A. Proof of Theorem 7 (Sampled Positive Definite Quadratics)

We begin by noting that σ is positive definite if and only if the optimal value of the following problem is positive for any value of $\varepsilon > 0$,

$$\begin{split} & \inf_{\xi} \ \sigma(\xi) \\ & \text{s.t.} \ \begin{cases} \ (\mathbf{x},\mathbf{g},\mathbf{f}) \text{ as in (16) generated by method } (\mathcal{M}) \\ & \text{applied to } f \in \mathcal{F}_{\mu,L}, \\ & \|\xi\| \geq \varepsilon. \end{split}$$

Next, we discretize the problem by replacing $f \in \mathcal{F}_{\mu,L}$ with the equivalent condition that the discrete set of points $\{(y_i, g_i, f_i)\}_{i \in \mathcal{I}_K}$ is $\mathcal{F}_{\mu,L}$ -interpolable (recall that $\mathcal{I}_K = \{0, \ldots, K, \star\}$). Choosing a specific notion of distance for ξ , we can reformulate the previous statement as verifying that $p_{\star}^{(d)}(\varepsilon) > 0$ for all $\varepsilon > 0$ where

$$p_{\star}^{(d)}(\varepsilon) := \min_{\mathbf{x}, \mathbf{g}, \mathbf{f}} \sigma(\xi)$$

s.t.
$$\begin{cases} \{(y_i, g_i, f_i)\}_{i \in \mathcal{I}_k} \text{ is } \mathcal{F}_{\mu, L}\text{-interpolable,} \\ (\mathbf{x}, \mathbf{g}, \mathbf{f}) \text{ as in (16) generated by } (\mathcal{M}), \\ \|\mathbf{x}\|^2 + \|\mathbf{g}\|^2 + \mathbf{1}^{\mathsf{T}}\mathbf{f} = \varepsilon. \end{cases}$$

Note that the last condition can equivalently be replaced by others (e.g., $\|\mathbf{x}\|^2 = \varepsilon$ or $\|\mathbf{g}\|^2 = \varepsilon$ or $\mathbf{1}^{\mathsf{T}} \mathbf{f} = \varepsilon$), and that the optimal value of this problem is attained (using a short homogeneity argument with respect to ε). Using the necessary and sufficient conditions for the set of points $\{(y_i, g_i, f_i)\}_{i \in \mathcal{I}_k}$ to be $\mathcal{F}_{\mu, L}$ -interpolable from Theorem 6, we have

$$p_{\star}^{(d)}(\varepsilon) = \min_{\mathbf{x}, \mathbf{g}, \mathbf{f}} \sigma(\xi)$$

s.t.
$$\begin{cases} \phi_{ij} \ge 0 \text{ for all } i, j \in \mathcal{I}_K, \\ (\mathbf{x}, \mathbf{g}, \mathbf{f}) \text{ as in (16) generated by } (\mathcal{M}), \\ \|\mathbf{x}\|^2 + \|\mathbf{g}\|^2 + \mathbf{1}^{\mathsf{T}}\mathbf{f} = \varepsilon. \end{cases}$$

Next, we define the Gram matrix $\mathbf{G} \in \mathbb{S}^{N+K+2}$ as $\mathbf{G} := \mathbf{B}^{\mathsf{T}} \mathbf{B}$ where

$$\mathbf{B} := \begin{bmatrix} x_{-N} - x_{\star} & \dots & x_0 - x_{\star} & g_0 & \dots & g_K \end{bmatrix}, \quad (24)$$

hence **G** is a standard Gram matrix containing all inner products between $x_i - x_*$ for $i \in \{-N, ..., 0\}$ and g_i for $i \in \{0, ..., K\}$. Note that the quadratic σ can be written as a function of the Gram matrix as

$$\sigma(\mathbf{G}, \mathbf{f}) = \operatorname{tr}(Q\mathbf{G}) + q^{\mathsf{T}}\mathbf{f}.$$

Similarly, the interpolation conditions can also be reformulated with the Gram matrix as

$$0 \le \phi_{ij}(\mathbf{G}, \mathbf{f}) = \operatorname{tr}(M_{ij}\mathbf{G}) + m_{ij}^{\mathsf{T}}\mathbf{f}$$

where M_{ij} and m_{ij} are such that

$$\phi_{ij} = \begin{bmatrix} \mathbf{x} \\ \mathbf{g} \end{bmatrix}^{\mathsf{T}} (M_{ij} \otimes I_d) \begin{bmatrix} \mathbf{x} \\ \mathbf{g} \end{bmatrix} + m_{ij}^{\mathsf{T}} \mathbf{f},$$

for all $i, j \in \mathcal{I}_K$ (hence also \star is in the index set). Therefore, we can reformulate the previous problem as the following rank-constrained semidefinite program:

$$p_{\star}^{(d)}(\varepsilon) = \min_{\mathbf{G} \in \mathbb{S}^{N+K+2}, \mathbf{f} \in \mathbb{R}^{N+1}} \operatorname{tr}(Q\mathbf{G}) + q^{\mathsf{T}}\mathbf{f}$$

s.t.
$$\begin{cases} 0 \leq \operatorname{tr}(M_{ij}\mathbf{G}) + m_{ij}^{\mathsf{T}}\mathbf{f} & \text{for } i, j \in \mathcal{I}, \\ \operatorname{tr}(\mathbf{G}) + \mathbf{1}^{\mathsf{T}}\mathbf{f} = \varepsilon, \\ \mathbf{f} \geq 0, \\ \mathbf{G} \succeq 0, \\ \operatorname{Rank}(\mathbf{G}) \leq d, \end{cases}$$

where we remind the reader that d is the dimension of the optimization problem (\mathcal{P}). Therefore, as discussed in (Taylor et al., 2017c;b), if we want a result that does not depend on the dimension (i.e, a σ that is positive definite whatever the value of d), we have to verify that $p^{(\infty)}(\varepsilon) > 0$ (which corresponds to assuming that $d \ge N+K+2$ since this is the dimension of **G**). We then have the following semidefinite program:

$$p_{\star}^{(\infty)}(\varepsilon) = \min_{\mathbf{G} \in \mathbb{S}^{N+K+2}, \mathbf{f} \in \mathbb{R}^{N+1}} \operatorname{tr}(Q\mathbf{G}) + q^{\mathsf{T}}\mathbf{f}$$

s.t.
$$\begin{cases} 0 \leq \operatorname{tr}(M_{ij}\mathbf{G}) + m_{ij}^{\mathsf{T}}\mathbf{f} & \text{for } i, j \in \mathcal{I}, \\ \operatorname{tr}(\mathbf{G}) + \mathbf{1}^{\mathsf{T}}\mathbf{f} = \varepsilon, \\ \mathbf{f} \geq 0, \\ \mathbf{G} \succeq 0. \end{cases}$$

A Slater point for this problem (i.e., a feasible point such that $\mathbf{G} \succ 0$) is obtained in the following section, so the optimal value of the primal problem is equal to the optimal value of the dual, which is given by

$$d^{(\infty)}(\varepsilon) := \max_{\{\lambda_{ij}\},\nu} \nu \varepsilon$$

s.t.
$$\begin{cases} \lambda_{ij} \ge 0 \text{ for all } i, j \in \mathcal{I}, \\ Q - \sum_{i,j \in \mathcal{I}} \lambda_{ij} M_{ij} \succeq \nu I_{N+K+2}, \\ q - \sum_{i,j \in \mathcal{I}} \lambda_{ij} m_{ij} \ge \nu \mathbf{1}_{N+1}. \end{cases}$$

The theorem is then proved by noting the equivalence

$$p^{(\infty)}(\varepsilon) > 0, \ \forall \varepsilon > 0 \iff d^{(\infty)}(\varepsilon) > 0, \ \forall \varepsilon > 0,$$

where the last statement amounts to verifying that

$$Q - \sum_{i,j \in \mathcal{I}} \lambda_{ij} M_{ij} \succ 0, \quad q - \sum_{i,j \in \mathcal{I}} \lambda_{ij} m_{ij} > 0. \quad \blacksquare$$

B. Slater Point for Proof of Theorem 7

In this section, we show how to construct a Slater point (Boyd & Vandenberghe, 2004) for the primal semidefinite program in the proof of Theorem 7. The construction is similar to Section 2.1.2 of (Nesterov, 2004) and the proof of Theorem 6 in (Taylor et al., 2017c).

Consider applying the first-order iterative fixed-step method (\mathcal{M}) with $\alpha \neq 0$ and $\gamma_0 \neq 0$ for K iterations to the function $f(x) = \frac{1}{2}x^{\mathsf{T}}Hx$ where $H \in \mathbb{S}^d$ with $d \geq N + K + 2$ is the positive definite tridiagonal matrix defined by

$$[H]_{ij} = \begin{cases} 2 & \text{if } i = j \\ 1 & \text{if } |i - j| = 1 \\ 0 & \text{otherwise} \end{cases}$$

which has maximum eigenvalue $L = 2 + 2\cos(\pi/(d+1))$. Define the matrix **B** in (24). Using the initial condition $x_i = e_{N+1+i}$ for $i = -N, \ldots, 0$, we will show that **B** is upper triangular with nonzero diagonal elements, and hence full rank.

Since $\gamma_0 \neq 0$, y_0 has a nonzero element corresponding to e_{N+1} . Then $g_0 = Hy_0$ has a nonzero element corresponding to e_{N+2} due to the tridiagonal structure of H. Furthermore, y_0 may only have nonzero elements corresponding to e_j for $j = 1, \ldots, N+1$, so g_0 must have zero components corresponding to e_j for all j > N+2.

We now continue by induction. Assume that g_k has a nonzero element corresponding to e_{N+2+k} and zero elements corresponding to e_i for all i > N+2+k. Since $\alpha \neq 0$, x_{k+1} has a nonzero element corresponding to e_{N+2+k} and zero elements corresponding to e_i for all i > N + 2 + k. Then since $\gamma_0 \neq 0$, y_{k+1} also has the same structure. Due to the tridiagonal structure of H, g_{k+1} then has a nonzero element corresponding to e_{N+3+k} and zero elements corresponding to e_i for all i > N+3+k. Therefore, by induction we have shown that for all $k \ge 0$, g_k has a nonzero element corresponding to e_{N+2+k} and zero elements corresponding to e_i for all i > N + 2 + k. For P to be upper triangular, we need g_K to have dimension at least N + 2 + K. Thus, if $d \geq N+2+K$ where K is the number of iterations, then B is upper triangular with nonzero entries on the diagonal, and therefore has full rank.

In order to make the statement hold for general $\mu < L$, observe that the tridiagonal structure of H is preserved under the operation

$$\tilde{H} = \left(H - \lambda_{\min}(H)I\right) \frac{L - \mu}{\lambda_{\max}(H) - \lambda_{\min}(H)} + \mu I$$

where $\mu I \preceq \tilde{H} \preceq LI$.

Since **B** has full rank, the Gram matrix $\mathbf{G} = \mathbf{B}^{\mathsf{T}}\mathbf{B} \succ 0$ is positive definite. Therefore, the primal semidefinite program satisfies Slater's condition.

C. Steepest Descent

In this section, we show a similar formulation as (ρ -SDP) for steepest descent. In this case, the analysis was not *a priori* guaranteed to be tight, due to the line search conditions. In order to encode the line search, we use the corresponding optimality conditions, as in (de Klerk et al., 2017):

with $g_k = \nabla f(x_k)$. For the Lyapunov function structure, we choose the following

$$V(\xi_k) = \begin{bmatrix} x_k - x_\star \\ g_k \end{bmatrix} (P \otimes I_d) \begin{bmatrix} x_k - x_\star \\ g_k \end{bmatrix}^{\mathsf{T}} + p(f_k - f_\star).$$

In order to develop a SDP formulation for this problem we follow the same steps as for (ρ -SDP), starting with **Step 1** (see Section 4.2): we define the following row vectors in \mathbb{R}^2

$$\bar{y}_0^{(0)} := \mathbf{e}_1^\mathsf{T}, \, \bar{x}_0^{(0)} := \mathbf{e}_1^\mathsf{T}, \, \bar{g}_0^{(0)} := \mathbf{e}_2^\mathsf{T},$$

and $\bar{y}_{\star}^{(0)} = \bar{x}_{\star}^{(0)} = \bar{g}_{\star}^{(0)} := \mathbf{0}^{\mathsf{T}}$, along with the scalars $\bar{f}_{0}^{(0)} := 1$ and $\bar{f}_{\star}^{(0)} := 0$. In addition, we use the following vectors in \mathbb{R}^{4}

$$\bar{x}_{0}^{(1)} \coloneqq \mathbf{e}_{1}^{\mathsf{T}}, \, \bar{x}_{1}^{(1)} \coloneqq \mathbf{e}_{2}^{\mathsf{T}}, \\ \bar{y}_{0}^{(1)} \coloneqq \mathbf{e}_{2}^{\mathsf{T}}, \, \bar{y}_{1}^{(1)} \coloneqq \mathbf{e}_{2}^{\mathsf{T}}, \\ \bar{g}_{0}^{(1)} = \mathbf{e}_{3}^{\mathsf{T}}, \, \bar{g}_{1}^{(1)} \coloneqq \mathbf{e}_{4}^{\mathsf{T}},$$

and $\bar{y}_{\star}^{(1)} = \bar{x}_{\star}^{(1)} = \bar{g}_{\star}^{(1)} := \mathbf{0}^{\mathsf{T}}$, along with $\bar{f}_{0}^{(1)}, \bar{f}_{1}^{(1)}, \bar{f}_{\star}^{(1)} \in \mathbb{R}^{2}$ such that $\bar{f}_{0}^{(1)} := \mathbf{e}_{1}^{\mathsf{T}}, \bar{f}_{1}^{(1)} := \mathbf{e}_{2}^{\mathsf{T}}$ and $\bar{f}_{\star}^{(1)} := \mathbf{0}^{\mathsf{T}}$.

Because of the algorithm, **Step 2** is slightly different as before; we encode the line search constraints (25) using

$$A_{1} = \begin{bmatrix} \bar{x}_{0}^{(1)} \\ \bar{x}_{1}^{(1)} \\ \bar{g}_{1}^{(1)} \end{bmatrix}^{\mathsf{T}} \begin{bmatrix} 0 & 0 & -1 \\ 0 & 0 & 1 \\ -1 & 1 & 0 \end{bmatrix} \begin{bmatrix} \bar{x}_{0}^{(1)} \\ \bar{x}_{1}^{(1)} \\ \bar{g}_{1}^{(1)} \end{bmatrix},$$
$$A_{2} = \begin{bmatrix} \bar{g}_{0}^{(1)} \\ \bar{g}_{1}^{(1)} \end{bmatrix}^{\mathsf{T}} \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} \bar{g}_{0}^{(1)} \\ \bar{g}_{1}^{(1)} \end{bmatrix}.$$

The subsequent steps (**Step 3** and **Step 4**) are exactly the same as in Section 4.2. We finally obtain a slightly modified

version of the feasibility problem (ρ -SDP):

$$\begin{split} & \underset{\substack{P \in \mathbb{S}^2 \\ p \in \mathbb{R}^1 \\ \{\lambda_{ij}\} \\ \{\eta_{ij}\} \\ \{\eta_{ij}\} \\ } }{ for i, j \in \mathcal{I}_0 } \lambda_{ij} \, M_{ij}^{(0)} \\ & 0 \geq \Delta V_0^{(0)} - \sum_{i,j \in \mathcal{I}_0} \lambda_{ij} \, m_{ij}^{(0)} \\ & 0 \geq \Delta V_0^{(1)} + \sum_{i,j \in \mathcal{I}_1} \eta_{ij} \, M_{ij}^{(1)} + \sum_{i=1}^2 \nu_i \, A_i \\ & 0 \geq \Delta v_0^{(1)} + \sum_{i,j \in \mathcal{I}_1} \eta_{ij} \, m_{ij}^{(1)} \\ & 0 \leq \lambda_{ij} \quad \text{for } i, j \in \mathcal{I}_0 \\ & 0 \leq \eta_{ij} \quad \text{for } i, j \in \mathcal{I}_1 \end{split}$$

with $\mathcal{I}_0 := \{0, \star\}$ and $\mathcal{I}_1 := \{0, 1, \star\}.$

D. SDP for HBM with Subspace Searches

We follow the steps of the previous section for steepest descent; we only make the following adaptations: (i) we look for a quadratic Lyapunov function with the states

$$V(\xi_k) = \begin{bmatrix} x_k - x_* \\ x_{k-1} - x_* \\ g_k \\ g_{k-1} \end{bmatrix} (P \otimes I_d) \begin{bmatrix} x_k - x_* \\ x_{k-1} - x_* \\ g_k \\ g_{k-1} \end{bmatrix}^{\mathsf{T}} + p^{\mathsf{T}} \begin{bmatrix} f_k - f_* \\ f_{k-1} - f_* \end{bmatrix},$$

(ii) we adapt the initialization (**Step 1**), (iii) adapt the line search conditions (**Step 2**) and (iv) obtain a slightly modified version of the SDP.

For (ii), we adapt the initialization procedure (Step 1) as follows. We define the following row vectors of \mathbb{R}^4 :

$$\begin{split} \bar{x}_{0}^{(1)} &:= \mathbf{e}_{1}^{\mathsf{T}}, \, \bar{x}_{1}^{(1)} := \mathbf{e}_{2}^{\mathsf{T}}, \\ \bar{y}_{0}^{(1)} &:= \mathbf{e}_{1}^{\mathsf{T}}, \, \bar{y}_{1}^{(1)} := \mathbf{e}_{2}^{\mathsf{T}}, \\ \bar{g}_{0}^{(1)} &:= \mathbf{e}_{3}^{\mathsf{T}}, \, \bar{g}_{1}^{(1)} := \mathbf{e}_{4}^{\mathsf{T}}, \end{split}$$

along with $\bar{y}_{\star}^{(1)} = \bar{x}_{\star}^{(1)} = \bar{g}_{\star}^{(1)} := \mathbf{0}^{\mathsf{T}}$, and the following in \mathbb{R}^2 : $\bar{f}_0^{(1)} := \mathbf{e}_1^{\mathsf{T}}$, $\bar{f}_1^{(1)} := \mathbf{e}_2^{\mathsf{T}}$ and $\bar{f}_{\star}^{(1)} := \mathbf{0}^{\mathsf{T}}$. We also define the following row vectors in \mathbb{R}^7 :

$$\begin{split} \bar{x}_{-1}^{(2)} &:= \mathbf{e}_{1}^{\mathsf{T}}, \, \bar{x}_{0}^{(2)} := \mathbf{e}_{2}^{\mathsf{T}}, \, \bar{x}_{1}^{(2)} := \mathbf{e}_{3}^{\mathsf{T}}, \, \bar{x}_{2}^{(2)} := \mathbf{e}_{4}^{\mathsf{T}}, \\ \bar{y}_{0}^{(2)} &:= \bar{x}_{0}^{(2)}, \, \bar{y}_{1}^{(2)} := \bar{x}_{1}^{(2)}, \, \bar{y}_{2}^{(2)} := \bar{x}_{2}^{(2)}, \\ \bar{y}_{0}^{(2)} &:= \mathbf{e}_{5}^{\mathsf{T}}, \, \bar{g}_{1}^{(2)} := \mathbf{e}_{6}^{\mathsf{T}}, \, \bar{g}_{2}^{(2)} := \mathbf{e}_{7}^{\mathsf{T}}, \end{split}$$

along with $y_{\star}^{(2)} = \bar{x}_{\star}^{(2)} = \bar{g}_{\star}^{(2)} := \mathbf{0}^{\mathsf{T}}$ and the vectors of \mathbb{R}^3 : $\bar{f}_0^{(2)} := \mathbf{e}_1^{\mathsf{T}}, \bar{f}_1^{(2)} := \mathbf{e}_2^{\mathsf{T}}, \bar{f}_2^{(2)} := \mathbf{e}_3^{\mathsf{T}}$ and $\bar{f}_{\star}^{(2)} := \mathbf{0}^{\mathsf{T}}$. Now for (iii) (or **Step 2**), optimality of the search conditions can be

which we can formulate in matrix form for $k \in \{0, 1\}$:

$$A_{1+k} = \begin{bmatrix} \bar{x}_{k}^{(2)} \\ \bar{x}_{k+1}^{(2)} \\ \bar{g}_{k+1}^{(2)} \end{bmatrix}^{\mathsf{T}} \begin{bmatrix} 0 & 0 & -1 \\ 0 & 0 & 1 \\ -1 & 1 & 0 \end{bmatrix} \begin{bmatrix} \bar{x}_{k}^{(2)} \\ \bar{x}_{k+1}^{(2)} \\ \bar{g}_{k+1}^{(2)} \end{bmatrix}^{\mathsf{T}} \begin{bmatrix} 0 & 0 & -1 \\ 0 & 0 & 1 \\ -1 & 1 & 0 \end{bmatrix} \begin{bmatrix} \bar{x}_{k-1}^{(2)} \\ \bar{x}_{k}^{(2)} \\ \bar{g}_{k+1}^{(2)} \end{bmatrix}^{\mathsf{T}} \begin{bmatrix} 0 & 1 \\ 0 & 0 & 1 \\ -1 & 1 & 0 \end{bmatrix} \begin{bmatrix} \bar{x}_{k}^{(2)} \\ \bar{x}_{k}^{(2)} \\ \bar{g}_{k+1}^{(2)} \end{bmatrix}^{\mathsf{T}} \begin{bmatrix} 0 & 1 \\ 0 & 0 & 1 \\ \bar{g}_{k}^{(2)} \\ \bar{g}_{k+1}^{(2)} \end{bmatrix}^{\mathsf{T}} \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} \bar{g}_{k}^{(2)} \\ \bar{g}_{k+1}^{(2)} \end{bmatrix}$$

The subsequent steps (**Step 3** and **Step 4**) are exactly the same as in Section 4.2. We finally obtain a slightly modified version of the feasibility problem (ρ -SDP):

$$\begin{split} \underset{\substack{P \in \mathbb{S}^{2} \\ p \in \mathbb{R}^{1} \\ \{\lambda_{ij}\} \\ \{\eta_{ij}\} \\ \{\eta_{ij}\} \\ } }{ for i, j \in \mathcal{I}_{1}} & 0 \prec V_{1}^{(1)} - \sum_{i,j \in \mathcal{I}_{1}} \lambda_{ij} \, M_{ij}^{(1)} \\ \lambda_{ij} \, M_{ij}^{(1)} \\ \\ 0 \succeq \Delta V_{1}^{(2)} + \sum_{i,j \in \mathcal{I}_{2}} \eta_{ij} \, M_{ij}^{(2)} + \sum_{i=1}^{6} \nu_{i} \, A_{i} \\ 0 \ge \Delta V_{1}^{(2)} + \sum_{i,j \in \mathcal{I}_{2}} \eta_{ij} \, M_{ij}^{(2)} \\ \\ 0 \ge \Delta v_{1}^{(2)} + \sum_{i,j \in \mathcal{I}_{2}} \eta_{ij} \, M_{ij}^{(2)} \\ \\ 0 \le \lambda_{ij} \quad \text{for } i, j \in \mathcal{I}_{1} \\ 0 \le \eta_{ij} \quad \text{for } i, j \in \mathcal{I}_{2} \end{split}$$

with $\mathcal{I}_1 := \{0, 1, \star\}$ and $\mathcal{I}_2 := \{0, 1, 2, \star\}$. The corresponding results are presented on Figure 3.

E. SDP for FGM with Scheduled Restarts

This setting goes slightly beyond the fixed-step model presented in (\mathcal{M}) , as the step sizes depend on the iteration. We study the algorithm described by (23), which does N steps of the standard fast gradient method (Nesterov, 1983) before restarting. We study the convergence of this scheme using quadratic Lyapunov functions of the form

$$\begin{bmatrix} y_k^N - x_\star \\ \nabla f(y_k^N) \end{bmatrix}^{\mathsf{T}} (P \otimes I_d) \begin{bmatrix} y_k^N - x_\star \\ \nabla f(y_k^N) \end{bmatrix} + p \left[f(y_k^N) - f(x_\star) \right].$$
(26)

Let us perform similar steps as for (ρ -SDP) for constructing the corresponding SDP. We start with the initialization procedure **Step 1**. Let us define the following row vectors in \mathbb{R}^2 :

$$\bar{y}_0^{(1)} = \bar{x}_0^{(1)} := \mathbf{e}_1^\mathsf{T}, \ \bar{g}_0^{(1)} := \mathbf{e}_2^\mathsf{T},$$

and $\bar{x}_{\star}^{(1)} = \bar{g}_{\star}^{(1)} := \mathbf{0}^{\mathsf{T}}$, along with the scalars $f_0^{(1)} := 1$ and $f_{\star}^{(1)} := 0$. In addition, we define the row vectors of \mathbb{R}^{N+2} :

$$\bar{x}_0^{(N+1)} \coloneqq \mathbf{e}_1^\mathsf{T}, \, \bar{g}_k^{(N+1)} \coloneqq \mathbf{e}_{2+k}^\mathsf{T},$$

for k = 0, ..., N, along with $\bar{x}_{\star}^{(N+1)} = \bar{g}_{\star}^{(N+1)} := \mathbf{0}^{\mathsf{T}}$ and the row vectors $\bar{f}_{k}^{(N+1)} \in \mathbb{R}^{N+1}$ defined as $\bar{f}_{k}^{(N+1)} := \mathbf{e}_{1+k}^{\mathsf{T}}$ and $\bar{f}_{\star}^{(N+1)} := \mathbf{0}^{\mathsf{T}}$.

Step 2 Apply one complete loop of the algorithm as follows: for k = 0, ..., N - 1 define the sequence of row vectors:

$$\begin{split} \bar{z}_{k+1}^{(N+1)} &= \bar{y}_{k}^{(N+1)} - \frac{1}{L} \bar{g}_{k}^{(N+1)}, \\ \bar{y}_{k+1}^{(N+1)} &= \bar{z}_{k}^{(N+1)} + \frac{\beta_{k} - 1}{\beta_{k+1}} (\bar{z}_{k}^{(N+1)} - \bar{z}_{k}^{(N+1)}), \end{split}$$

with $\beta_0 := 1$ and $\beta_{k+1} := \frac{1 + \sqrt{4\beta_k^2 + 1}}{2}$. For complying with the notations of the paper, we define the sequence

$$x_k^{(K)} \coloneqq y_k^{(K)}$$

for k = 0, ..., N and $K \in \{1, N+1\}$. Then, using the sets $\mathcal{I}_1 := \{0, \star\}$ and $\mathcal{I}_{N+1} := \{0, ..., N, \star\}$, the other stages follow from the same lines as **Step 3**, and **Step 4** with the slight modification of the expression for the rate

$$\begin{split} \Delta v_k^{(N+1)} &\coloneqq v_{k+1}^{(N+1)} - \rho^{2N} \, v_k^{(N+1)}, \\ \Delta V_k^{(N+1)} &\coloneqq V_{k+1}^{(N+1)} - \rho^{2N} \, V_k^{(N+1)}, \end{split}$$

and Step 5 follows as in Section 4.2:

$$\begin{split} & \underset{\substack{P \in \mathbb{S}^{2(N+1)} \\ p \in \mathbb{R}^{N+1} \\ \{\lambda_{ij}\} \\ \{\eta_{ij}\} \\ \end{array}}{ \begin{array}{l} 0 \prec V_{1}^{(1)} - \sum_{i,j \in \mathcal{I}_{1}} \lambda_{ij} \, M_{ij}^{(1)} \\ 0 \geq v_{1}^{(1)} - \sum_{i,j \in \mathcal{I}_{1}} \lambda_{ij} \, m_{ij}^{(1)} \\ \end{array} \\ & \begin{array}{l} 0 \succeq \Delta V_{N}^{(N+1)} + \sum_{i,j \in \mathcal{I}_{N+1}} \eta_{ij} \, M_{ij}^{(N+1)} \\ 0 \geq \Delta v_{N}^{(N+1)} + \sum_{i,j \in \mathcal{I}_{N+1}} \eta_{ij} \, m_{ij}^{(N+1)} \\ \end{array} \\ & \begin{array}{l} 0 \leq \lambda_{ij} \quad \text{for } i, j \in \mathcal{I}_{1} \\ 0 \leq \eta_{ij} \quad \text{for } i, j \in \mathcal{I}_{N+1} \\ \end{split}$$

(note that the sets \mathcal{I}_1 and \mathcal{I}_{N+1} should use the definitions of this section). Numerical results are available in Figure 4.