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A. Empirical Evaluation of Conditions in Hypothesis 5
We consider a sequence of datapoints of increasing m by starting with a compressed low dimensional datapoint and

decreasing the amount of compression, evaluating the asymptotic bound mmaxmi=1

∣∣∣ x
(m)
i

‖x(m)‖

∣∣∣4 for each m. Figure 5 shows
plots of the asymptotic bound for two datasets.

Figure 5. Asymptotic error in the application of the CLT to neural network kernels. The solid line is an average over 1000 randomly
sampled datapoints and the shaded region represents 1 standard deviation in the worst-case direction. Data is preprocessed so that each
dimension is in the range [0, 255]. (Left) CIFAR10 and (Right) CIFAR100 (Krizhevsky & Hinton, 2009). The images are compressed
using Bicubic Interpolation.

The plots suggest that Hypothesis 5 makes reasonable assumptions on high dimensional datasets.

B. Proof of Proposition 4
Proof. The LReLU activation function is σ(z) =

(
a+ (1− a)Θ(z)

)
z. Expanding, we have

k(x,y) =

∫
Rm

σ(w · x)σ(w · y)f(w)dw,

=

∫
Rm

(
a2 + a(1− a)Θ(w · y) + a(1− a)Θ(w · x) + (1− a)2Θ(w · x)Θ(w · x)

)
(w · x)(w · y)f(w)dw.

Using linearity of the integral, we have the superposition of the four integrals k1 = a2E
[
(W · x)(W · y)

]
, k2 = a(1 −

a)E
[
Θ(W · x)(W · x)(W · y)

]
, k3 = a(1 − a)E

[
Θ(W · y)(W · x)(W · y)

]
and k4 = (1 − a)2E

[
Θ(W · x)Θ(W ·

y)(W · x)(W · y)
]
.

Now k1(x,y) = a2E[W 2
i ]‖x‖‖y‖ cos θ0. To see this, rotate the coordinate system as before. Then, either solve the

integral directly using the fact that the weights are uncorrelated or differentiate twice and solve the homogeneous IVP with
initial conditions k(0) = a2E[W 2

i ]‖x‖‖y‖ and k′(0) = 0.

After rotating the coordinate system, differentiating k2(x,y) twice results in a homogeneous IVP with k(0) = a(1 −
a)

E[W 2
i ]

2 ‖x‖‖y‖ and k′(0) = 0, the solution of which is k2(x,y) = a(1− a)
E[W 2

i ]
2 ‖x‖‖y‖ cos θ0. Note that by symmetry,

k2(x,y) = k3(x,y).

The last remaining integral, k4(x,y), is just a multiple of the Arc-Cosine kernel.

C. Other Asymptotic Kernels
Corollary 10 (Asmptotic Kernels: 1 − ε Exponent-Dominated Activation Functions). Consider the same scenario as in
Corollary 7, with the exception that the activation functions are replaced by some continuous σ such that |σ(z)| ≤M |z|1−ε
for all z ∈ R, some ε > 0, and some M ∈ (0,∞), then for all s ≥ 2

lim
m→∞

k
(m)
f

(
x(m),y(m)

)
= k(s)

g

(
x(s),y(s)

)
= E

[
σ(Z1)σ(Z2)

]
.
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Proof. We have limm→∞ k
(m)
f

(
x(m),y(m)

)
= limm→∞ E

[
σ(Z

(m)
1 )σ(Z

(m)
2 )

]
and we would like to bring the limit inside

the expected value. By Theorem 6 and Theorem 25.12 of Billingsley (1995), it suffices to show that σ(Z1)σ(Z2) is
uniformly integrable. Define h to be the joint PDF of Z. As in (25.13) of Billingsley (1995), we have

lim
α→∞

∫
|σ(z1)σ(z2)|>α

|σ(z1)σ(z2)|h(z1, z2) dz1dz2 ≤ lim
α→∞

1

αε
E
[∣∣σ(Z1)σ(Z2)

∣∣1+ε
]
,

so it suffices to show that E
[∣∣σ(Z1)σ(Z2)

∣∣1+ε
]

is bounded. We have

E
[∣∣σ(Z

(m)
1 )σ(Z

(m)
2 )

∣∣1+ε
]
≤M2E

[∣∣Z(m)
1 Z

(m)
2

∣∣],
≤M2

√
E
[(
Z

(m)
1

)2]E[(Z(m)
2

)2]
,

= M2E[W 2
i ]‖x‖‖y‖ <∞,

and so
lim
m→∞

k
(m)
f (x,y) = E

[
lim
m→∞

σ(Z
(m)
1 )σ(Z

(m)
2 )

]
= E

[
σ(Z1)σ(Z2)

]
.

Corollary 11 (Asymptotic Kernels: Bounded and Continuous Activation Functions). Consider the same scenario as in
Corollary 7, with the exception that the activation functions are replaced by some bounded, continuous σ. Then for all
s ≥ 2

lim
m→∞

k
(m)
f

(
x(m),y(m)

)
= k(s)

g

(
x(s),y(s)

)
= E

[
σ(Z1)σ(Z2)

]
.

Proof. This is a direct application of the Portmanteau Lemma to the result in Theorem 6:[
σ(W(m) · x(m))σ(W(m) · y(m))

D−→ σ(Z1)σ(Z2)
]

=⇒
[
E
[
σ(W(m) · x(m))σ(W(m) · y(m))

]
→ E

[
σ(Z1)σ(Z2)

]]
for all bounded, continuous σ.

Corollary 12 (Asymptotic Kernels: LReLU). Consider the same scenario as in Corollary 7, with the exception that the
activation functions are replaced by the Leaky ReLU σ(z) = Θ(z)z + aΘ(−z)z, a ∈ (0, 1). Then for all s ≥ 2

lim
m→∞

k
(m)
f

(
x(m),y(m)

)
= k(s)

g

(
x(s),y(s)

)
= E

[
σ(Z1)σ(Z2)

]
.

Proof. As before, it suffices to show uniform integrability of the random variable σ
(
Z

(m)
1

)
σ
(
Z

(m)
2

)
=

Θ
(
Z

(m)
1

)
Θ
(
Z

(m)
2

)
Z

(m)
1 Z

(m)
2 +aΘ

(
−Z(m)

1

)
Θ
(
Z

(m)
2

)
Z

(m)
1 Z

(m)
2 +Θ

(
Z

(m)
1

)
Θ
(
−Z(m)

2

)
Z

(m)
1 Z

(m)
2 +a2Θ

(
−Z(m)

1

)
Θ
(
−

Z
(m)
2

)
Z

(m)
1 Z

(m)
2 . Each of these terms taken individually is uniformly integrable by the same argument as in Corollary 7.

A linear combination of uniformly integrable random variables is uniformly integrable. Thus the random variable is uni-
formly integrable and as before the result holds.

Corollary 13 (Asymptotic Kernels: ELU). Consider the same scenario as in Corollary 7, with the exception that the
activation functions are replaced by the ELU σ(z) = Θ(z)z + Θ(−z)(ez − 1). Then for all s ≥ 2

lim
m→∞

k
(m)
f

(
x(m),y(m)

)
= k(s)

g

(
x(s),y(s)

)
= E

[
σ(Z1)σ(Z2)

]
.

Proof. By Theorem 6, the random variable σ
(
Z

(m)
1

)
σ
(
Z

(m)
2

)
= Θ

(
Z

(m)
1

)
Θ
(
Z

(m)
2

)
Z

(m)
1 Z

(m)
2 + Θ

(
Z

(m)
1

)
Z

(m)
1 Θ

(
−

Z
(m)
2

)(
eZ

(m)
2 −1

)
+ Θ

(
Z

(m)
2

)
Z

(m)
2 Θ

(
−Z(m)

1

)(
eZ

(m)
1 −1

)
+ Θ

(
−Z(m)

1

)(
eZ

(m)
1 −1

)
Θ
(
−Z(m)

2

)(
eZ

(m)
2 −1

)
converges

in distribution to σ
(
Z1

)
σ
(
Z2). Call these terms T (m)

1 , T
(m)
2 , T

(m)
3 , and T (m)

4 respectively. Due to linearity of the limit and
E,

lim
m→∞

k
(m)
f

(
x(m),y(m)

)
= lim
m→∞

E[T
(m)
1 ] + lim

m→∞
E[T

(m)
2 ] + lim

m→∞
E[T

(m)
3 ] + lim

m→∞
E[T

(m)
4 ].
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The first term converges by Corollary 7. The fourth term converges by Corollary 11. The quantity of interest for uniform
integrability in the second and third term is the limit as α→∞(∫

z1|ez2−1|>α
z1>0
z2<0

z1|ez2 − 1|h(z1, z2) dz1dz2

)2

=
(
E
[
z1|ez2 − 1|Θ(z1)Θ(−z2)Θ

(
z1|ez2 − 1| − α

)])2

,

≤ E
[
z2

1Θ(z1)Θ(−z2)Θ
(
z1|ez2 − 1| − α

)]
E
[
(ez2 − 1)2Θ(z1)Θ(−z2)Θ

(
z1|ez2 − 1| − α

)]
,

By the Monotone Convergence Theorem, the first factor evaluates as 0 in the limit using the same argument as in Corol-
lary 7. The second factor is at least bounded by 1 because the argument of E is always less than 1. So we have uniform
integrability, and limm→∞ E[T

(m)
2 ] and limm→∞ E[T

(m)
3 ] converge.

D. Relation to Other Work
From Theorem 6 of the main text, we have that

lim
m→∞

k
(m)
f (θ0) = lim

m→∞
E
[
σ(Z

(m)
1 )σ(Z

(m)
2 )

]
, (Z

(m)
1 , Z

(m)
2 )T

D−→ N
(
0,Σ

)
,

with Σ = E[W 2
i ]

[
‖x‖2 ‖x‖‖y‖ cos θ0

‖x‖‖y‖ cos θ0 ‖y‖2
]

. If the limit could be moved inside the expectation, the right hand

side would resemble the definition of a dual activation, given by Daniely et al. (2016), which follows naturally from the
definition of the kernel for the special case of Gaussian weights. We have shown that asymptotically for certain activation
functions, the limit can indeed be moved inside the expectation and a large class of weight distributions may be treated as
Gaussian. Therefore, much of the dual activation results apply to random neural networks operating on high dimensional
data from a wide range of distributions.


