for K(n)
Y ;

1n is an n-dimensional vector of all ones, and In is the n×n
identity matrix). The empirical estimator for HSIC results
in an elegant population-wise expression:

‖Ĉ(n)
XY ‖

2
HS ,

1

n2
tr
(
K

(n)
X K

(n)
Y

)
, (3)

where tr(·) is the trace operation. Despite its simple mathe-
matical expression, it is difficult to use HSIC as an optimiza-
tion objective, because computations require quadratic time,
O(n2), and (3) depends on the inner product of the Hilbert
space, which is not invariant to the kernel function space
used. As a result, HSIC is known to be highly sensitive to
the choice of the kernel Hilbert space.

2.3. Normalization of Cross-covariance Operator

To circumvent the dependence on the form of the inner prod-
uct, we consider the normalized cross-covariance operator
VXY : HX → HY (Baker, 1973), with slight abuse of

notation, given by

VXY = C
−1/2
Y Y CXY C

−1/2
XX .

Intuitively, operators C−1/2
XX and C−1/2

Y Y defined as (3) via
(1) normalize the covariances in function space, thus VXY
can be understood as the cross-correlation operator. The
following Lemma formalizes this intuition.

Lemma 2. For ‖f‖2HX = ‖g‖2HY = 1, we have

〈g, VXY f〉HY = corr
(
C
−1/2
XX f(X), C

−1/2
Y Y g(Y )

)
.

The next two theoretical results expand on the invariance of
‖VXY ‖2HS to the choice of the function space.

Proposition 3. If E = {ei}∞i is a complete orthonormal
system inHX , then C−1/2

XX E = {C−1/2
XX ei}∞i is a complete

orthonormal system in L2
X .

Corollary 4. Let E = {ei}∞i and F = {fj}∞j be the
respective CONS forHX andHY , we have

‖VXY ‖2HS =
∑
i,j

{
corr

(
C
−1/2
XX ei, C

−1/2
Y Y fj

)}2

. (4)

The above result shows that ‖VXY ‖2HS only depends on
C
−1/2
XX E and C−1/2

Y Y F , and not directly on the inner prod-
uct of the Hilbert space. Further, in RKHS it is known
that ‖VXY ‖2HS is invariant when the kernel functions are
characteristic e.g., Gaussian kernels.

Fukumizu et al. (2007) proposed a regularized empirical
estimator for ‖VXY ‖2HS in (4), given by

‖V̂ (n)
XY ‖

2
HS = tr(R(n)

X R
(n)
Y ), (5)

where R(n)
X = K

(n)
X (K

(n)
X + εnIn)−1 (similarly defined for

R
(n)
Y ) and εn > 0 is the regularization parameter.

Use of a metric like ‖V̂ (n)
XY ‖2HS appears promising as a means

of assessing the independence of X and Y . However, in
addition to the challenge of selecting kernels for the RKHSs,
(5) comes with significant computational overhead; the ma-
trix inversion in R(n)

X requiresO(n3) operations. While this
estimator is shown to be consistent, provided εn → 0 and
ε3nn→∞, empirical results indicate that εn must be care-
fully tuned to avoid degenerate solutions. Further, despite its
theoretical invariance, empirical estimates vary significantly
wrt the choice of kernels, while also not performing well in
high-dimensional settings.

2.4. χ2 Generative Adversarial Net

Key to circumvent the excessive computational burden of
(5) is that rather than explicitly computing C

−1/2
XX E and
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C
−1/2
Y Y F in (4), we can instead use some pre-specified func-

tion spaces Ẽ and F̃ to estimate ‖VXY ‖2HS. Next, we derive
specific results on evaluating ‖VXY ‖2HS for the mixture dis-
tribution µ(x, y) defined in Sec. 2.1.

Let σ2
µ(f) denote the variance of a function f(x) wrt

random variable X with marginal µ(x). Let φ(x) =
E[Y |X = x] be the conditional expectation of Y given
X , gχ(x) = φ(x)

σµ(φ) is the variance normalized φ(x), and
ψ(x) = Pr(Y = +1|X = x) is the conditional probability
of Y = +1 given X , i.e., the critic used in the original
GAN, D(x;ω). The χ2 mutual information of µ(x, y) is
defined as

MIχ(µ) =

∫∫ (
µ(x, y)

µ(x)µ(y)
− 1

)2

µ(x)µ(y) dx dy,

where µ(x) and µ(y) denote the marginals. The χ2 distance
between p(x) and q(x) is thus defined as

Disχ(p, q) =

√∫
(p(x)− q(x))2

p(x)+q(x)
2

dx.

The next proposition, connecting divergence, IPM and
Hilbert spaced based discrepancies constitutes our main
result.

Proposition 5. The following quantities are identical:

(i) ‖VY X‖2HS, (ii) MIχ(µ),
(iii) {Disχ(p, q)}4/(16‖φ(X)‖2µ), (iv) {corr(φ(X), Y )}2,
(v) {corr(ψ(X), Y )}2,
(vi) (EX1∼p[gχ(X1)]− EX2∼q[gχ(X2)])2/4.

The equivalence between (i)-(iii) unveils the connections
between the RKHS independence metric ‖VY X‖2HS, the
information theoretic divergence metric MIχ(µ) and the
variance-constrained IPM metric Disχ(p, q) (Mroueh &
Sercu, 2017). On the other hand, (iv)-(vi) provide us with
practical empirical estimators for these metrics. The key in-
sight from Proposition 5 is that we only need to compute the
critic ψ(x) or φ(x) to estimate ‖VXY ‖2HS, or equivalently,
the χ2 mutual information of the mixture distribution in Sec.
2.1. Consequently, to formulate an optimization procedure
for generative modeling, we can minimize ‖VXY ‖2HS wrt
the generator. We call the framework χ2-GAN due to its
inherent connection to the χ2 metric.

We now detail the construction of χ2-GAN based on es-
timator (iv) from Proposition 5. Let pG(x) be the data
generating distribution implicitly defined by (a deep neural)
generator G(z; θ) parametrized by θ, Z ∼ q(z), and let
D = {D(x;ω);ω ∈ Ω} be a parameterized family from
which we choose the critic D(x;ω). The (least-squares)

Algorithm 1 χ2 GAN.
Input: data {xi}, batchsize b, decay ρ, learning rate δ.
for t = 1, 2, 3, . . . do

1. Sample minibatch {xi ∼ pd(x), zi ∼ p(z)}bi=1

2. Update the critic D(x;ω) to improve (minimize)∑
i(D(xi;ω)− 1)2 + (D(G(zi; θt−1);ω) + 1)2

3. Update the variance σ2
µ for D(x;ωt)

4. Update the correlation estimate
ct(θt−1) = (1− ρ)ct−1

+ ρ
2b

∑
i

(
D(xi;ωt)−D(G(zi;θt−1);ωt)

σµ(D(x;ωt))

)
5. Update the generator G(z; θ)

θt = θt−1 + δGradClip
(
∇θ(ct(θt−1))2

)
end for

loss functions for the critic and generator are given by

LD(ω|θ) = EX,Y∼µ[(D(X;ω)− Y )2],

LG(θ|ω) =

(
EX∼pd [D(X;ω)]− EX∼pG [D(X;ω)]

σµ(D(X;ω))

)2

.

where µ(x, y) = 1
2pd(x)+ 1

2pG(x) as in Sec. 2.1. Note that
µ(x, y) and σµ(·) are implicitly dependent on θ via pG(x).

We further denote ω∗(θ) , arg minω LD(ω|θ), the optimal
critic parameters conditioned on the generator. When D is
dense in L2

X , we have

D(x;ω∗(θ)) = φ(x), and LG(θ|ω∗(θ)) = 4‖VXY ‖2HS,

which follows from Proposition 5. To match pG(x) to pd(x),
we solve minθ LG(θ|ω∗(θ)). We propose to decouple the
above optimization scheme into the following GAN-like
iterations:

ωt ← arg minω LD(ω|θt−1),

θt ← arg minθ∈∆(θt−1) LG(θ|ωt, θt−1),

where ∆(θt−1) denotes the trust region for the generator
update. In LG(θ|ωt, θt−1), we have replaced σµ(D(x;ω))
with its stale estimate σµt−1

(D(x;ω)). We regularize the
update of the generator to make sure LG(θ|ωt) remains a
good approximation to ‖VXY ‖2HS. This can be implemented
with proximal gradient descent, or simply via gradient clip-
ping as summarized in Algorithm 1.

2.5. Joint Matching of Multiple Distributions

We now discuss the generalization to multi-component mix-
tures. Since the M components in 1

M

∑M
m=1 pm(x) are

mutually exclusive, the space of L2
Y has dimension M − 1.

We use the following M − 1 empirical basis functions to
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Figure 1. Relations between likelihood-free generative models.

span L2
Y :

γm(yl) =

{
1, m = l

−(M − 1)−1, m 6= l
,

for m ∈ {1, . . . ,M − 1} and l ∈ {1, . . . ,M}. We
collect {γm(y)}M−1

m=1 into a vector function Γ(y) =
[γ1(y), · · · , γM−1(y)]T , with corresponding (M − 1) ×
(M − 1) covariance matrix ΣY with elements [ΣY ]ij =
1/(M − 1) if i = j and [ΣY ]ij = −1/(M − 1)2 oth-
erwise. Note that EY [Γ(Y )] = 0, and this construction
exactly recovers our Y ∈ {±1} binary labeling when
M = 2. For the data side, we use critics ψm(x) =
Pr(Y = ym|X = x) as the empirical basis, and simi-
larly use a compact M − 1 dimensional vector representa-
tion Ψ̃(x) = [ψ1(x), . . . , ψ(M−1)(x)]T . We use Ψ(x) =

Ψ̃(x) − EX [Ψ̃(X)] for mean centering and denote its co-
variance matrix as ΣX . The objective for multi-distribution
matching is then

Vχ2 =
∥∥∥EX,Y∼µ [Σ−1/2

X Ψ(X)TΓ(Y )Σ
−1/2
Y

]∥∥∥2

Fro
,

where ‖ · ‖Fro denotes the Frobenius norm. In practice,
we use cross-entropy loss to estimate Ψ̃(x), and leverage
a moving average estimator to track the expectation and
covariance of Ψ(x), otherwise it is similar to Algorithm 1.
The complete algorithm and additional remarks are found
in the SM.

2.6. Importance Resampling

Current practice in modeling with GANs discards the critic
after training, with the learned generator used for sampling.
However, the generator distribution rarely reaches the de-
sired target distribution on real-world complex datasets,
while the trained critic contains useful local information
that does not get incorporated into the generator during
training. Consider two cases: i) the generator does not have
enough capacity to characterize the target distribution, and

Algorithm 2 Importance resampling.
Input: Generator G(z; θ), critic D(x;ω), sample size n.
1. Sample candidates: {xi = G(zi; θ)}ni=1, zi ∼ p(z).
2. Compute importance weights:

wi = w̃i(
∑n
j=1 w̃j)

−1,

where w̃i = ζ(D(xi;ω)).
3. Sample j ∼ Cat(w1, . . . , wn).
Return: xj = G(zj ; θ)

approaches a solution that covers the support of the target
without properly capturing its topology; ii) the target has
disjoint support regions and the generator covers each of
them, but with inconsistent amounts of probability mass.
In either case, as described below, the critic can be repur-
posed to provide additional information to assist sample
generation (after training).

To fully harness the information from the critic to improve
sample quality, we propose to resample the generator. Recall
that in importance sampling, one uses a proposal distribution
q(x) to sample, and then one reweights samples by their
importance weights w(x) , p(x)/q(x), to compute the
expectation wrt to the target distribution p(x), i.e.,

EX∼p[f(X)] = EX∼q [w(X)f(X)] ≈ 1

n

n∑
i=1

p(xi)

q(xi)
f(xi),

where {xi}ni=1 are iid samples from q(x). We propose
treating the data-generating distribution pG(x) as the pro-
posal distribution, and collecting the importance weights
w(x) = pd(x)/pG(x) from the critic. For divergence-based
generative models (f -GAN, χ2-GAN, etc.), importance
weights can often be directly computed from the critic via
some simple transformation ζ(·) (see SM for details). For
other generative models, an auxiliary log-density ratio critic
can be trained with cross-entropy loss to track the impor-
tance weights. We summarize the importance resampling
procedure in Algorithm 2.

3. Related Work
The proposed χ2 GAN connects three popular likelihood-
free generative modeling frameworks (see Figure 1). It
is derived from the theory of RKHS independence analy-
sis and it can be shown that the popular MMD objective
(Gretton et al., 2012) is an unnormalized version of our χ2

objective (see SM). χ2 GAN optimizes a divergence criteria
with an IPM loss, using a critic trained with a stable least-
squares loss, similar to that of LS-GAN (Mao et al., 2017).
Regular divergence-based GANs directly optimize the di-
vergence between pd(x) and pG(x), while χ2-GAN instead
optimizes the divergence between µ(x, y) and µ(x)µ(y),
which characterizes the independence between the sample
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Figure 2. Toy model comparison for GAN, MMD-GAN, WGAN-
GP and χ2-GAN. Distributions are visualized with KDE plots.

and associated label, i.e. the mutual information. This al-
lows easy generalization beyond matching two distributions.
Fisher GAN (Mroueh & Sercu, 2017) is closest to our χ2-
GAN, which builds on the IPM framework and like ours,
also normalizes the critic with its second moment. The key
differences are that Fisher GAN relies on a more sophisti-
cated augmented Lagrangian to optimize the same objective
for both the critic and generator, while χ2 GAN decouples
the critic and generator objectives, requiring simpler (un-
constrained) stochastic-gradient-descent-type updates.

For RKHS-based generative modeling the choice of kernel
is crucial. Theoretical properties and empirical performance
have been analyzed for a number of popular kernels, such as
inverse multi-quadratic (Gorham & Mackey, 2017), Plum-
mer (Unterthiner et al., 2018), rational quadratic (Bińkowski
et al., 2018) and energy distance (Liu, 2017). Although de-
rived from a kernel formulation, our training procedure is in
practice kernel-free.

Modern generative modeling has deep roots in statistical
testing. Prior studies have primarily focused on two sample
tests (Gretton et al., 2012). Our study builds on the work of
independence testing (Gretton et al., 2005b), which general-
izes two sample tests and can be extended to settings with
multiple generators and critics (Durugkar et al., 2017).

Simultaneous matching of multiple distributions is a key
technique needed in many machine learning applications
(Zhao et al., 2017). In the GAN context, generalization to
the JSD metric have been explored to address this challenge
(Gan et al., 2017; Li et al., 2017a; Pu et al., 2018b). However
for RKHS and IPM-based generative models, currently there
is no generalization, and one has to build M(M−1)

2 pairwise
critics, which can be prohibitively expensive whenM grows
large. Our χ2 GAN represents the first attempt to bridge this
gap. Our theory implies using a quadratic number of critics
is unnecessary, and instead χ2 GAN computes an M − 1
dimensional critic.

Importance sampling is a classic technique used in Monte

Table 1. Quantitative results on MNIST. † is estimated using AIS;
‡ is reported in (Hu et al., 2018); § are likelihood-based models.

Model log p(x) ≥ IS

NF§ (Rezende & Mohamed, 2015) -85.1 -
PixelRNN§ (Oord et al., 2016) -79.2 -
AVB§ (Mescheder et al., 2017a) -79.5 -
ASVAE§ (Pu et al., 2017) -81.14 -
sVAE-r§ (Pu et al., 2018a) -79.26 † 9.12

GAN (Goodfellow et al., 2014) -114.25 † 8.34 ‡

WGAN-GP (Gulrajani et al., 2017) -79.92 † 8.45 ‡

DCGAN (Radford et al., 2016) -79.47 † 8.93
χ2 GAN (ours) -78.85 † 9.01

Carlo methods (Liu, 2008). One of its key applications is to
evaluate the quality of statistical models (Neal, 2001; Wu
et al., 2017). Recently, this idea has been used in likelihood-
based generative models to sharpen the variational bound
(Burda et al., 2016), and has been extended to improve
the training of likelihood-assisted GAN variants (Hu et al.,
2018). To the best of the authors’ knowledge, resampling
the generator as proposed here has not yet been explored
before and, not being exclusive to our formulation, can be
easily used with other methods.

4. Experiments
We consider a wide range of synthetic and real-world
tasks to experimentally validate χ2 GAN, and bench-
mark it against other state-of-the-art solutions. All ex-
periments are implemented with Tensorflow and run on
a single NVIDIA TITAN X GPU. Details of the exper-
imental setup are in the SM, and code for our experi-
ments are available from https://www.github.com/
chenyang-tao/chi2gan.

4.1. Toy Distributions

We compare χ2 GAN with one representative model from
each category, namely the original GAN, WGAN-GP and
MMD GAN, on three toy distributions. The same model
architecture is used for all models, with the exception of
MMD GAN which does not need an explicit critic function.
The generation results are summarized in Figure 2.

All models except MMD perform well on the baseline Swiss
roll experiment. The mixture-of-Gaussians experiments test
algorithm robustness to mode collapse. The original GAN
demonstrates its vulnerability dealing with distributions
with disjoint modes, and MMD learns an overly smoothed
distribution, even with carefully tuned kernel hyperparame-
ter. Both WGAN-GP and χ2 GAN successfully learn good
approximations to the target distribution, with the latter
showing faster convergence and more-stable training.

https://www.github.com/chenyang-tao/chi2gan
https://www.github.com/chenyang-tao/chi2gan
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Table 2. Unsupervised Inception Score on CIFAR-10

Model IS

ALI (Dumoulin et al., 2017) 5.34 ± .05
DCGAN (Radford et al., 2016) 6.16 ± .07
MMD-GAN (Li et al., 2017b) 6.17 ± .07
WGAN-GP (Gulrajani et al., 2017) 6.56 ± .05
ASVAE (Pu et al., 2017) 6.89 ± .05
sVAE-r (Pu et al., 2018a) 6.96 ± .066
χ2-GAN (ours) 7.47 ± 0.105

WGAN-GP ResNet 7.86 ± .07
Fisher-GAN ResNet (Mroueh & Sercu, 2017) 7.90 ± .05
χ2-GAN ResNet (ours) 7.88 ± .10

4.2. Image Datasets

We trained χ2 GAN on a number of popular image datasets
to demonstrate its ability to learn complex distributions for
real-world applications. For supervised generation tasks,
we condition the generator on the label of an image. To
quantitatively evaluate model performance, we consider the
following metrics in our experiments: (1) Inception score
(IS) (Salimans et al., 2016) for datasets associated with one-
hot labels; (2) AIS score (Wu et al., 2017) to estimate the
log likelihood.

We only report the quantitative results for the raw generator
distribution in the main text, and results for the importance
resampled generator are found separately in SM. Two net-
work architectures were considered in these experiments:
DCGAN and ResNet. In all experiments we have used
Xaiver initialization and Adam optimizer. All images shown
are random samples and not cherry picked. We note better
quantitative results have been reported in the literature using
specific techniques orthogonal to our main contributions
(Karras et al., 2018; Warde-Farley & Bengio, 2017; Miyato
et al., 2017; Salimans et al., 2018), see SM for a discussion.

MNIST We used the binarized MNIST in this experiment
and compared with the results from prior results in Table
1. Our χ2 GAN achieves an AIS score of −78.85 nats
and an IS score of 9.01. These results lead the chart for
all likelihood-free generative models we considered, and
they are comparable to, or even better than those from the
best-performing likelihood-based models.

Cifar10 For this dataset, we experimented with both un-
supervised and supervised generation tasks. Quantitative
results are summarized in Tables 2 and 3. For both tasks, χ2

GAN consistently achieved state-of-the-art results obtained
with the network architectures considered. Most notably,
our χ2 GAN significantly outperformed DCGAN, MMD
GAN and WGAN-GP in the unsupervised generation task
with the DCGAN architecture. We also provide quantitative
results with the Fréchet Inception Distance (FID) (Heusel
et al., 2017) in SM. See Figure 3 for qualitative assessment.

CelebA We provide a comparison of DCGAN, Fisher GAN

Table 3. Supervised Inception Score on CIFAR-10

Model IS

SteinGAN (Wang & Liu, 2016) 6.16 ± .07
DCGAN (Radford et al., 2016) 6.58 ± .05
AC-GAN (Odena et al., 2017) 8.25 ± .07
SGAN (Huang et al., 2017) 8.59 ± .12

Fisher-GAN ResNet (Mroueh & Sercu, 2017) 8.16 ± .12
WGAN-GP ResNet (Gulrajani et al., 2017) 8.42 ± .10
χ2-GAN ResNet (ours) 8.44 ± .10

Table 4. Unsupervised Inception Score on ImageNet

Model IS

DCGAN (Radford et al., 2016) 5.965
PixelCNN++ (Salimans et al., 2017) 7.65
ASVAE (Pu et al., 2017) 11.14

χ2-GAN (ours) 11.34

and our χ2 GAN on the face generation task in Figure 4. We
trained DCGAN and χ2 GAN to generate the face samples,
and collected Fisher GAN’s samples from the original paper.
All models used the DCGAN architecture. We observe that
χ2 GAN produced (subjectively) more compelling samples,
capturing facial details, illumination and more realistic tex-
tures compared with its counterparts. Additional samples
are shown in the SM, and we find no evidence of mode
collapse. We also provide additional experimental evidence
in the SM to verify χ2-GAN learns generalizable features
rather than remembering training examples.

We also use the face-generation task to demonstrate the ef-
ficacy of importance resampling. In Figure 4 we compare
the accepted and rejected samples1. Those less-compelling
samples produced by the generator are immediately identi-
fied based on the importance score. Quantitive results for
importance resampling can be found in the SM.

ImageNet We also considered ImageNet to evaluate the
scalability of the models on large datasets. All images are
resized to 64×64, and the quantitative results are reported in
Table 4. With the simple DCGAN architecture, our χ2 GAN
significantly outperformed more-sophisticated PixelCNN++
GAN, even surpassing the performance of likelihood-based
ASVAE. See the SM for generated samples.

Stability, robustness, convergence and sample diversity
In all our experiments on the image datasets, χ2 GAN
demonstrated stable training dynamics. It showed a similar
convergence rate 2 compared with WGAN-GP in terms of
iterations, but much cheaper per-iteration cost. χ2 GAN
also demonstrated robustness as we varied model architec-
tures, network normalization schemes and hyperparameters

1We used a less well-trained model and picked our samples
based on the importance weights to highlight the difference.

2Wrt IS score and visual inspection, see SM.
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Figure 3. Generated images on Cifar-10. Left: unsupervised generation; right: supervised generation.

Figure 4. Face generation quality comparison. From left to right: DCGAN, Fisher GAN, χ2 GAN, high importance weight samples and
low importance weight samples.

Figure 5. MNIST image translation. First column is the input
image from test set, subsequent columns are sampled translations.

(results not shown). We also do not find any evidence for
mode collapse in our experiments.

4.3. Matching Multiple Distributions

To demonstrate the flexibility of the χ2 GAN framework
to match multiple distributions, we consider the following
translation task: Given paired examples {(xi, zi)}ni=1, sam-
ple from all possible translations z for a new observation
x, and vice versa. More explicitly, consider the distribution
triplet: p0(x, z) = pd(x, z), p1(x, z) = pd(x)q1(z|x; θ1),
and p2(x, z) = pd(z)q2(x|z; θ2), where q1(z|x; θ1) and
q2(x|z; θ2) are the translation models. When translations
are faithful to the data distribution, we have p0(x, z) =
p1(x, z) = p2(x, z). Here (x, z) are paired data, and we
consider the problem of image-to-image translation.

Rotated MNIST In this experiment we pair each MNIST
digit with a random sample of the same type, rotated by
90°. Our translation results are presented in Figure 5. It is
observed that χ2 GAN translations achieved both fidelity

Figure 6. Edges2shoes translation.

and diversity for this task.

Edges-to-shoes We evaluate the performance on the more-
realistic edges-to-shoes dataset, where the model learns to
translate between shoes and sketches. As shown in Figure
6, χ2 GAN learned to produce faithful translations.

5. Conclusions
We have developed a framework that unifies prior theoret-
ical frameworks for likelihood-free generative modelling,
and based on this we proposed a novel algorithm named
χ2 GAN. Our approach is conceptually simple, and can be
readily generalized to match multiple distributions. Em-
pirical evidence verified that this new method offers com-
petitive performance on a wide range of generation tasks.
For future work, we intend to investigate its connections to
the likelihood-based generative models, and to seek novel
applications by integrating it with other machine learning
algorithms.
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