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Abstract
Sparse Subspace Clustering (SSC) is a popu-
lar unsupervised machine learning method for
clustering data lying close to an unknown union
of low-dimensional linear subspaces; a problem
with numerous applications in pattern recogni-
tion and computer vision. Even though the be-
havior of SSC for complete data is by now well-
understood, little is known about its theoreti-
cal properties when applied to data with miss-
ing entries. In this paper we give theoretical
guarantees for SSC with incomplete data, and
provide theoretical evidence that projecting the
zero-filled data onto the observation pattern of
the point being expressed can lead to substantial
improvement in performance; a phenomenon al-
ready known experimentally. The main insight of
our analysis is that even though this projection in-
duces additional missing entries, this is counter-
balanced by the fact that the projected and zero-
filled data are in effect incomplete points asso-
ciated with the union of the corresponding pro-
jected subspaces, with respect to which the point
being expressed is complete. The significance of
this phenomenon potentially extends to the entire
class of self-expressive methods.

1. INTRODUCTION
Clustering data lying close to an unknown union of low-
dimensional linear subspaces is a fundamental problem in
unsupervised machine learning, known as Subspace Clus-
tering or Generalized Principal Component Analysis (Vi-
dal et al., 2016). Indeed, this problem is intimately related
to the extension of the classical Principal Component Anal-
ysis (PCA) to multiple subspaces, and in recent years has
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found numerous applications in machine learning, com-
puter vision, pattern recognition, bioinformatics and sys-
tems theory. Moreover, recent work is beginning to explore
connections between subspace clustering and deep learn-
ing, with the goal of learning unions of low-dimensional
non-linear manifolds (Peng et al., 2016).

Among a variety of subspace clustering methods (Vidal
et al., 2016) including algebraic (Vidal et al., 2005; Tsakiris
& Vidal, 2017b; 2018a), iterative (Bradley & Mangasarian,
2000), recursive (Fischler & Bolles, 1981; Tsakiris & Vi-
dal, 2017a), and spectral (Aldroubi et al., 2017; Heckel &
Bölcskei, 2015; Lu et al., 2012; Chen & Lerman, 2009)
techniques, Sparse Subspace Clustering (SSC) (Elhamifar
& Vidal, 2009; 2013) is one of the most popular methods.
The reason is that it exhibits a very competitive perfor-
mance in real-world datasets, it admits efficient algorithmic
implementations, and is supported by a rich body of the-
ory (Elhamifar & Vidal, 2013; Soltanolkotabi & Candès,
2012; Wang & Xu, 2016; Soltanolkotabi et al., 2014). In
addition, SSC is able to cluster data from incomplete ob-
servations reasonably well (Yang et al., 2015), which is an
important problem (Ongie et al., 2017; Pimentel-Alarcon &
Nowak, 2016; Elhamifar, 2016; Yang et al., 2015; Heckel
& Bölcskei, 2015; Pimentel-Alarcon et al., 2015; Eriksson
et al., 2012; Recht, 2011; Balzano et al., 2010), since in
many applications not all features are available for every
data point: Users of recommendation systems only rate a
few items, medical patients undergo a few tests and treat-
ments, images are corrupted by occlusions, dynamic pro-
cesses are observed across short time intervals and so on.

Even though the theoretical foundations of SSC are by now
mature, there are many lingering open questions. For ex-
ample, it is still unclear whether better conditions exist for
the performance of SSC even for uncorrupted data; contrast
this to the recent study of You & Vidal (2015), who estab-
lish a hierarchy of such conditions for sparse subspace re-
covery. More importantly, even though a satisfactory the-
ory for SSC with general noise does exist (Wang & Xu,
2016), the theoretical properties of SSC for data with miss-
ing entries remain elusive. The works of Wang et al. (2016)
and Charles et al. (2018) are important recent efforts to-
wards understanding SSC with missing entries. However,
the conditions of Wang et al. (2016) are hard to interpret
and they refer to the formulation of SSC with exact self-
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expressiveness equality constraint, which is not an optimal
choice for corrupted data. On the other hand, following
Wang & Xu (2016), Charles et al. (2018) provide bounds
similar to a subset of the results in the present paper.1

In this paper we provide a novel theoretical analysis of SSC
for incomplete data. More precisely, we provide theoret-
ical performance guarantees for SSC applied to i) Zero-
Filled data (ZF-SSC), in which case all unobserved en-
tries are filled with zeros, and ii) Projected-Zero-Filled data
(PZF-SSC), in which case all unobserved entries are filled
with zeros and in addition all data points are projected
onto the observation pattern of the point being expressed
each time.2. A direct comparison of the tolerable bounds
of missing entries for ZF-SSC (Theorem 7) and PZF-SSC
(Theorem 5) serves as a theoretical indication for the latter
being a better method than the former. This is in agree-
ment with experimental evaluation given here and also pre-
viously reported by Yang et al. (2015). Since PZF data have
in principle many more missing entries than ZF data, this
is a remarkable phenomenon, of potentially wider signifi-
cance to the entire class of self-expressive-based methods,
e.g., (Liu et al., 2013; Lu et al., 2012; Elhamifar & Vidal,
2013; Wang et al., 2013; You et al., 2016).

The rest of the paper is organized as follows. In §1.1 we
introduce the notation and the main mathematical objects
of this paper. In §2 we review SSC for uncorrupted data,
and discuss the two known elementary formulations of SSC
for incomplete data, i.e., ZF-SSC and PZF-SSC. In §3 we
present the main contributions of this paper, which con-
sist of deterministic and probabilistic characterizations of
the tolerable percentage of missing entries for ZF-SSC and
PZF-SSC, as well as a theoretical and experimental com-
parison between the two methods (all proofs can be found
in our pre-print (Tsakiris & Vidal, 2018b)). We conclude
in §4, where we discuss the main insights of this paper as
well as existing challenges.

1.1. Notation and Main Objects

The nature of the problem studied in this paper calls for
a rather heavy notation, which we have strived to simplify
and unify as much as possible. To avoid introducing com-
plicated notation amidst other technical developments, we
have found it convenient to gather all relevant objects in
Definition 1,3 which the reader is encouraged to refer to

1In the terminology of the present paper Charles et al. (2018)
independently study ZF-SSC.

2This is called EWZF-SSC by Yang et al. (2015); here we have
taken the liberty to rename the method according to the more sug-
gestive name PZF-SSC.

3For simplicity and clarity, and without loss of generality, we
have chosen to present our theoretical results in the context of
expressing a single point in terms of the remaining points in the
dataset (the precise problem formulation is deferred to §2).

when necessary. Other than that, for ` a positive integer, we
define [`] := {1, . . . , `}. For a vector w ∈ RD we define
ŵ := w/‖w‖2, if w 6= 0 and ŵ := 0, otherwise. For any
linear subspace V of RD, we denote by P V the square ma-
trix that represents the orthogonal projection of RD onto V .
Given a binary relation, RHS stands for Right-Hand-Side,
and similarly for LHS. Finally, 〈·, ·〉 is the standard inner
product of RD.

Definition 1. We define the following objects:

1. The linear subspaces: For i ∈ [n], we let Si be a
linear subspace of RD, where dimSi = di < D.

2. The complete data: With an abuse of notation we let

X = [X(1), . . . ,X(n)]Γ ∈ RD×N (1)

denote a data matrix as well as a set (formed by
the columns of this matrix) of unit `2-norm points in
the union of the linear subspaces Si, i ∈ [n], where
X(i) = [x

(i)
1 , . . . ,x

(i)
Ni

] ⊂ Si, Span(X(i)) = Si,
and Γ is an unknown permutation, indicating that
the clustering of the points with respect to the sub-
spaces is unknown. We define X(1)

−1 := X(1) \{x(1)
1 },

X−1 := X \{x(1)
1 }, and X(−1) := X \X(1), where

\ denotes set-theoretic difference.

3. The pattern of missing entries: For every point
x
(i)
j ∈ RD we consider an observation pattern ω

(i)
j ∈

{0, 1}D, where a value of 1 indicates an observed en-
try, while a value of 0 indicates an unobserved entry.
We assume each ω

(i)
j has precisely m zeros. We let

ω̃
(i)
j := 1− ω

(i)
j , where 1 is the vector of all ones.

4. The observed/unobserved coordinate subspaces:
We let Ē(i)j := Span{ek : e>k ω

(i)
j 6= 0}, with ek the

canonical vector of RD with zeros everywhere and a
1 at position k. The orthogonal projection onto Ē(i)j is

given by P̄
(i)
j := diag(ω

(i)
j ), the matrix with ω

(i)
j on

its diagonal and zeros everywhere else. Ẽ(i)j is the or-

thogonal complement of Ē(i)j and P̃
(i)

j = diag(ω̃
(i)
j )

is the orthogonal projection onto Ẽ(i)j .

5. The zero-filled data (ZF-data): We let X̄ ∈ RD×N
be the data X with zeros appearing in the unobserved
entries, i.e., the column of X̄ associated to point x(i)

j

is x̄(i)
j := P̄

(i)
j x

(i)
j , ∀i, j.

6. The projected data: We let Ẋ := P̄
(1)
1 X be the pro-

jection of the data X onto the observed coordinate
subspace Ē(1)1 associated to point x(1)

1 . The column of
Ẋ associated to x

(i)
j is ẋ(i)

j := P̄
(1)
1 x

(i)
j , ∀i, j.
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7. The projected and zero-filled data (PZF-data): We
let ˙̄X be the projection of the zero-filled data onto
Ē(1)1 , i.e., ˙̄X := P̄

(1)
1 X̄ . The column of ˙̄X associ-

ated to point x(i)
j is ˙̄x

(i)
j := P̄

(1)
1 x̄

(i)
j , ∀i, j.

8. The unobserved data: We define X̃ to be the unob-
served components of the data, i.e., X̃ := X − X̄ ,

and x̃
(i)
j := P̃

(i)

j x
(i)
j , ∀i, j. Similarly, for PZF data

we define ˙̃X := Ẋ − ˙̄X , and ˙̃x
(i)
j := P̄

(1)
1 x̃

(i)
j , ∀i, j.

9. The projected subspaces: For i ∈ [n], we let Ṡi ⊂
RD be the orthogonal projection of Si onto the sub-
space Ē(1)1 . In other words, if b(i)1 , . . . , b

(i)
di

is a basis
for Si, then Ṡi is the subspace of RD spanned by the
vectors P̄ (1)

1 b
(i)
k ,∀k ∈ [di].

10. The inradius: We let r be the relative inradius of the
symmetrized convex hull Q of all points X(1)

−1 lying in

subspace S1, except point x(1)
1 , i.e., r is the radius of

the largest Euclidean ball of S1 contained in Q.

11. The dual directions: For W = X, X̄, ˙̄X corre-
sponding to complete data X , ZF-data X̄ and PZF-
data ˙̄X , consider the reduced Lasso-SSC problem

min
c,e
‖c‖1 +

λ

2
‖e‖22 s.t. w

(1)
1 = W

(1)
−1c + e, (2)

corresponding to either complete data X , ZF-data X̄

or PZF-data ˙̄X . Consider the dual problem

max
v
〈v,w(1)

1 〉 −
1

2λ
‖v‖22 s.t. ‖v>W (1)

−1‖∞ ≤ 1. (3)

Let v∗λ, v̄
∗
λ, ˙̄v∗λ be the optimal solution to problem

(3) corresponding to W = X, X̄, ˙̄X respectively;
these solutions are unique because (3) is strongly con-
vex. Then we define the corresponding dual direc-
tions v̂1,λ, ˆ̄v1,λ,

ˆ̄̇v1,λ to be the normalized projections
of v∗λ, v̄

∗
λ, ˙̄v∗λ onto S1,S1, Ṡ1 respectively (if any of

these projections is equal to zero, then we define the
corresponding dual direction to be the zero vector).

12. The inter-subspace coherences: We define the inter-
subspace coherences for complete data, ZF-data, and
PZF-data respectively as

µλ := max
i>1, k∈[Ni]

|〈x(i)
k , v̂1,λ〉| (4)

µ̄λ := max
i>1, k∈[Ni]

|〈x̄(i)
k , ˆ̄v1,λ〉| (5)

˙̄µλ := max
i>1, k∈[Ni]

|〈 ˙̄x(i)
k , ˆ̄̇v1,λ〉|. (6)

13. The intra-subspace coherences:

ζ := ‖(X(1)
−1)>x

(1)
1 ‖∞, (7)

ζ̄ := ‖(X̄(1)
−1)>x̄

(1)
1 ‖∞, (8)

˙̄ζ := ‖( ˙̄X
(1)
−1)> ˙̄x

(1)
1 ‖∞, (ζ̄ = ˙̄ζ) (9)

14. Other quantities:

η̄ := ‖x̄(1)
1 ‖2, (10)

˙̄η := ‖ ˙̄x
(1)
1 ‖2, (η̄ = ˙̄η) (11)

γ̄ := max
i>1,k∈[Ni],
j∈[N1]

|〈x̄(i)
k ,P S⊥1 x̃

(1)
j 〉| (12)

˙̄γ := max
i>1,k∈[Ni],
j∈[N1]

|〈 ˙̄x(i)
k ,P Ṡ⊥1

˙̃x
(1)
j 〉|. (13)

2. Review of Sparse Subspace Clustering
We begin by reviewing Sparse Subspace Clustering (SSC)
for data with no corruptions (§2.1), as well as the two el-
ementary approaches to SSC for incomplete data (§2.2),
which this paper is devoted to analyzing.

2.1. SSC With Uncorrupted Data

In the absence of data corruptions (noise, missing entries,
outliers, etc.) we consider a data matrix X ∈ RD×N as
in Definition 1, whose columns are unit-`2 points4 that
lie in an unknown union of low-dimensional linear sub-
spaces

⋃n
i=1 Si ⊂ RD, with di := dim(Si). Thus X =

[X(1) · · ·X(n)]Γ, where each X(i) := [x
(i)
1 · · ·x

(i)
Ni

] ∈
RD×Ni consists of Ni points spanning subspace Si, and Γ
is an unknown permutation, indicating that the clustering
of the points is unknown.

Among a variety of methods (Vidal et al., 2016) for retriev-
ing the clusters {X(i)}, one may apply Sparse Subspace
Clustering (SSC) (Elhamifar & Vidal, 2009; 2013), whose
main principle is to express each point in X as a sparse lin-
ear combination of other points in X . Specifically, we seek
an expression, say, of point x(1)

1 as a sparse linear combi-
nation of all other points X−1 := X \ {x(1)

1 } by means of
the basis pursuit problem (Chen et al., 1998)

min
c∈RN−1

‖c‖1 s.t. x
(1)
1 = X−1c, (14)

and then form an affinity graph in which we connect x(1)
1

to those points of X−1 that correspond to the support (non-
zero coefficients) of the computed optimal solution of (14).
Clearly, we want these points to lie in the same subspace as
x
(1)
1 , i.e., to be points of X(1)

−1 := X(1) \ {x(1)
1 }, in which

4This assumption simplifies the theoretical analysis.
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case we say that the solution is subspace preserving. When
this is true for the expression of each and every point in X ,
then the corresponding affinity graph contains no connec-
tions between points in different subspaces, i.e., it is a sub-
space preserving graph. Assuming that points within each
subspace are sufficiently well connected, the affinity graph
will have precisely n connected components, and spectral
clustering will be guaranteed to furnish the correct clusters.

Often, it is more practical to search for approximate sparse
linear combinations rather exact ones as in (14). Thus one
may approximately express point x(1)

1 by solving the Lasso
problem (Tibshirani, 2013)

min
c,e

‖c‖1 +
λ

2
‖e‖22 s.t. x

(1)
1 = X−1c + e, (15)

where e represents the self-representation error. We have
the following known guarantee:
Theorem 1 (SSC with uncorrupted data, deterministic
(Wang & Xu, 2016)). Recall the notation of Definition 1,
and suppose that

µλ < r and 1/ζ < λ. (16)

Then every optimal solution to the Lasso SSC problem (15)
is non-zero and subspace preserving.

Theorem 1 can be interpreted as follows: If all data points
from S1 other than x

(1)
1 are well distributed (large r), the

data points from other subspaces are sufficiently far from
S1 as measured by their inner product with the dual direc-
tion v̂1,λ (small µλ), and the reconstruction error is penal-
ized sufficiently enough (large λ), then the Lasso problem
(15) is guaranteed to furnish non-zero and subspace pre-
serving solutions.

Theorem 2 is an even more interpretable statement and is
derived by bounding in probability the terms in Theorem 1
under the following simplified fully random model.
Definition 2 (Random model). For each i ∈ [n], let
the ith subspace be chosen uniformly at random from
the Grassmannian manifold of d-dimensional subspaces of
RD. Moreover, let N/n =: ρd + 1 points5 be chosen uni-
formly at random from the intersection of each subspace
and the unit sphere SD−1. Finally, define the quantities

α :=

√
log(ρ)

16d
, β :=

√
6 log(N)

D
. (17)

Theorem 2 (SSC with uncorrupted data, probabilistic
(Soltanolkotabi & Candès, 2012; Wang & Xu, 2016)).
Consider the random model of Definition 2. If ρ is larger
than a universal constant, λ > 1/α, and

α > β, (18)

5For simplicity, we assume that n divides N .

then any optimal solution to the Lasso SSC problem (15) is
non-zero and subspace preserving, with probability at least
1− 2/N2 − exp(−√ρd).

Condition (18) agrees with intuition, since it effectively
says that the subspace preserving property is easier to
achieve for small relative subspace dimensions d/D, fewer
subspaces, and more points per subspace. In §3 we will
give analogues of Theorems 1 and 2 for two elementary
variants of SSC for incomplete data, described next.

2.2. SSC With Missing Entries (ZF-SSC, PZF-SSC)

When the data are incomplete but otherwise uncorrupted,
one may consider using a low-rank matrix completion al-
gorithm to first complete the data and then apply SSC to
the completed data. However, this procedure is guaranteed
to succeed only when the underlying complete matrix X is
of low rank and sufficiently incoherent (Candès & Recht,
2009; Recht, 2011), an assumption which might become in-
valid in the presence of data from many distinct subspaces.
As a simple alternative, one may fill with zeros the unob-
served entries to obtain a zero-filled data matrix X̄ exactly
as in Definition 1, and subsequently solve the problem

min
c,e

‖c‖1 +
λ

2
‖e‖22 s.t. x̄

(1)
1 = X̄−1c + e, (19)

a procedure called Zero-Filled SSC (ZF-SSC) (Yang et al.,
2015). In spite of its simplicity (after all we are just filling
in the missing entries with zeros), as per Figs. 2(a) and 2(c)
in Yang et al. (2015), ZF-SSC performs only slightly worse
than low-rank matrix completion followed by SSC.

Even so, ZF-SSC has an evident shortcoming: it penalizes
the reconstruction error of the zero vector along the unob-
served part of the point being expressed, which is clearly an
undesirable feature of the method. More precisely, letting
Ē(1)1 and Ẽ(1)1 be, respectively, the observed and unobserved

subspaces associated to point x(1)
1 , and P̄

(1)
1 , P̃

(1)

1 the or-
thogonal projections onto them (see Definition 1), and re-
calling that (Ē(1)1 )⊥ = Ẽ(1)1 , we have that

x̄
(1)
1 = P̄

(1)
1 x̄

(1)
1 , and (20)

X̄−1 = P̄
(1)
1 X̄−1 + P̃

(1)

1 X̄−1, (21)

and so we can rewrite the objective function of ZF-SSC as

‖c‖1 +
λ

2
‖x̄(1)

1 − X̄−1c‖22 = ‖c‖1+ (22)

λ

2
‖x̄(1)

1 − P̄
(1)
1 X̄−1c‖22 +

λ

2
‖P̃ (1)

1 X̄−1c‖22. (23)

We then see that ZF-SSC penalizes the reconstruction error
‖x̄(1)

1 − P̄
(1)
1 X̄−1c‖2 of the observed part of x(1)

1 , which
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is desirable, as well as the norm of the vector P̃
(1)

1 X̄−1c.
The latter is an artifact of the zero-filling process, and could
bias the coefficients c away from a subspace preserving
pattern. Thus, it is reasonable to remove this term and ob-
tain self-expressive coefficients for x̄(1)

1 by solving instead

min
c,e
‖c‖1 +

λ

2
‖e‖22, s.t. e = x̄

(1)
1 − ˙̄X−1c, (24)

where ˙̄X := P̄
(1)
1 X̄ is the projected and zero-filled data,

as in Definition 1. Yang et al. (2015) called this approach
EWZF-SSC; here we take the liberty to rename it Projected-
Zero-Filled Sparse-Subspace-Clustering (PZF-SSC).

PZF-SSC is known to provide accurate clustering while tol-
erating a higher percentage of missing entries than ZF-SSC
or even low-rank matrix completion followed by SSC (e.g.,
see Fig. 2 in Yang et al. (2015)). This is rather fascinat-
ing, since, after all, PZF-SSC works with the projected and
zero-filled data ˙̄X , which have more missing entries than
the zero-filled data X̄ . Because of this reason, direct ap-
plication of any generic noise bound, such as that of The-
orem 6 in Wang & Xu (2016), would naively suggest that
ZF-SSC tolerates more missing entries than PZF-SSC, con-
tradicting experimental evidence. This apparent mystery is
resolved in §3, where we adopt a more sophisticated view
of PZF-SSC, which unveils its advantage over ZF-SSC.

3. SSC Theory for Incomplete Data
This section contains the main contributions of this pa-
per. In §3.1-3.2 we give deterministic and probabilistic
theorems of correctness for PZF-SSC and ZF-SSC, respec-
tively, in analogy with Theorems 1-2 for SSC with uncor-
rupted data, while in §3.3 we discuss how the conditions
for the two methods compare.

3.1. PZF-SSC Theory

As already remarked so far, PZF-SSC is experimentally
known to be a superior method to ZF-SSC, i.e., it can
provide an accurate clustering for a higher percentage of
missing entries. This is remarkable, because the projected
and zero-filled data ˙̄X (see Definition 1 for notation) that
PZF-SSC operates on contain more missing entries than the
zero-filled data X̄ that ZF-SSC operates on. On the other
hand, we already saw in §2.2 that the additional zeros in ˙̄X
are inflicted in such a way, that the objective function min-
imized by PZF-SSC is, at least on an intuitive level, more
accurate than the one minimized by ZF-SSC.

In this paper we give a theoretical justification for the su-
periority of PZF-SSC over ZF-SSC. Our main insight is
the following observation: expressing point x̄(1)

1 = ˙̄x
(1)
1

as a sparse linear combination of ˙̄X−1, can be seen as ex-

pressing the complete point x̄(1)
1 from partial observations

˙̄X−1 of the complete points Ẋ−1, where now the underly-
ing complete data Ẋ lie in the union of subspaces

⋃n
i=1 Ṡi,

i.e., the original subspaces projected onto the coordinate
subspace defined by the observation pattern of the point
being expressed (see Definition 1). With this in mind, in-
spired by the seminal work of Wang & Xu (2016), and by

1. making more frequent use of strong duality than in the
proof of Theorem 6 in Wang & Xu (2016),

2. using a novel bound for the norm of the dual vector,

3. and not decoupling the noise from the data,6

we arrive at the following key result:

Theorem 3 (PZF-SSC, deterministic). With the notation of
Definition 1, further define the positive quantity

˙̄λ∗ :=
1

2

{
1

2 ˙̄ζ
−

˙̄µλ
˙̄γ ˙̄η

+

√
9

4 ˙̄ζ2
+

˙̄µλ

˙̄γ ˙̄η ˙̄ζ
+

2
˙̄γ ˙̄η2

+
˙̄µ2
λ

˙̄γ2 ˙̄η2

}
. (25)

Then the interval ˙̄Λ := (1/ ˙̄ζ, ˙̄λ∗) is non-empty, if

˙̄µλ ˙̄η < ˙̄ζ. (26)

If in addition7 λ ∈ ˙̄Λ, then every optimal solution to the
Lasso SSC problem (24) with projected and zero-filled data
is non-zero and subspace preserving.

What is notable about Theorem 3 is the simplicity of the
condition ˙̄µλ ˙̄η < ˙̄ζ, as well as its resemblance to the con-
dition µλ < r of Theorem 1. In fact, the quantity ˙̄µλ is a di-
rect analogue of the inter-subspace coherence µλ, adjusted
for the case of PZF data. Indeed, as seen from its definition
in (6), ˙̄µλ is the maximum inner product between the dual
direction associated to the PZF data of subspace S1 and
the PZF data from the remaining subspaces. The quantity
˙̄η ≤ 1 is the Euclidean norm of the point being expressed,
which in the absence of missing entries is equal to 1.

Finally, to understand the quantity ˙̄ζ, we first look at its
noiseless counterpart ζ defined in (7). This measures how
well distributed are the points X

(1)
−1 with respect to point

x
(1)
1 , or in other words, how coherent they are with that

6By that we mean that we allow our conditions to be stated in
terms of the corrupted data as opposed to quantities that depend
only on clean data and only on noise. This latter approach, e.g.
followed by Wang & Xu (2016), usually leads to less tight condi-
tions due to the heavy use of the triangle inequality. Instead, we
do this decoupling in the probability analysis.

7Since the interval ˙̄Λ is a function of λ, it is misleading to
write “for any λ ∈ ˙̄Λ”, as Wang & Xu (2016) do in their Theorem
6: ˙̄Λ being non-empty does not alone guarantee that also λ ∈ ˙̄Λ.



Theoretical Analysis of SSC with Missing Entries

point. Notice here that ζ is a more relevant quantity than the
inradius r, since the latter does not involve any information
about the point being expressed. In addition, ζ is directly
computable from the data, while the inradius is in principle
hard to compute. Furthermore, it is almost always true that
r < ζ, so that if we were to replace condition µλ < r
with condition µλ < ζ, we would obtain a better result.
This is precisely the condition that Theorem 3 reduces to
for complete data, which is a novel result itself:

Theorem 4 (SSC with uncorrupted data, deterministic).
Consider expressing point x(1)

1 in terms of the rest of the
points in X via the Lasso SSC formulation (15). If µλ < ζ

then the open interval Λλ :=
(
ζ−1, 0.5ζ−1 + 0.5µ−1λ

)
is

non-empty, and if λ ∈ Λλ, then any optimal solution is
non-zero and subspace preserving.

Returning to the discussion of Theorem 3, we see that the
quantity ˙̄ζ captures how well distributed the PZF data ˙̄X

(1)
−1

are with respect to the point x̄(1)
1 that is being expressed,

which certainly depends on both how well-distributed the
original data X(1)

−1 are, as well as on how uniform the obser-
vation pattern is. We can now interpret condition (26): the
PZF data ˙̄X

(1)
−1 associated to the same subspace S1 as the

point ˙̄x
(1)
1 being expressed must be well distributed with

respect to that point normalized (large ˙̄ζ/ ˙̄η), while the PZF
points ˙̄X(−1) in the remaining subspaces must be suffi-
ciently far away from the projected subspace Ṡ1, as mea-
sured by their inner product with the corresponding dual
direction ˆ̄̇v1,λ ∈ Ṡ1 (small ˙̄µλ). Note here that as the num-
berm of missing entries increases, the quantity ˙̄η decreases
but so does ˙̄ζ; moreover the projection is onto a subspace
of even lower dimensionD−m, which makes ˙̄µλ increase,
thus overall making it harder for (26) to be satisfied.

Next, we derive a probabilistic statement from Theorem
3. This is done by constructing high-probability upper and
lower bounds for the LHS and RHS of (26), where we ex-
ploit the fact that data corruptions due to missing entries
are induced by orthogonal projections, i.e., for every x

(i)
j ,

x̄
(i)
j = P̄

(i)
j x

(i)
j = x

(i)
j + (−P̃ (i)

j x
(i)
j ). (27)

Theorem 5 (PZF-SSC, probabilistic). Consider the ran-
dom model of Definition 2. Suppose that for each point we
do not observe exactly m < D−d entries, with the pattern
of missing entries being arbitrary, but otherwise fixed apri-
ori. Suppose that the point density ρ is larger than a uni-
versal constant, and let ε > 0 be a parameter that controls
the probability of success. Then there exists a universal
constant c, such that if ω := m/D satisfies

α >
√

2ω + β
√

1− ω + (1 + β)
√
ε+ β2/3, (28)

then there exists a non-empty interval Λ ⊂ R such that for
any λ ∈ Λ, any optimal solution to the PZF-SSC problem
(24) is non-zero and subspace preserving, with probability
at least 1− 2/N2 − exp(−√ρd)− (2/n) exp(−cDε).

To get an insight into how the maximal tolerable level of
missing entries scales with the subspace dimension d, we
note that for high-ambient dimensions D the quantity β
is negligible with respect to the quantity α. Similarly, ig-
noring the small parameter ε, (28) becomes approximately
α ≥
√

2ω, which by the definition of α and ω gives

PZF-SSC :
m

D
<

1

2

log(ρ)

16d
= O

(
1

d

)
. (29)

Informally, (29) says that the maximal tolerable percentage
of missing entries of PZF-SSC as predicted by Theorem 5,
scales inversely proportionally to the subspace dimension.

3.2. ZF-SSC Theory

Similar techniques that led to Theorems 3 and 5 can be em-
ployed to yield deterministic and probabilistic statements
about ZF-SSC. In particular, we have:

Theorem 6 (ZF-SSC, deterministic). With the notation of
Definition 1, further define the positive quantity

λ̄∗ :=
1

2

{
1

2ζ̄
− µ̄λ
γ̄η̄
− 1

2η̄2
+

(
9

4ζ̄2
+

µ̄λ
γ̄η̄ζ̄

+

2

γ̄η̄2
+

µ̄2
λ

γ̄2η̄2
+

1

4η̄4
+

1

η̄2

( µ̄λ
γ̄η̄
− 1

2ζ̄

))1/2}
. (30)

Then the interval Λ̄ := (1/ζ̄, λ̄∗) is non-empty, if

µ̄λ η̄ + γ̄ < ζ̄. (31)

If in addition λ ∈ Λ̄, then every optimal solution to the
Lasso SSC problem (19) with zero-filled data is non-zero
and subspace preserving.

The quantities µ̄λ, η̄, ζ̄ are in direct analogy with the quan-
tities ˙̄µλ, ˙̄η, ˙̄ζ that appeared in Theorem 3, except that now
they are defined in terms of ZF data instead of PZF data. In
fact, as seen from their definitions in (10) and (7), η̄ = ˙̄η

and ζ̄ = ˙̄ζ, while in principle the inter-subspace coherences
µ̄λ, ˙̄µλ need not coincide. Instead, the main difference be-
tween (31) and (26) is the appearance of the quantity γ̄,
whose PZF counterpart ˙̄γ appears in Theorem 3 only in the
definition of the allowable interval for λ.

The quantity γ̄ admits an interesting interpretation: As seen
from its definition in (12), γ̄ captures the coherence be-
tween the ZF data X̄(−1) associated to subspaces Si, i > 1,
and a projected version of the unobserved components



Theoretical Analysis of SSC with Missing Entries

X̃
(1)

−1 of the data from S1. A large such coherence intu-
itively means that significant information about S1, poten-
tially crucial for the reconstruction of x̄(1)

1 as a linear com-

bination of points in X̄−1, is leaked away into X̃
(1)

−1, with

which X̄
(−1) highly correlates (assuming large γ̄). In turn,

this may lead the optimization problem to favor points of
X̄

(−1) in expressing x̄
(1)
1 , thus leading to the loss of the

subspace-preserving property by the solutions to (19).

Interestingly, comparison of the proofs of Theorems 3 and
6 reveals that ˙̄γ did not appear in (26) because x̄(1)

1 is com-
plete when the underlying subspace arrangement is taken
to be

⋃n
i=1 Ṡi, which is the natural view that we adopted

for our analysis of PZF-SSC. On the contrary, such a fea-
ture is not available in the analysis of ZF-SSC, as x̄(1)

1 is in
principle incomplete with respect to

⋃n
i=1 Si.

As we did for PZF-SSC, we use the deterministic Theorem
6 to derive a probabilistic statement:
Theorem 7 (ZF-SSC, probabilistic). Consider the exact
setting of Theorem 5. If ω := m/D satisfies

α >(
√

2 +
√
ε+ β2/3)

√
ω + (β +

√
ε+ β2/3)

√
1− ω+√

ω(1− ω) + (1 + β +
√
ε+ β2/3)

√
ε+ β2/3,(32)

then there exists a non-empty interval Λ ⊂ R such that for
any λ ∈ Λ, any optimal solution to the ZF-SSC problem
(19) is non-zero and subspace preserving, with probability
at least 1−2/N2−exp(−√ρd)−2(1+1/n) exp

(
−cDε

)
.

Repeating the informal arguments that led to (29), i.e., for
high ambient dimension D ignoring β and ε, (32) becomes
α >

√
2ω +

√
ω(1− ω). Since

√
ω ≥

√
ω(1− ω), we

then have that this latter simplified condition is satisfied if
the stronger condition α > (1 +

√
2)
√
ω is true. This gives

ZF-SSC :
m

D
<

1

(1 +
√

2)2
log(ρ)

16d
= O

(
1

d

)
, (33)

i.e., ZF-SSC can tolerate 1/d fraction of missing entries.8

3.3. A Comparison between PZF-SSC and ZF-SSC

As per (29) and (33), both PZF-SSC and ZF-SSC give sub-
space preserving solutions as long as the ratio of missing
entries scales as 1/d. On the other hand, the multiplying
constant associated to PZF-SSC is about 3 times larger,
suggesting a superiority of PZF-SSC. Alternatively, with

fPZF(ω) :=α−
√

2ω−β
√

1−ω−(1+β)
√
ε+β2/3, (34)

the PZF Theorem 5 asks that

fPZF(ω) > 0, (35)

8This result is in agreement with the result of Charles et al.
(2018), who studied only ZF-SSC.

0 0.1 0.2 0.3 0.4 0.5

ω

10

20

30

40

d

(a) PZF: sub. pres. acc.

0 0.1 0.2 0.3 0.4 0.5

ω

10

20

30

40

d

(b) ZF: sub. pres. acc.

0 0.1 0.2 0.3 0.4 0.5

ω

10

20

30

40

d

(c) PZF: clustering acc.

0 0.1 0.2 0.3 0.4 0.5

ω

10

20

30

40

d

(d) ZF: clustering acc.

Figure 1. Figs. 1(a)-1(b) show the subspace preserving accuracy
for both PZF-SSC and ZF-SSC, along with a fitted hyperbola (al-
lowing for vertical and horizontal shift) for the phase transition
region, the latter measured with a precision of 0.98. Figs. 1(c)-
1(d) show the corresponding clustering accuracies produced by
spectral clustering applied on the affinity graphs. Parameters are
set as D = 100, ρ = 5, n = 3, λ = 10/ζ̄. The complete data are
unit norm, drawn uniformly at random from the subspaces, and
each point is missing m = ωD entries also chosen uniformly at
random. Results are averaged over 10 trials.

while the ZF Theorem 7 asks that

fZF(ω) :=−
√
ε+ β2/3(

√
ω +
√

1− ω +
√
ε+ β2/3)

−
√
ω(1− ω) + fPZF(ω) > 0, (36)

a significantly harder condition to satisfy than (35), due to
the dominating negative term −

√
ω(1− ω). Once again,

this suggests that PZF-SSC has an advantage over ZF-SSC.

The actual algorithmic behavior is depicted in Fig. 1. In
Figs. 1(a)-1(b) we plot the subspace preserving accuracies
for PZF-SSC and ZF-SSC, defined as the ratios of the `1-
norm of the N ×N self-representation matrices CPZF and
CZF restricted to intra-subspace connections over the total
`1 norm of CPZF and CZF respectively. This quantity mea-
sures the degree to which points within a subspace use only
points from the same subspace for their representation. In
Figs. 1(c)-1(d) we show the clustering accuracy that corre-
sponds to spectral clustering applied on the affinity graphs
defined by CPZF and CZF.

There are at least four notable observations. First, as seen
in Figs. 1(a)-1(b), the phase transition between subspace
preserving solutions and non-subspace preserving ones is
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Figure 2. Clustering and subspace preserving accuracies for PZF-
SSC plotted with smaller resolution across a wider range of sub-
space dimensions and missing rates (as in Fig. 1, except ρ = 3).

indeed of hyperbolic nature for both methods, as theoret-
ically predicted by (29) and (33). Second, PZF-SSC has
indeed higher subspace preserving accuracy than ZF-SCC,
as suggested by our two theoretical arguments in the begin-
ning of this section: For example, for 5-dimensional sub-
spaces (d = 5) in R100 PZF-SSC can tolerate up to 34 miss-
ing entries per point, while ZF-SSC can tolerate up to 19.
Third, both methods start breaking down rather quickly as
the number of missing entries increases: for d = 10 PZF-
SSC and ZF-SSC can tolerate, respectively, at most 23 and
10 missing entries per point before their solutions become
non-subspace preserving, while for d = 20 the maximal
tolerable number of missing entries becomes 10 and 4, re-
spectively. Notice how close the values for ZF-SSC are to
D/d in each of the above cases. Finally, even though the
quality of the connections degrades quickly as d and ω in-
crease, the clustering accuracy remains very high (close to
1) for both methods, a phenomenon that we attribute to the
robustness of spectral clustering (Figs. 1(c)-1(d)).

4. Discussion

Bounding dual vectors and inradius. A feature of our
theory is that the subspace separation conditions for com-
plete, ZF and PZF data have the same geometric form, i.e.,

µλ < ζ, µ̄λη̄ + γ̄ < ζ̄, and ˙̄µλ ˙̄η < ˙̄ζ (37)

respectively. This nice structure comes from a novel bound
on the norm of the so-called dual vector v that takes
into consideration both the objective function as well as
the constraint of the reduced dual problem (2). Instead,
Soltanolkotabi & Candès (2012) bound v exclusively from
the constraint of (2). The two techniques lead to a trade-off
between tightness of subspace separation conditions and
upper bounds for the Lasso parameter λ9 and it is an open
problem to optimally bound v, which is then expected to

9This is more easily seen by comparing the conditions of The-
orems 1 and 4 for complete data.

lead to jointly better conditions. At any case, the proba-
bilistic lower bound on r < ζ that we also have used in
our analysis is the quantity α =

√
log(ρ)/16d (Alonso-

Gutierrez, 2008), which even though of fundamental theo-
retical importance, is too pessimistic: for ρ = 5 and d = 5
eq. (26) predicts at most 1 tolerable missing entry for PZF-
SSC in R100, while as per Fig. 1(a) the method handles 34
missing entries per point. Can we do better than that?

PZF vs. ZF. As argued theoretically by comparing Theo-
rems 5 and 7, and corroborated experimentally by Fig. 1
(§3.3), projecting the incomplete dataset onto the observa-
tion pattern of the point being expressed increases the ro-
bustness of the self-representation of the dataset to missing
entries with respect to the subspace preserving property, at
least for low-dimensional subspaces. Our study was solely
in the context of SSC, yet we believe that working with
PZF data instead of ZF data is advantageous regardless of
the choice of self-expressive method (Liu et al., 2013; Lu
et al., 2012; Elhamifar & Vidal, 2013; Wang et al., 2013;
You et al., 2016); a conjecture to be established.

Beyond PZF-SSC. Even though the clustering accuracy
for PZF-SSC seems rather satisfactory as depicted for
higher subspace dimensions and higher missing rates in
Fig. 2(a), its rather poor subspace preserving accuracy
shown in 2(b), suggests that PZF-SSC is still too simple
a method to handle the subspace clustering problem for in-
complete data, and that its performance relies to a signif-
icant extent on the robustness of spectral clustering. E.g.,
as per Figs. 2(a)-2(b), for three 60-dimensional subspaces
inside R100 and 15 missing entries per point, about 40% of
the points a point connects to live in different subspaces;
yet the clustering accuracy is 99%. On the other hand,
the more sophisticated approach of Elhamifar (2016) builds
on the SSC formulation and allows for both clustering and
completion in a unified framework. Nevertheless, that ap-
proach comes with no theoretical guarantees and appears to
be computationally burdensome, leaving as an open chal-
lenge the proposal of a theoretically sound, efficient and ac-
curate algorithm for clustering incomplete data associated
to a union of low-dimensional subspaces.
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