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A. Proofs
A.1. Proof of Lemma 1

Proof. We derive the best response of the attacker by using the first order condition. Let V y+ ¢, ({8;}7_,, X') denote the
gradient of ¢, with respect to X'. Then

Vyica=2Y (X0;—2)0] +2\X - X).

i=1

Due to convexity of ¢, let V /¢, = 0, we have

X =(AX+z) )1+ 0,0])"

i=1 i=1

A.2. Proof of Lemma 2

Proof. 1. First, we prove that A,, = A\I + Z?:l 0, 9;'— is invertible, and its inverse matrix, A L is positive definite by
using mathematical induction.

Whenn =1, A; =1+ 6, 01T. As Ml is an invertible square matrix and 6 is a column vector, by using Sherman-
Morrison formula, A1 is invertible.
1 0.,6]

Afl=—a- 2%
! ( A+6]6,

A )

For any non-zero column vector u, we have

_ Au'u+u'ub/ 6, —u’6,6u

TA—I
i A+ 6,6,

Asu'u > 0and A > 0, according to Cauchy-Schwarz inequality,
u'ud 6, >u'6,0]u,

Then, uTAflu > (. Thus, Afl is a positive definite matrix.

We then assume that when n = k(k > 1), Ay is invertible and A,;l is positive definite. Then, whenn = k + 1,
A=A+ 0k+10];r+1~

As Ay is invertible, 01 is a column vector. By using Sherman-Morrison formula, we have that A1 is invertible,

and . .
A10,10] AL
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A—l
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Then,
u'Alu+u"A 0] A0 —uTA 0 -0 AN
146, A 0k

TA-1 .. _
u Ak_Huf

As A ! is a positive definite matrix, we have uTA u > 0and 6, AL 19,1 > 0. By using Extended Cauchy-
Schwarz inequality, we have

u'A; w0 A0 > uT A0, A
Then, A,;jl is positive definite. Hence, An = AL+, 0,0, isinvertible, and A, ! is positive definite. Similarly,
we can prove that A_; is invertible, and A~; !is positive definite.

2. We have proved that A,, and A _; are invertible. Then, the result can be obtained by using Sherman-Morrison formula.

3. LetA_, _; =A_;—06; HT As A_; _; is a symmetric matrix, its inverse, A_1 —j is also symmetric. Using a

similar approach to the one above we can prove that A_; _; is invertible and A~
Sherman-Morrison formula, we have

—i,—j 1s positive definite. By using

- T -
A l=A"1 AT =i939; lA —J
i Zi—j - )
1+ 9]- Afi)ijj
Then,
TA-1 TA-1
o7 A0, —oT A" g, Pl 0 A0
—hd 1+6]A~; .6,
T —
OTA 1 0 (0 A_17 ]01)2
—4=J 1+ HJ.TA:L?J-BJ-

<6 A} .6,

We then iteratively apply Sherman-Morrison formula and get

6 A"l0, <6 A0,

= feTe
/\ 1

A.3. Proof of Theorem 2

Proof. As presented in Lemma 3, we have

* _ 1
0(X*0;,y) < ((B_;AZ}6;,y) + ﬁ||z - yl3(6/6;)>.

By using Sherman-Morrison formula,

U(B_iAZ;6;y) = [[B_i(A AL 00/ A =2)0; - ylI3
inY) = —1 —q 73 T 1 . i —Yll2
1+ 0j Aﬂ-ﬁjej

B i+ a(6)
—_ — Yl 1
1+6]AZ;_,6;

—i,—j
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where j # i, and A\ (0) is a continuous function of @ = {0;}?_;. As the action space @ is bounded, then 0 < A;(0) < oco.
Hence, we have

B g+ a(6)
110/A 1 g YT

B_iA_ 0i—y— HTA 0y

= | AT g B
1+ AZ;_,0;

< ||B7iA_zl7_j9i_y_0TA i 3 0;y5 + £1(6)

= ||(Bi—j +26; )AZ; _;0i —y — 0] AT} _,0,y]13 + £1(6)

—i,—j

=[|(B-i—jAZi_;0: —y) + (2 —y)0] AT} ;0 + 0] AT, (0 —0,)y[[3 + L241(0)

J
< UB-i—jAZ] _;0:.y) + |z —y)|[5(6] AT} _;6:)° + L2(6)

((B_;A"16;,y) <||

+ A1(0)

—J

where Ag(@) is a continuous function of @ and 0 < A3(0) < co. Let A_; _; ;= A_; _; — oka,j, then, similarly,
(OTA_ :0;)? can be further relaxed as follows.

.
ATl . 000 A”]
0] A 0,2 = (0] (A}, _, — — ~1=k)g,)?
(6; AZ;_;0:)° = (6; (AZ; _; 4 1+0TA_$_j_k0k )0:)
< (8] AT, .07+ N3(6)

—j,—k

where 0 < A3(0) < oo, using the same approach,(BjTA:i 0,)? can be further and iteratively relaxed as follows,

—J

(0] AZ] .0, < (HTA‘104)2+A4(0)

—i,—j

= 50767 + £4(0)

where 0 < A4(0) < co. Combining the results above, we can iteratively relax E(B_iA:}H,-, y) as follows,
(B_;A”16;,y) <(B_; A"} _;0i,y) —|— ||z y\|§(0;0i)2 + A5(0)
1
< U(X63,y) + 35z — MIE Z(HJT@i)2 + A(0)
i

where 0 < A5(0) < oo and 0 < A(6) < co. Then,

1
+ 5 llz — y[13(6, 6:)?

0(X*0;,y) < {(B_;AZ}6;,y) 2|

n

< ((X0:,y) + 5lle ~ yIB D2 (6] 6% + £(0)

j=1
Hence,
ci(0;,0_;) = BU(X"0;,y) + (1 — B)U(X0;,y)
< UX0,y) + 2~ I f}(e}e»? +e
j=
where € is a constant such that e = 8 x maxg{A(0)} < 0. O
A.4. Proof of Theorem 4

Proof. We have known that (N, @, (¢;)) has at least NE, and each learner has an nonempty, compact and convex action
space ©. Hence, we can apply Theorem 2 and Theorem 6 of Rosen (1965). That is, for some fixed {r;}'(0 < r; <
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1,5 r; = 1), if the matrix in Eq. (1) is positive definite, then (A, ©, (¢;)) has a unique NE.

T1V91,9151(0) e T1VQ1,9n51(0)
Jr(0) = : : ()
T”v&uelgn(e) e Tnvgn,engn(g)

By taking second-order derivatives, we have

Vo, 0,5:(0) = 2X X + M(w(ﬂ +20]0,1+30,0])
i,0i-1 22 () [’ L 177
J#i
and )
- 26|z —

Veo,0,¢i(0) = M(@%H‘%@?)

We firstletry =ro = ... =1, = % and decompose Jr(0) as follows,
2, 28|z —yl3
=P+ ——-= T 2
Jr(0) = ~P+ ———=(Q+S+T) 2)

where P and Q are block diagonal matrices such that P;; = XX, P,; =0,Q; = 401191.T + HZTOZ-I and Q;; = 0,
Vi,j € N,j #i. S and T are block symmetric matrices such that S;; = 0,/ 6,1, S;; = 0,/ 0,1, T;; = > i 6,6, and
Tij ZOjOiT,Vi,jEN,j#i.

Next, we prove that P is positive definite, and Q, S and T are positive semi-definite. Letu = [u{ ,...,u]" be annd x 1

vector, where u; € R4*!(; € \) are not all zero vectors.

L u"Pu=Y" u/X"Xu, =", ||Xu;|3. As the columns of X are linearly independent and u; are not all zero
vectors, there exists at least one u; such that Xu; # 0. Hence, u"Pu > 0 which indicates that P is positive definite.

2. Similarly, u" Qu > 0 which indicates that Q is a positive semi-definite matrix.

3. Let’s S* € R"*™ be a symmetric matrix such that S; = 6, §; and S = 0,6,,Yi,j € N,j+#i. Hence, S;; = Si;L
Vi,j € N. Note that S* = (01,05, ...,0,]"[01, 0., ...,0,] is a positive semi-definite matrix, as it is also symmetric,
there exists at least one lower triangular matrix L* € R™*"™ with non-negative diagonal elements (Higham, 1990) such
that

S* = L*L* " (Cholesky Decomposition)
Let L be a block matrix such that L;; = Lj;I, Vi, j € . Therefore, (LL');; = (L'L*T),;I = S;;I = S;; which
indicates that S = LL is a positive semi-definite matrix.

4. Since

u Tu = ZZ(ujﬁjf + Z Z(ufﬁ’j)(u;@i)

i=1 j#i i=1 j#i

n 1 1
= ZZ[ﬁ(uiTaj)z + 5(11;91')2 + (u 6;)(u] 6;)]
i=1 jti
_ % SN (0] 6, +u)6,)?
i=1 ji
>0

)

T is a positive semi-definite matrix.

Combining the results above, Jr(6) is a positive definite matrix which indicates that (N, @, (¢;)) has a unique NE. As
Theorem 3 points out, the game has at least one symmetric NE. Therefore, the NE is unique and must be symmetric. [
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B. Experiment Results

B.1. Supplementary results for the redwine dataset
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Figure 1. Overestimated z, A=0.5, ,@ = 0.8.The average RMSE across different values of actual A and 3 on redwine dataset. From left
to right: MLSG, Lasso, Ridge, OLS.
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Figure 2. Overestimated z, A=1.5, B = 0.8. The average RMSE across different values of actual A and 3 on redwine dataset. From left
to right: MLSG, Lasso, Ridge, OLS.
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Figure 3. Underestimated z, A= 1.5, B = 0.8. The average RMSE across different values of actual A and 8 on redwine dataset. From
left to right: MLSG, Lasso, Ridge, OLS.

B.2. Supplementary results for the boston dataset
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Figure 4. The defender knows A, 3, and z. RMSE of y/ and y on boston dataset. The defender knows A, 3, and z.
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Figure 5. Overestimated z, A= 0.3, ,3 = 0.8. The average RMSE across different values of actual A and /3 on boston dataset. From left

to right: MLSG, Lasso, Ridge, OLS.
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Figure 6. Underestimated z, A= 0.3, B = 0.8. The average RMSE across different values of actual A and /3 on boston dataset. From left
to right: MLSG, Lasso, Ridge, OLS.

B.3. Supplementary results for the PDF dataset
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Figure 7. Overestimated z, A =15, B = 0.5. The average RMSE across different values of actual A and 8 on PDF dataset. From left to
right: MLSG, Lasso, Ridge, OLS.
References

Higham, N. J. Analysis of the cholesky decomposition of a semi-definite matrix. In Reliable Numerical Computation, pp.
161-185. University Press, 1990.

Rosen, J. B. Existence and uniqueness of equilibrium points for concave n-person games. Econometrica, pp. 520-534, 1965.



