
Appendix: Bayesian Uncertainty Estimation for Batch Normalized Deep
Networks

1. Appendix
1.1. Variational Approximation

Assume we were to come up with a family of distributions parameterized by θ in order to approximate the posterior, qθ(ω).
Our goal is to set θ such that qθ(ω) is as similar to the true posterior p(ω|D) as possible.

For clarity, qθ(ω) is a distribution over stochastic parameters ω that is determined by a set of learnable parameters θ and
some source of randomness. The approximation is therefore limited by our choice of parametric function qθ(ω) as well
as the randomness.1 Given ω and an input x, an output distribution p(y|x,ω) = p(y|fω(x)) = fω(x,y) is induced by
observation noise (the conditionality of which is omitted for brevity).

One strategy for optimizing θ is to minimize KL(qθ(ω)||p(ω|D)), the KL divergence of p(ω|D) w.r.t. qθ(ω). Minimizing
KL(qθ(ω)||p(ω|D)) is equivalent to maximizing the ELBO:∫

ω

qθ(ω) ln p(Y|X,ω)dω − KL(qθ(ω)||p(ω))

Assuming i.i.d. observation noise, this is equivalent to minimizing:

LVA(θ) := −
N∑
n=1

∫
qθ(ω) ln p(yi|fω(xi))dω + KL(qθ(ω)||p(ω))

Instead of making the optimization on the full training set, we can use a subsampling (yielding an unbiased estimate of
LVA(θ)) for iterative optimization (as in mini-batch optimization):

L̂VA(θ) := −N
M

∑
i∈B

∫
ω

qθ(ω) ln p(yi|fω(xi))dω + KL(qθ(ω)||p(ω))

During optimization, we want to take the derivative of the expected log likelihood w.r.t. the learnable parameters θ. (Gal,
2016) provides an intuitive interpretation of a MC estimate for NNs trained with a SRT (equivalent to the reparametrisation
trick in (Kingma & Welling, 2014)), and this interpretation is followed here. We let an auxillary variable ε represent the
stochasticity during training such that ω = g(θ, ε). The function g and the distribution of ε are such that p(g(θ, ε)) =
qθ(ω).2 Assuming qθ(ω) can be written

∫
ε
qθ(ω|ε)p(ε)dε where qθ(ω|ε) = δ(ω − g(θ, ε)), this auxiliary variable yields

the estimate (full proof in (Gal, 2016)):

L̂VA(θ) = −N
M

∑
i∈B

∫
ε

p(ε) ln p(yi|fg(θ,ε)(xi))dε+ KL(qθ(ω)||p(ω))

where taking a single sample MC estimate of the integral yields the optimization objective in Eq. 1.

1In an approx. Bayesian view of a NN, qθ(ω) would correspond to the distribution of weights in the network given by some SRT.
2In a NN trained with BN, it is easy to see that g exists if we let ε represent a mini-batch selection from the training data, since all BN

units’ means and variances are completely determined by ε and θ.
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1.2. KL Divergence of factorized Gaussians

If qθ(ω) and p(ω) factorize over all stochastic parameters:

KL(qθ(ω)||p(ω)) =−
∫
ω

∏
i

[
qθ(ωi)

]
ln

∏
i p(ωi)∏
i qθ(ωi)

dω

=−
∫
ω

∏
i

[
qθ(ωi)

]∑
i

[
ln

p(ωi)

qθ(ωi)

]∏
i

dωi

=
∑
j

[
−
∫
ω

∏
i

[
qθ(ωi)

]
ln

p(ωj)

qθ(ωj)

∏
i

dωi
]

=
∑
j

[
−
∫
ωj

qθ(ωj) ln
p(ωj)

qθ(ωj)
dωj

∫
ωi6=j

∏
i6=j

qθ(ωi)dωi
]

=
∑
i

−
∫
ωi

qθ(ωi) ln
p(ωi)

qθ(ωi)
dωi

=
∑
i

KL(qθ(ωi)||p(ωi))

(3)

such that KL(qθ(ω)||p(ω)) is the sum of the KL divergence terms for the individual stochastic parameters ωi. If the
factorized distributions are Gaussians, where qθ(ωi) = N (µq, σ

2
q ) and p(ωi) = N (µp, σ

2
p) we get:

KL(qθ(ωi)||p(ωi)) =

∫
ωi

qθ(ωi) ln
qθ(ωi)

p(ωi)
dωi

=−H(qθ(ωi))−
∫
ωi

qθ(ωi) ln p(ωi)dωi

=− 1

2
(1 + ln(2πσ2

q ))

−
∫
ωi

qθ(ωi) ln
1

(2πσ2
p)1/2

exp
{
− (ωi − µp)2

2σ2
p

}
dωi

=− 1

2
(1 + ln(2πσ2

q ))

+
1

2
ln(2πσ2

p) +
Eq[ω2

i ]− 2µpEq[ωi] + µ2
p

2σ2
p

= ln
σp
σq

+
σ2
q + (µq − µp)2

2σ2
p

− 1

2

(4)

for each KL divergence term. Here H(qθ(ωi)) = 1
2 (1 + ln(2πσ2

q )) is the differential entropy of qθ(ωi).

1.3. Distribution of µuB, σuB
Here we approximate the distribution of mean and standard deviation of a mini-batch, separately to two Gaussians – This has
also been empirically verified, see Figure 1 for 2 sample plots and the appendix section 1.9 for more. For the mean we get:

µB =
ΣM

m=1W
(j)xm

M

where xm are the examples in the sampled batch. We will assume these are sampled i.i.d.3. Samples of the random variable
W(j)xm are then i.i.d.. Then by central limit theorem (CLT) the following holds for sufficiently large M (often ≥ 30):

µB ∼ N (µ,
σ2

M
)

3Although in practice with deep learning, mini-batches are sampled without replacement, stochastic gradient descent samples with
replacement in its standard form.
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Figure 1. Batch statistics used to train the network are normal. A one-sample Kolmogorov-Smirnov test checks that µB and σB come
from a standard normal distribution. More examples are available in Appendix 1.9.

For standard deviation:

σB =

√
ΣM

m=1(W(j)xm − µB)2

M

Then

√
M(σB − σ) =

√
M
(√ΣM

m=1(W(j)xm − µB)2

M
−
√
σ2
)

We want to rewrite
√

ΣM
m=1(W(j)xm−µB)2

M . We take a Taylor expansion of f(x) =
√
x around a = σ2. With x =

ΣM
m=1(W(j)xm−µB)2

M :

√
x =
√
σ2 +

1

2
√
σ2

(x− σ2) +O[(x− σ2)2]

so

√
M(σB − σ) =

√
M

(
1

2
√
σ2

(ΣM
m=1(W(j)xm − µB)2

M
− σ2

)
+

O

[(ΣM
m=1(W(j)xm − µB)2

M
− σ2

)2
])

=

√
M

2σ

( 1

M
ΣM

m=1(W(j)xm − µB)2 − σ2
)

+

O

[
√
M
(ΣM

m=1(W(j)xm − µB)2

M
− σ2

)2
]

=
1

2σ
√
M

(
ΣM

m=1(W(j)xm − µB)2 −Mσ2
)

+

O

[
√
M
(ΣM

m=1(W(j)xm − µB)2

M
− σ2

)2
]
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consider ΣM
m=1(W(j)xm − µB)2. We know that E[W(j)xm] = µ and write

ΣM
m=1(W(j)xm − µB)2

=ΣM
m=1((W(j)xm − µ)− (µB − µ))2

=ΣM
m=1((W(j)xm − µ)2 + (µB − µ)2 − 2(W(j)xm − µ)(µB − µ))

=ΣM
m=1(W(j)xm − µ)2 +M(µB − µ)2 − 2(µB − µ)ΣM

m=1(W(j)xm − µ)

=ΣM
m=1(W(j)xm − µ)2 −M(µB − µ)2

=ΣM
m=1((W(j)xm − µ)2 − (µB − µ)2)

then
√
M(σB − σ) =

1

2σ
√
M

(
ΣM

m=1((W(j)xm − µ)2 − (µB − µ)2)−Mσ2
)

+

O

[
√
M
(ΣM

m=1(W(j)xm − µB)2

M
− σ2

)2
]

=
1

2σ
√
M

(
ΣM

m=1(W(j)xm − µ)2 − ΣM
m=1(µB − µ)2 −Mσ2

)
+

O

[
√
M
(ΣM

m=1(W(j)xm − µB)2

M
− σ2

)2
]

=
1

2σ
√
M

(
ΣM

m=1((W(j)xm − µ)2 − σ2)− ΣM
m=1(µB − µ)2

)
+

O

[
√
M
(ΣM

m=1(W(j)xm − µB)2

M
− σ2

)2
]

=
1

2σ
√
M

ΣM
m=1((W(j)xm − µ)2 − σ2)

− 1

2σ
√
M

ΣM
m=1(µB − µ)2

+O

[
√
M
(ΣM

m=1(W(j)xm − µB)2

M
− σ2

)2
]

=
1

2σ
√
M

ΣM
m=1((W(j)xm − µ)2 − σ2)︸ ︷︷ ︸

term A

−
√
M

2σ
(µB − µ)2︸ ︷︷ ︸
term B

+O

[
√
M
(ΣM

m=1(W(j)xm − µB)2

M
− σ2

)2
]

︸ ︷︷ ︸
term C

We go through each term in turn

Term A
We have

Term A =
1

2σ
√
M

ΣM
m=1((W(j)xm − µ)2 − σ2)

where ΣM
m=1(W(j)xm − µ)2 is the sum of M RVs (W(j)xm − µ)2. Note that since E[W(j)xm] = µ it holds that

E[(W(j)xm − µ)2] = σ2. Since (W(j)xm − µ)2 is sampled approximately iid (by assumptions above), for large enough M
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by CLT it holds approximately that

ΣM
m=1(W(j)xm − µ)2 ∼ N (Mσ2,MVar((W(j)xm − µ)2))

where

Var((W(j)xm − µ)2) = E[(W(j)xm − µ)2∗2]− E[(W(j)xm − µ)2]2

= E[(W(j)xm − µ)4]− σ4

Then

ΣM
m=1((W(j)xm − µ)2 − σ2) ∼ N (0,M ∗ E[(W(j)xm − µ)4]−Mσ4)

so

Term A ∼ N (0,
E[(W(j)xm − µ)4]− σ4

4σ2
)

Term B
We have

Term B =

√
M

2σ
(µB − µ)2 =

1

2σ

√
M(µB − µ)(µB − µ)

Consider (µB − µ). As µB
p−→ µ when M →∞ we have µB − µ

p−→ 0. We also have

√
M(µB − µ) =

ΣM
m=1W

(j)xm√
M

−
√
Mµ

which by CLT is approximately Gaussian for large M . We can then make use of the Cramer-Slutzky Theorem, which states
that if (Xn)n≥1 and (Yn)n≥1 are two sequences such that Xn

d−→ X and Yn
p−→ a as n→∞ where a is a constant, then as

n→∞, it holds that Xn ∗ Yn
d−→ X ∗ a. Thus, Term B is approximately 0 for large M.

Term C
We have

Term C = O

[
√
M
(ΣM

m=1(W(j)xm − µB)2

M
− σ2

)2
]

Since E[(W(j)xm − µ)2] = σ2 we can make the same use of Cramer-Slutzky as for Term B, such that Term C is
approximately 0 for large M.

Finalizing the distribution
We have approximately

√
M(σB − σ) ∼ N (0,

E[(W(j)xm − µ)4]− σ4

4σ2
)

so

σB ∼ N (σ,
E[(W(j)xm − µ)4]− σ4

4σ2M
)

1.4. Prior

Here we make use of the stochasticity from BN modeled in the Appendix section 1.3, to evaluate the implied prior on the
stochastic variables for a BN network. Specifically, we consider a BN network with fully connected layers and BN applied
to each layer, trained with L2-regularization (weight decay). In the following, we make use of the simplifying assumptions
of no scale and shift tranformations, BN applied to each layer, and independent input units to each layer.



Appendix: Bayesian Uncertainty Estimation for Batch Normalized Deep Networks

Equivalence between the objectives of Eq. (1) and (2) requires:

∂

∂θk
KL(qθ(ω)||p(ω)) = Nτ

∂

∂θk
Ω(θ)

= Nτ
∂

∂θk

L∑
l=1

λl||Wl||2
(5)

where θk ∈ θ, and θ is the set of weights in the network. To proceed with the LHS of Eq. (5) we first need to find the
approximate posterior qθ(ω) that batch normalization induces. As shown in Appendix 1.3, with some weak assumptions
and approximations the Central Limit Theorem (CLT) yields Gaussian distributions of the stochastic variables µuB, σ

u
B, for

large enough M . For any BN unit u:

µuB ∝∼ N (µu,
(σu)2

M
),

σuB ∝∼ N (σu,
E[(W(u)x− µu)4]− (σu)4

4(σu)2M
)

(6)

where µu and σu are population-level moments (i.e. moments over D).

We assume that qθ(ω) and p(ω) factorize over all stochastic variables.4 We use i as an index of the set of stochastic variables.
As shown in Eq. (3) in Appendix 1.2, the factorized distributions yield:

KL(qθ(ω)||p(ω)) =
∑
i

KL(qθ(ωi)||p(ωi))

Note that each BN unit produces two KL(qθ(ωi)||p(ωi)) terms: one for ωi = µuB and one for ωi = σuB. We consider these
terms for one particular BN unit u, and drop the index i for brevity. We use a Gaussian prior p(ωi) = N (µp, σ

2
p) and, for

consistency, use the notation qθ(ωi) = N (µq, σ
2
q ). As shown in Eq. (4) in Appendix 1.2:

KL(qθ(ωi)||p(ωi)) = ln
σp
σq

+
σ2
q + (µq − µp)2

2σ2
p

− 1

2

Since θk changes during training, a prior cannot depend on θk so ∂
∂θk

(µp) = ∂
∂θk

(σp) = 0. Letting (·)′ denote ∂
∂θk

(·):

∂

∂θk
KL(qθ(ωi)||p(ωi)) =

σqσ
′
q + µqµ

′
q − µpµ′q

σ2
p

−
σ′q
σq

(7)

We need not consider θk past a previous layer’s BN, since a normalization step is performed before scale and shift. In the
general case with a given Gaussian p(ω), Eq. 7 evaluated on all BN units’ means and standard deviations w.r.t. all θk up to a
previous layer’s BN, would yield an expression for a custom Nτ ∂

∂θk
Ω(θ) that could be used for an exact VI treatment of

BN.

In our reconciliation of weight decay however, given our assumptions of no scale and shift and BN applied to each layer,
we need only consider the weights in the same layer as the BN unit. This means that the stochastic variables in layer l are
only affected by weights in θk ∈W l (i.e. not the scale and shift variables operating on the input to the layer). We denote a
weight connecting the k:th input unit to the u:th BN unit by W(u,k). For such weights, we need to derive µ′q and σ′q , for two
cases: ωi = µuB and ωi = σuB. We denote the priors of the mean and std. dev for µuB by µµ,q and σµ,q, and for σuB by µσ,q
and σσ,q . Using the distributions modeled in Eq. 6:

4The empirical distributions have been numerically checked to be linearly independent and the joint distribution is close to a bi-variate
Gaussian.
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Case 1: ωi = µuB

µµ,q =
∑
x∈D

W(u)x

N
= W(u)x̄

µ′µ,q =
∑
x∈D

xk
N

= x̄k

σµ,q =

√
(σu)2

M
=

√∑
x∈D(W(u)x− µq)2

NM

σ′µ,q =
1

2
σ−1
q

∑
x∈D

2(W(u)x− µq)(xk − x̄k)

NM
= σ−1

q

( K∑
i=1

W(u,i)Cov(xi, xk)

)
M−1

where there are K input units to the layer.

Case 2: ωi = σuB

µσ,q =

√∑
x∈D(W(u)x− µq)2

N
= σµ,qM

1
2

µ′σ,q = σ−1
µ,qM

− 1
2

( K∑
i=1

W(u,i)Cov(xi, xk))

)

σσ,q =
E[(W(u)x− µu)4]− (σu)4

4(σu)2M

σ′σ,q =
E[(W(u)x− µu)4]′σu − 2(σu)4(σu)′ − 2(σu)′E[(W(u)x− µu)4]

4(σu)3M

Combining these results with Eq. 7 we find that taking KL(qθ(ωi)||p(ωi)) for the mean and variance of a single BN unit u
wrt the weight from input unit k:

∂

∂W(u,k)
KL(qθ(µuB)||p(µuB)) +

∂

∂W(u,k)
KL(qθ(σuB)||p(σuB))

=
σµ,qσ

′
µ,q + µµ,qµ

′
µ,q − µµ,pµ′µ,q

σ2
µ,p

−
σ′µ,q
σµ,q

+
σσ,qσ

′
σ,q + µσ,qµ

′
σ,q − µσ,pµ′σ,q

σ2
σ,p

−
σ′σ,q
σσ,q

=
O(M−1) + x̄kW(u)x̄− µµ,px̄k

σ2
µ,p

−O(M−1)

+
O(M−2) +

∑K
i=1 W(u,i)Cov(xi, xk)− µσ,pO(M−

1
2 )

σ2
σ,p

−E[(W(u)x− µu)4]′σu − 2(σu)4(σu)′ − 2(σu)′E[(W(u)x− µu)4]

E[(W(u)x− µu)4]σu − (σu)5

where we summarize the terms scaled by M with O-notation. We see that if we let M → ∞, µµ,p = 0, σµ,p → ∞,
µσ,p = 0 and σσ,p is small enough, then:

∂

∂W(u,k)

(
KL(qθ(µuB)||p(µuB)) + KL(qθ(σuB)||p(σuB))

)
≈
∑K
i=1 W(u,i)Cov(xi, xk)

σ2
σ,p

such that each BN layer yields the following:∑
u

K∑
i=1

∂

∂W(u,i)

(
KL(qθ(µuB)||p(µuB)) + KL(qθ(σuB)||p(σuB))

)
≈
∑
u

∑K
i=1 Wu,i∑K

i2=1 Cov(xi, xi2)

σ2
σ,p,u

(8)
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where we denote the prior for the std. dev. of the std. dev. of BN unit u by σσ,p,u. Given our assumptions of no scale and
shift from the previous layer, and independent input features in every layer, Eq. 8 reduces to:

∑
u

K∑
i=1

Wu,i

σ2
σ,p

if the same prior is chosen for each BN unit in the layer. We therefore find that Eq. 5 is reconciled by p(µuB)→ N (0,∞)
and p(σuB)→ N (0, 1

2Nτλl
), if 1

2Nτλl
is small enough, which is the case if N is large.

1.5. predictive distribution properties

This section provides derivations of properties of the predictive distribution p∗(y|x,D) in section 3.4, following (Gal, 2016).
We first find the first two modes of the approximate predictive distribution (with the second mode applicable to regression),
then show how to estimate the predictive log likelihood, a measure of uncertainty quality used in the evaluation.

Predictive mean Assuming Gaussian iid noise defined by model precision τ , i.e. fω(x,y) = p(y|fω(x)) =
N (y; fω(x), τ−1I):

Ep∗ [y] =

∫
yp∗(y|x,D)dy

=

∫
y

y
(∫

ω

fω(x,y)qθ(ω)dω
)

dy

=

∫
y

y
(∫

ω

N (y; fω(x), τ−1I)qθ(ω)dω
)

dy

=

∫
ω

(∫
y

yN (y; fω(x), τ−1I)dy
)
qθ(ω)dω

=

∫
ω

fω(x)qθ(ω)dω

≈ 1

T

T∑
i=1

fω̂i
(x)

where we take the MC Integral with T samples of ω for the approximation in the final step.

Predictive variance For regression, our goal is to estimate:

Covp∗ [y] = Ep∗ [yᵀy]− Ep∗ [y]ᵀEp∗ [y]

We find that:

Ep∗ [yᵀy] =

∫
y

yᵀyp∗(y|x,D)dy

=

∫
y

yᵀy
(∫

ω

fω(x,y)qθ(ω)dω
)

dy

=

∫
ω

(∫
y

yᵀyfω(x,y)dy
)
qθ(ω)dω

=

∫
ω

(
Covfω(x,y)(y) + Efω(x,y)[y]ᵀEfω(x,y)[y]

)
qθ(ω)dω

=

∫
ω

(
τ−1I + fω(x)ᵀfω(x)

)
qθ(ω)dω

= τ−1I + Eqθ(ω)[fω(x)ᵀfω(x)]

≈ τ−1I +
1

T

T∑
i=1

fω̂i
(x)ᵀfω̂i

(x)
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where we use MC integration with T samples for the final step. The predictive covariance matrix is given by:

Covp∗ [y] ≈ τ−1I +
1

T

T∑
i=1

fω̂i
(x)ᵀfω̂i

(x)− Ep∗ [y]ᵀEp∗ [y]

which is the sum of the variance from observation noise and the sample covariance from T stochastic forward passes though
the network.

The form of p∗ can be approximated by a Gaussian for each output dimension (for regression). We assume bounded domains
for each input dimension, wide layers throughout the network, and a uni-modal distribution of weights centered at 0. By the
Liapounov CLT condition, the first layer then receives approximately Gaussian inputs (a proof can be found in (Lehmann,
1999)). Having sampled µuB and σuB from a mini-batch, each BN unit’s output is bounded. CLT thereby continues to hold
for deeper layers, including fω(x) = WLxL. A similar motivation for a Gaussian approximation of Dropout has been
presented by (Wang & Manning, 2013).

Predictive Log Likelihood We use the Predictive Log Likelihood (PLL) as a measure to estimate the model’s uncertainty
quality. For a certain test point (yi,xi), the PLL definition and approximation can be expressed as:

PLL(fω(x), (yi,xi)) = log p(yi|fω(xi))

= log

∫
fω(xi,yi)p(ω|D)dω

≈ log

∫
fω(xi,yi)qθ(ω)dω

≈ log
1

T

T∑
j=1

p(yi|fω̂j
(xi))

where ω̂j represents a sampled set of stochastic parameters from the approximate posterior distrubtion qθ(ω) and we take a
MC integration with T samples. For regression, due to the iid Gaussian noise, we can further develop the derivation into the
form we use when sampling:

PLL(fω(x), (yi,xi)) = log
1

T

T∑
j=1

N (yi|fω̂j
(xi), τ

−1I)

= logsumexpj=1,...,T

(
− 1

2
τ ||yi − fω̂j

(xi)||2
)

− log T − 1

2
log 2π +

1

2
log τ

Note that PLL makes no assumption on the form of the approximate predictive distribution.

1.6. Data

To assess the uncertainty quality of the various methods studied we rely on eight standard regression datasets, listed in Table
1. Publicly available from the UCI Machine Learning Repository (University of California, 2017) and Delve (Ghahramani,
1996), these datasets have been used to benchmark comparative models in recent related literature (see (Hernández-Lobato
& Adams, 2015), (Gal & Ghahramani, 2015), (Bui et al., 2016) and (Li & Gal, 2017)).

For image classification, we applied MCBN using ResNet32 to CIFAR10.

For the image segmentation task, we applied MCBN using Bayesian SegNet on data from CamVid and PASCAL-VOC
using models published in (Kendall et al., 2015).
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Table 1. Regression dataset summary. Properties of the eight regression datasets used to evaluate MCBN. N is the dataset size and Q is
the n.o. input features. Only one target feature was used – we used heating load for the Energy Efficiency dataset, which contains multiple
target features.

Dataset name N Q

Boston Housing 506 13
Concrete Compressive Strength 1,030 8
Energy Efficiency 768 8
Kinematics 8nm 8,192 8
Power Plant 9,568 4
Protein Tertiary Structure 45,730 9
Wine Quality (Red) 1,599 11
Yacht Hydrodynamics 308 6

1.7. Extended experimental results

Below, we provide extended results measuring uncertainty quality. In Tables 2 and 3, we provide tables showing the mean
CRPS and PLL values for MCBN and MCDO. These results indicate that MCBN performs on par or better than MCDO
across several datasets. In Table 4 we provide the raw PLL and CRPS results for MCBN and MCDO. In Table 5 we provide
RMSE results of the MCBN and MCDO networks in comparison with non-stochastic BN and DO networks. These results
indicate that the procedure of multiple forward passes in MCBN and MCDO show slight improvements in the accuracy of
the network.

In Figure 2 and Figure 3, we provide a full set of our uncertainty quality visualization plots, where errors in predictions are
sorted by estimated uncertainty. The shaded areas show the model uncertainty and gray dots show absolute prediction errors
on the test set. A gray line depicts a running mean of the errors. The dashed line indicates the optimized constant uncertainty.
In these plots, we can see a correlation between estimated uncertainty (shaded area) and mean error (gray). This trend
indicates that the model uncertainty estimates can recognize samples with larger (or smaller) potential for predictive errors.

We also conduct a sensitivity analysis to estimate how the uncertainty quality varies with batch size M and the number of
stochastic forward passes T . In tables 6 and 7 we evaluate CRPS and PLL respectively for the regression datasets when
trained and evaluated with varying batch sizes, but other hyperparameters fixed (T was fixed at 100). The results show that
results deteriorate when batch sizes are too small, likely stemming from the large variance of the approximate posterior.
In tables 8 and 9 we evaluate CRPS and PLL respectively for the regression datasets when trained and evaluated with
varying n.o. stochastic forward samples, but other hyperparameters fixed (M was fixed at 128). The results are indicative
of performance improvements with larger T , although we see improvements over baseline for some datasets already with
T = 50 (1/10:th of the T used in our main experiments).

Table 2. Uncertainty quality measured by CRPS on regression dasets. CRPS measured on eight datasets over 5 random 80-20 splits
of the data with 5 different random seeds each split. Mean values for MCBN, MCDO and MNF are reported along with standard error. A
significance test was performed to check if CRPS significantly exceeds the baseline. The p-value from a one sample t-test is reported.

CRPS
Dataset MCBN p-value MCDO p-value MNF p-value

Boston Housing 8.50±0.86 6.39E-10 3.06±0.33 1.64E-09 5.88±1.09 2.01E-05
Concrete 3.91±0.25 4.53E-14 0.93±0.41 3.13E-02 3.13±0.81 6.43E-04
Energy Efficiency 5.75±0.52 6.71E-11 1.37±0.89 1.38E-01 1.10±2.63 6.45E-01
Kinematics 8nm 2.85±0.18 2.33E-14 1.82±0.14 1.64E-12 0.52±0.26 7.15E-02
Power Plant 0.24±0.05 2.32E-04 -0.44±0.05 2.17E-08 -0.89±0.15 3.36E-06
Protein 2.66±0.10 2.77-12 0.99±0.08 2.34E-12 0.57±0.03 8.56E-16
Wine Quality (Red) 0.26±0.07 1.26E-03 2.00±0.21 1.83E-09 0.93±0.12 6.19E-08
Yacht Hydrodynamics -56.39±14.27 5.94E-04 21.42±2.99 2.16E-07 24.92±3.77 9.62E-06
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Table 3. Uncertainty quality measured by PLL on regression dasets. PLL measured on eight datasets over 5 random 80-20 splits of
the data with 5 different random seeds each split. Mean values for MCBN, MCDO and MNF are reported along with standard error. A
significance test was performed to check if PLL significantly exceeds the baseline. The p-value from a one sample t-test is reported.

PLL
Dataset MCBN p-value MCDO p-value MNF p-value

Boston Housing 10.49±1.35 5.41E-08 5.51±1.05 2.20E-05 1.76±1.12 1.70E-01
Concrete -36.36±12.12 6.19E-03 10.92±1.78 2.34E-06 -2.16±4.19 6.79E-01
Energy Efficiency 10.89±1.16 1.79E-09 -14.28±5.15 1.06E-02 -33.88±29.57 2.70E-01
Kinematics 8nm 1.68±0.37 1.29E-04 -0.26±0.18 1.53E-01 0.42±0.43 2.70E-01
Power Plant 0.33±0.14 2.72E-02 3.52±0.23 1.12E-13 -0.86±0.15 7.33E-06
Protein 2.56±0.23 4.28E-11 6.23±0.19 2.57E-21 0.52±0.07 1.81E-07
Wine Quality (Red) 0.19±0.09 3.72E-02 2.91±0.35 1.84E-08 0.83±0.16 2.27E-05
Yacht Hydrodynamics 45.58±5.18 5.67E-09 -41.54±31.37 1.97E-01 46.19±4.45 2.47E-07

Table 4. Raw (unnormalized) CRPS and PLL scores on regression datasets. CRPS and PLL measured on eight datasets over 5
random 80-20 splits of the data with 5 different random seeds each split. Mean values and standard errors are reported for MCBN, MCDO
and MNF.

CRPS PLL
Dataset MCBN MCDO MNF MCBN MCDO MNF

Boston Housing 1.45±0.02 1.41±0.02 1.57±0.02 -2.38±0.02 -2.35±0.02 -2.51±0.06
Concrete 2.40±0.04 2.42±0.04 3.61±0.02 -3.45±0.11 -2.94±0.02 -3.35±0.04
Energy Efficiency 0.33±0.01 0.26±0.00 1.33±0.04 -0.94±0.04 -0.80±0.04 -3.18±0.07
Kinematics 8nm 0.04±0.00 0.04±0.00 0.05±0.00 1.21±0.01 1.24±0.00 1.04±0.00
Power Plant 2.00±0.01 2.00±0.01 2.31±0.01 -2.75±0.00 -2.72±0.01 -2.86±0.01
Protein 1.95±0.01 1.95±0.00 2.25±0.01 -2.73±0.00 -2.70±0.00 -2.83±0.01
Wine Quality (Red) 0.34±0.00 0.33±0.00 0.34±0.00 -0.95±0.01 -0.89±0.01 -0.93±0.00
Yacht Hydrodynamics 0.68±0.02 0.32±0.01 0.94±0.01 -1.39±0.03 -2.57±0.69 -1.96±0.05

Table 5. Prediction accuracy measured by RMSE on regression datasets. RMSE measured on eight datasets over 5 random 80-20
splits of the data with 5 different random seeds each split. Mean values and standard errors are reported for for MCBN, MCDO and MNF
as well as conventional non-Bayesian models BN and DO.

RMSE
Dataset MCBN BN MCDO DO MNF

Boston Housing 2.75±0.05 2.77±0.05 2.65±0.05 2.69±0.05 2.98±0.06
Concrete 4.78±0.09 4.89±0.08 4.80±0.10 4.99±0.10 6.57±0.04
Energy Efficiency 0.59±0.02 0.57±0.01 0.47±0.01 0.49±0.01 2.38±0.07
Kinematics 8nm 0.07±0.00 0.07±0.00 0.07±0.00 0.07±0.00 0.09±0.00
Power Plant 3.74±0.01 3.74±0.01 3.74±0.02 3.72±0.02 4.19±0.01
Protein 3.66±0.01 3.69±0.01 3.66±0.01 3.68±0.01 4.10±0.01
Wine Quality (Red) 0.62±0.00 0.62±0.00 0.60±0.00 0.61±0.00 0.61±0.00
Yacht Hydrodynamics 1.23±0.05 1.28±0.06 0.75±0.03 0.72±0.04 2.13±0.05
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Figure 2. Errors in predictions (gray dots) sorted by estimated uncertainty on select datasets. The shaded areas show model uncertainty
(light area 95% CI, dark area 50% CI). Gray dots show absolute prediction errors on the test set, and the gray line depicts a running mean
of the errors. The dashed line indicates the optimized constant uncertainty. A correlation between estimated uncertainty (shaded area) and
mean error (gray) indicates the uncertainty estimates are meaningful for estimating errors.
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Figure 3. Errors in predictions (gray dots) sorted by estimated uncertainty on select datasets. The shaded areas show model uncertainty
(light area 95% CI, dark area 50% CI). Gray dots show absolute prediction errors on the test set, and the gray line depicts a running mean
of the errors. The dashed line indicates the optimized constant uncertainty. A correlation between estimated uncertainty (shaded area) and
mean error (gray) indicates the uncertainty estimates are meaningful for estimating errors.



Appendix: Bayesian Uncertainty Estimation for Batch Normalized Deep Networks

Table 6. Uncertainty quality sensitivity to batch size. A sensitivity analysis to determine how MCBN uncertainty quality varies with
batch size is measured on eight regression datasets using CRPS as the quality measure. Results are measured over 3 random 80-20 splits
of the data with 5 different random seeds each split.

CRPS
Batch size 8 16 32 64 128 256 512 1024

Boston Housing -7.1 16.6 11.8 7.2 2.5 0.9 - -
Concrete -34.5 6.0 5.0 5.1 2.9 1.4 0.6 0.0
Energy Efficiency -61.6 -3.0 2.7 9.8 11.1 0.8 4.9 -
Kinematics 8nm -1.4 -4.3 0.2 2.8 2.7 1.7 0.9 0.5
Power Plant -10.5 0.8 0.0 -0.1 0.0 0.0 0.2 0.0
Protein 14.5 4.8 3.6 2.8 2.5 1.6 1.0 0.5
Wine Quality (Red) 2.2 1.6 0.6 0.6 0.3 0.0 0.2 0.0
Yacht Hydrodynamics 15.1 -23.0 -30.4 21.0 34.4 - - -

Table 7. Uncertainty quality sensitivity to batch size. A sensitivity analysis to determine how MCBN uncertainty quality varies with
batch size is measured on eight regression datasets using PLL as the quality measure. Results are measured over 3 random 80-20 splits of
the data with 5 different random seeds each split.

PLL
Batch size 8 16 32 64 128 256 512 1024

Boston Housing 13.9 -36.7 10.0 7.9 3.7 1.5 - -
Concrete -113.3 -528.4 -10.0 2.9 0.0 1.4 0.2 0.0
Energy Efficiency -64.4 5.2 -0.2 -9.6 -14.5 1.4 10.4 -
Kinematics 8nm -4.9 -5.4 -3.1 1.6 2.3 1.5 0.7 0.4
Power Plant -135.0 -1.4 -1.0 -1.1 -0.4 0.1 -0.1 0.4
Protein 44.9 15.7 4.6 2.9 2.8 2.2 1.2 0.6
Wine Quality (Red) 2.2 2.0 0.0 0.5 0.6 0.4 0.0 0.0
Yacht Hydrodynamics 99.6 74.9 76.8 48.5 44.9 - - -

Table 8. Uncertainty quality sensitivity to n.o. stochastic forward passes. A sensitivity analysis to determine how MCBN uncertainty
quality varies with the n.o. stochastic forward passes measured on eight regression datasets using CRPS as the quality measure. Results
are measured over 3 random 80-20 splits of the data with 5 different random seeds each split.

CRPS
Forward passes 250 100 50

Boston Housing 6.1 2.7 3.2
Concrete 3.3 2.3 3.3
Energy Efficiency 13.2 4.2 7.9
Kinematics 8nm 3.2 2.7 4.2
Power Plant 0.2 0.5 0.1
Protein 2.3 2.7 2.4
Wine Quality (Red) 0.9 -0.4 0.6
Yacht Hydrodynamics 32.9 32.2 32.1
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Table 9. Uncertainty quality sensitivity to n.o. stochastic forward passes. A sensitivity analysis to determine how MCBN uncertainty
quality varies with the n.o. stochastic forward passes measured on eight regression datasets using PLL as the quality measure. Results are
measured over 3 random 80-20 splits of the data with 5 different random seeds each split.

PLL
Forward passes 250 100 50

Boston Housing 7.8 1.9 2.6
Concrete 3.8 7.1 0.1
Energy Efficiency 15.7 -30.5 -47.3
Kinematics 8nm 2.5 2.2 3.4
Power Plant -0.9 0.7 -0.9
Protein 1.8 2.0 2.4
Wine Quality (Red) 1.7 -0.9 1.1
Yacht Hydrodynamics 38.0 35.9 35.5

1.8. Uncertainty in image segmentation

We applied MCBN to an image segmentation task using Bayesian SegNet with the main CamVid and PASCAL-VOC models
in (Kendall et al., 2015). Here, we provide more image from Pascal VOC dataset in Figure 4.

1.9. Batch normalization statistics

In Figure 5 and Figure 6, we provide statistics on the batch normalization parameters used for training. The plots show the
distribution of BN mean and BN variance over different mini-batches of an actual training of Yacht dataset for one unit in
the first hidden layer and the second hidden layer. Data is provided for different epochs and for different batch sizes.
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Figure 4. Uncertainty in image segmentation. Results applying MCBN to Bayesian SegNet (Kendall et al., 2015) on images from
PASCAL-VOC (right). Left: original. Middle: the Bayesian estimated segmentation. Right: estimated uncertainty using MCBN for all
classes. Mini-batches of size 36 were used for PASCAL-VOC on images of size 224x224. 20 inferences were conducted to estimate the
mean and variance of MCBN.
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Figure 5. The distribution of means of mini-batches during training of one of our datasets. The distribution closely follows our
analytically approximated Gaussian distribution. The data is collected for one unit of each layer and is provided for different epochs and
for different batch sizes.
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Figure 6. The distribution of standard deviation of mini-batches during training of one of our datasets. The distribution closely follows
our analytically approximated Gaussian distribution. The data is collected for one unit of each layer and is provided for different epochs
and for different batch sizes.
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