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Abstract

Reinforcement learning (RL) has been success-
fully used to solve many continuous control tasks.
Despite its impressive results however, fundamen-
tal questions regarding the sample complexity of
RL on continuous problems remain open. We
study the performance of RL in this setting by con-
sidering the behavior of the Least-Squares Tem-
poral Difference (LSTD) estimator on the classic
Linear Quadratic Regulator (LQR) problem from
optimal control. We give the first finite-time anal-
ysis of the number of samples needed to estimate
the value function for a fixed static state-feedback
policy to within e-relative error. In the process
of deriving our result, we give a general charac-
terization for when the minimum eigenvalue of
the empirical covariance matrix formed along the
sample path of a fast-mixing stochastic process
concentrates above zero, extending a result by
Koltchinskii and Mendelson (2013) in the inde-
pendent covariates setting. Finally, we provide
experimental evidence indicating that our analy-
sis correctly captures the qualitative behavior of
LSTD on several LQR instances.

1. Introduction

Despite excellent performance on locomotion (Kober et al.,
2013; Levine & Koltun, 2014; Lillicrap et al., 2016; Schul-
man et al., 2016; Tedrake et al., 2004) and manipulation (Kr-
ishnan et al., 2017; Levine et al., 2016a;b; 2015) tasks,
model-free reinforcement learning (RL) is still considered
very data intensive. This is especially a problem for learn-
ing on robotic systems which requires human supervision,
limiting the applicability of RL. While there have been
various attempts to improve the sample efficiency of RL
in practice (Gu et al., 2017; 2016; Schaul et al., 2016), a
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theoretical understanding of the issue is still an open ques-
tion. A more rigorous foundation could help to differentiate
between whether RL suffers from fundamental statistical
limitations in the continuous setting, or if more sample effi-
cient estimators are possible.

For continuous control tasks, the Linear Quadratic Regula-
tor (LQR) is an ideal benchmark for studying RL, due to a
combination of its theoretical tractability combined with its
practical application in various engineering domains. Re-
cent work by Dean et al. (2017) adopts this point of view,
and studies the problem of designing a stabilizing controller
for LQR when the system dynamics are unknown to the
practitioner. Here, the authors take a model-based approach,
and propose to directly estimate the state-transition matrices
that describe the dynamics from observations. In practice
however, model-free methods such as ()-learning or policy-
gradient type algorithms are preferred over model-based
methods due to their flexibility and ease of use. This nat-
urally raises the question of how well do model-free RL
methods perform on the LQR problem.

In this paper, we shed light on this question by focusing
on the classic Least-Squares Temporal Difference (LSTD)
estimator (Boyan, 1999; Bradtke & Barto, 1996). Given a
sample trajectory from a Markov Decision Process (MDP)
in feedback with a fixed policy 7, LSTD computes the value
function V'™ associated to w. Estimating V™ is the core
primitive in value and policy-iteration type algorithms (Sut-
ton & Barto, 1998). The key property exploited by LSTD
is the linear-architecture assumption, which states that the
value function can be expressed as a linear function after
applying a known non-linear transformation to the state. To
the best of our knowledge, LQR is the simplest continuous
problem which exhibits this property.

Our main result regarding the LSTD estimator for LQR is
an upper bound on the necessary length of a single trajectory
to estimate the value function of a stabilizing state-feedback
policy. Letting n denote the dimension of the state and ig-
noring instance specific factors, we establish that roughly
n? /2 samples are sufficient to estimate the value function
up to e-relative error. Our analysis builds upon the work of
Lazaric et al. (2012), which requires bounding the minimum
eigenvalue of the sample covariance matrix formed by the
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transformed state vectors; the same eigenvalue quantity also
appears in many other analyses of the LSTD estimator in
the literature (Lazaric et al., 2012; Liu et al., 2015; 2012;
Prashanth et al., 2014). We bound this quantity by study-
ing the more general problem of controlling the minimum
eigenvalue of the covariance matrix formed from depen-
dent covariates that mix quickly to a stationary distribution.
Our analysis extends an elegant technique based on small-
ball probabilities from Koltchinskii and Mendelson (2013),
and is of independent interest. Specializing to the setting
when the covariates are bounded almost surely, our result
improves upon the analysis given by Lazaric et al.

We conclude our work with an end-to-end empirical compar-
ison of the model-free Least-Squares Policy Iteration (LSPI)
algorithm (Lagoudakis & Parr, 2003) with the model-based
methods proposed in Dean et al. Our experiments show that
model-free LSPI can be substantially less sample efficient
and less robust compared to model-based methods. This
corroborates our theoretical results which suggest a factor of
state-dimension gap between the number of samples needed
to estimate a value function versus the bounds given in Dean
et al. for robustly computing a stabilizing controller. We
hope that our findings encourage further investigation, both
theoretical and empirical, into the performance of RL on
continuous control problems.

1.1. Related Work

Least-squares methods for temporal difference learning are
well-studied in reinforcement learning, with asymptotic con-
vergence results in a general MDP setting provided by (Tsit-
siklis & Van Roy, 1997; Yu & Bertsekas, 2009). More
recently, non-asymptotic analyses were given in both the
batch setting (Antos et al., 2008; Farahmand et al., 2016;
Lazaric et al., 2012) and the online setting (Liu et al., 2015;
2012; Prashanth et al., 2014). The prevailing assumption em-
ployed in prior art is that the MDP has uniformly bounded
features and rewards, which excludes the LQR problem. We
note that earlier results by Bradtke (1993; 1994) studied
policy-iteration specifically for LQR, and proved an asymp-
totic convergence result. To the best of our knowledge, our
work is the first to provide finite-time results for temporal
difference learning on LQR. Furthermore, our concentra-
tion result for the sample covariance matrix drawn from a
mixing process specialized to the bounded setting improves
upon Lemma 4 of Lazaric et al. (2012), by reducing the
necessary trajectory length from Q(d?) to Q(d), where d is
the dimension of the features.

The problem of estimating the spectra of an empirical covari-
ance matrix formed from independent samples has received
much attention in the past decade. Some representative re-
sults can be found in (Adamczak et al., 2011; Koltchinskii &
Mendelson, 2013; Mendelson & Paouris, 2014; Rudelson &

Vershynin, 2009; Srivastava & Vershynin, 2013; Vershynin,
2011) and the references within. Our focus on the result
of Koltchinskii and Mendelson in this paper is primarily
motivated by the fact that their proof technique is general-
izable to the dependent-data setting using standing mixing
assumptions. The use of distributional mixing assumptions
for proving uniform convergence bounds is by now a well-
established technique in the statistics and machine learning
literature; see (Mohri & Rostamizadeh, 2008; 2010; Yu,
1994) for some of the earlier results, and (Agarwal & Duchi,
2013; Kuznetsov & Mohri, 2015; 2016; McDonald et al.,
2017) for generalizations to time-series and online learning.
In this work, our focus is on bounding a very particular
empirical process (the minimum eigenvalue of a sample co-
variance matrix), and not in developing general machinery
for empirical process theory on dependent data.

2. A Sample Covariance Bound for
Fast-Mixing Processes

In this section, we state our result regarding the minimum
eigenvalue of the sample covariance matrix formed along
a trajectory of a S-mixing process. We start by fixing nota-
tion. Let (X})72, be an R"-valued discrete-time stochastic
process adapted to a filtration (F )72 ;. Forall k£ > 1, let
vy, denote the marginal distribution of X;. We assume that
(X&)%, admits a unique stationary distribution v, and we
define the S-mixing coefficient (k) with respect to v, as
B(k) := supy>1 Ex: [IPx,,, (:|Ft) = Voo |l+v]. Here, the no-
tation X/ refers to the prefix X} := (X1, ..., X3) and |||ty
refers to the total-variation norm on probability measures.
Our main assumption in what follows is that (X})52 , is §-
mixing to its stationary distribution at an exponential decay
rate, i.e. 3(k) < I'p* for some fixed ' > 0 and p € (0,1).
We note that our analysis is easily amendable to slower (e.g.
polynomial) decay rates.

We are now ready to state our generalization of Theorem 2.1
from Koltchinskii and Mendelson (2013) for fast-mixing
processes. We note that no attempt was made to optimize
the constants appearing in the result.

Theorem 2.1. Fixa d € (0,1). Suppose that (Xy)52 is a
discrete-time stochastic process with stationary distribution
Voo that satisfies f(a) < T'p® for some T > 0, p € (0,1).
For any positive T > 0 define the small-ball probability
Qoo (7) as

Qoo(r):= inf P, _{|(t,X)| >7}. 2.1
teSn—1
Suppose that there exists a T satisfying Qo (7) > 0. Define
_ 1024E, _[||X][?]
TR (n

v = greyon (= (55))-




Least-Squares Temporal Difference Learning for the Linear Quadratic Regulator

If N satisfies

N > ! log (2FN> (max{¥y, Uy(N)} + 1),

1—0p 1)
(2.2)

then with probability at least 1 — 0,
N
1 T T2Qoo(T)
Amin (N kgﬂ Xka> > —s

Proofs for all the results in this paper can be found in the
full version (Tu & Recht, 2017).

Following a similar line of reasoning as in Koltchinskii
and Mendelson, we immediately recover a corollary to
Theorem 2.1, where the small-ball condition in (2.1) is

replaced by a stronger moment contractivity assumption

(X )l 2
SUP;egn—1 7\I<X,t>\lil < B.

3. Fast-Mixing of Linear Dynamical Systems

In order to pave the way for our main result regarding LQR,
we need to understand the mixing time of a stable linear,
time-invariant (LTI) dynamical system. This will allow
us to directly apply the results from Section 2. While it
is known that an LTI system mixes at a linear rate (see
e.g. (Mokkadem, 1988)), our focus is to derive the specific
constants involved. Towards this, consider the LTI system

Xip1 = AXp + Wy, Wi ~N(0,1), 3.D

with A an n X n matrix, initial condition X = 0, and W},
independent from Wy for all k # k'

It is not hard to see that the marginal distribution v of
X, evolving according to (3.1) is N'(0, Py), where the co-
variance Py := 11;—01 (AY)(AYT is positive-definite. The
stability of the linear system (3.1) is equivalent to the spec-
tral radius of A, denoted p(A), being strictly less than
one. When p(A) < 1, the stationary distribution v, of
(Xk)52 is N(0, Py ), where the covariance matrix Py is
the unique, positive-definite solution of the discrete-time
Lyapunov equation AP, AT — Py, + 1 = 0.

Observe that in the case of a Markov chain, the 5-mixing
coefficient simplifies to

B(k) = ilill)Ex"’Vt[”PXk(llXO:x) - VOOHtV] . (3.2)

The following upper bound on E..,,[||Px, (/| Xo=2z) —
Voo ||tv] uses the assumption of a known decay on the spec-
tral norm of A¥.

Proposition 3.1. Suppose that || A¥|| < Tp* for all k > 0,
where T' > 0 and p € (0,1). Let Px, (:|Xo=2x) denote

the conditional distribution of X}, given Xo = x. We have
that for all k > 0 and any distribution vy over x with

¢ = Eapru, [12]%),

2| M
3
e

Eonwo [IPx, (| Xo=2) = voollt] < 54 /¢ +

I—p

Now we turn our attention to obtaining a quantitative han-
dle on the decay rate of the spectral norm of A*. To do
this, we introduce some basic concepts from robust con-
trol theory; see (Zhou et al., 1995) for a more thorough
treatment. Let T (resp. D) denote the unit circle (resp.
open unit disk) in the complex plane. Let RH ., denote
the space of matrix-valued, real-rational functions which
are analytic on D¢. For a G € RH ., we define the H .-
norm ||G||. as ||G|ln.. == sup,cr |G(2)]|. Furthermore,
given a square matrix A, we define its resolvant ® 4(z) as
®4(2) := (21— A)~L. When A s stable, ® 4 € RH oo, and
hence ||G||3., < oo. The next proposition characterizes
the decay rate in terms of the stability radius p(A) and the
Hoo-norm || D 4|4, -

Proposition 3.2 (See e.g. Lemma 1 from (Goldenshluger &

Zeevi, 2001)). Let A be a stable matrix with spectral radius
p(A). Fixany p € (p(A),1). Forall k > 1, we have

IAR < [1@p-1all2. 0" -

Combining these last two claims with (3.2) and using the
fact that E,, [|| X ||?] < E,_[||X||?] for all ¢ > 1, we have
the following corollary which establishes an exponential
decay rate for the mixing-time of a stable linear system.

Corollary 3.3. Fixany p € (p(A),1). Forany k > 1 we
have

nook
1—p2p '

Bk) < H‘I’pﬂQAHHOo \/’I‘r(POOH—

4. Least-Squares Temporal Difference
Learning

We turn our attention to the LSTD estimator. The goal
of LSTD is to compute the value function V™ associated
with a policy 7 for an MDP. This is an important primitive
operation in many RL algorithms, such as policy-iteration.

Consider an MDP M = (S, A,p,v,r), where S de-
notes the state-space, A denotes the action-space, p :
S x A — p(S) denotes the transition kernel of the
dynamics with 1(S) denoting the space of measures on
S, v € (0,1) is the discount factor, and r : S x
A — R is the reward function. Given a policy 7 :
S — A, its value function V™ : S — R is defined
as V™ (z) = E Y0 7" r(Xp, m(Xy)) | Xo = x| with
X1 ~ p([ X, m(Xg))-
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Bellman’s equation for the discounted, infinite-horizon
cost (Bertsekas, 2007) states that V'™ is the solution to the
fixed-point equation

VT(x) = r(z, m(2)) + YEo mp(lo,r@ [V (@)] . (4.1
When S is finite, dynamic programming can be used to
solve (4.1). However, when S is continuous, solving
(4.1) in general is difficult without imposing additional
structure. By assuming that V™ admits the representation
V™(z) = (¢(z),v,) for some feature map ¢ : S — R,
one turns (4.1) into a system of linear equations; this is
known as the linear-architecture assumption. Specifically,
if the dynamics p(+|z, u) are known, then V™ can be recov-
ered as the solution to the system of linear equations for
Ur,

<¢(‘T) - 7¢(x)7vﬂ> = ’I"(.’L‘,TI‘(ZL')) ) (42)

with ¥ (z) 1= By wp( o m(2)) [A(7)].

Of course, we are interested in settings where the dynam-
ics p(+|x, u) are not known, and hence we cannot directly
compute t(z) in (4.2). This is where the LSTD estimator
enters the picture: given a trajectory {(Xg, Rk, Xkt1) o,
of length N, the LSTD estimator v}5q approximates the
solution to (4.2) by solving

N t /N
Dista = (Zm(m—mﬂ)T) (Z qkak) , (4.3)

k=1 k=1

where ¢, = ¢(X},) and (-) denotes the pseudo-inverse.
The curious looking nature of (4.3) accounts for the fact that
when ¢ (X )—v¢(Xg11) is used as an estimate for ¢p( X )—
v (X}) in (4.2), the noise in the linear measurement is not
independent from the covariate; see e.g. (Bradtke & Barto,
1996) for a more detailed discussion of the issue.

We will let the matrix ® € RV *? denote the matrix where
the k-th row is ¢(X). While our main result is a bound
on the sample complexity of the LSTD estimator on LQR,
we first consider the implications of Theorem 2.1 on LSTD
when both the features ¢ and the rewards are bounded, in
order to compare to the setting of Lazaric et al. We will then
study the LQR problem, which is the simplest non-trivial
MDP which relaxes these boundedness assumptions.

4.1. Bounded features and rewards

For this section only we assume that sup, s ||¢(z)[|% <
L and sup,cs ,c4lr(s,a)] < Rmax. Under these
assumptions, we immediately have sup, .5 |V7™(z)| <
ﬁRmax := Vimax- The following result from Lazaric
et al. gives a bound on the in-sample prediction error of the

estimator X//;() = (p(+), Vista)-

Theorem 4.1 (Theorem 1, Lazaric et al. (2012)). With prob-
ability at least 1 — §, we have

—~ . | Ld 8log(2d/s) 1
T _ < el N )y
||V V ||N >~ n‘/rnax UN < N + N )

where 1 = —— and vy is the smallest non-zero eigen-

1—y
value of -®T® and ||-||n denotes the L*-norm w.rt. the

.. 1 N
empirical measure ~ Y ;" 0x,.

Immediately, Theorem 2.1 combined with Theorem 4.1
yield the following corollary.

Corollary 4.2. Suppose that the stochastic process
{¢(Xk)}72, mixes to some stationary measure Voo at
a rate (k) < Tp*.  Furthermore, suppose that

Pt 6o Aﬁlﬂn(E% GO#X)T)) < L and
’t Voo .

SUPyega—1 m < 0(1). Fixaé € (0,1), and

suppose that N satisfies

N -0 1 dL
log(T'N/§)loglog(T'N/§) — 1—pt )~
Then, with probability at least 1 — §,

—~ Ld
IV = V™ xy <O | nVimax < N N

log(d/s) 1
0 * )

We remark that Lemma 4 of Lazaric et al. also pro-
vides an analysis of A, (% ®'®), but under the bound-
edness assumptions of this section. Let us compare The-
orem 4.1 to their Lemma 4. Specializing their result to
the case when the mixing is characterized by S(k) <
(1/2)%, they prove that Ay, (& ®7®) > Q(¢) where
0= Anin (B, [#(X)(X)T]) as long as

oo = (7).

Under the same setting, as long as the contractivity condition
in Corollary 4.2 holds for the stationary distribution, our
result relaxes the condition on N to

N Ld
log(N/6) loglog(N/3) ~ <6> /

where L = Apax (B, [0(X)d(X)T]). We therefore im-
prove the bound from Lazaric et al. by reducing the mini-
mum trajectory length from N > Q(d?) to N > Q(d).

4.2. Linear Quadratic Regulator

We now study the performance of LSTD on LQR. The LQR
problem is an MDP with linear dynamics

Xk+1=AXk+BUk+Wk, W NN(O,I), “4.4)
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and quadratic rewards

r(z,u) = —(2"Qx +u' Ru) ,

where Aisn xn, Bisn X n;, () and R are positive-definite
matrices, and Wy, is independent from Wy for all k # k'
It is well known that the LQR problem can be solved with
a linear feedback policy w(z) = Kwx, and hence we will
assume linear policies in the sequel. We will further assume
that the policy 7 stabilizes the dynamics, i.e. the closed-
loop matrix L := A 4+ BK is a stable matrix. This stability
assumption ensures that the dynamics mix and the value
function is finite. We note that our analysis does not handle
the case when L is not stable, but /L is. In this case, the
value function is finite, but the dynamics do not mix.

Under our assumptions, it is straightforward to show by Bell-
man’s equation (4.1) that V™ (z) = —2T Prx — n Tr(Py),
where 7 = /(1 — ) and P, uniquely solves the discrete-
time Lyapunov equation,
(V2L TP (v*?L) = P, + (Q + KTRK) =0.

Furthermore, the stationary distribution of the dynamics
is Voo = N(0, Ps,), where P, uniquely solves the Lya-
punov equation LP,, LT — P,, + I = 0. To cast this
problem into the linear-architecture format of LSTD, we
define the feature map ¢(x) as ¢(x) = svec(zx' + nl).
Here, svec : Sym,,,,, — R™"*1/2 is the linear opera-
tor mapping the space of n X n symmetric matrices (de-
noted Sym,, . ,,) to vectors while preserving the property
that (svec(My),svec(Mz))gn(nr1/2 = (My, Ma)sym,
for all symmetric M7, M,. We will also let smat
R™"+1/2 — Sym,, .., denote the inverse of svec. Hence
in our setting, d (the dimension of the lifted features) is
d =n(n+ 1)/2. We will denote v, = svec(Py).

Our main result is the following theorem which gives a
bound on the error of the difference between the LSTD
estimator P = smat(0jsq ) and the true value function P.

Theorem 4.3. Fix § € (0, 1) and p € (p(L),1). Define
I= 1Dp-11 12100 VTr(Py) +n/(1 — p?). Let P denote

the LSTD estimator (4.3) for the LOR problem. Suppose
that N is large enough to satisfy

_ N _ (maX{Tr( )%, m n})
log(T'N/§)loglog(T'N/§) — (1= p)Aoin (Po) .

Then, with probability at least 1 — 0,

|2~ Pellr _ 5 ( 0/ [Poc ]| max{Tx (P
B \/7)\1211111( )

)

0 )5 /1T }>
(4.5)

where O(-) hides polylog(N, n, 1/d) factors.

We make several remarks on the behavior of (4.5). Let
us first simplify it to ease the exposition, by applying the
bound Tr(P.) < nl||Px|| and assuming we are in the
regime when n >> (1)/]| Px||)? so that n|| Py || dominates
n+/n. With these simplifications, (4.5) becomes

~ n HP00||3/2
=0 ((1 —wmxfmnww)) ’

which yields the sufficient condition that

P = Prllr
[ Prl

5 n? k3 (Pso) 1Pl
N=za ((1 e Amin(Poo>> s wilPe) =
(4.6)

samples ensure the relative error is less than .

We first remark on the dependence of (4.6) on the spectral
properties of Po.. In particular, (4.6) suggests that as x(Px, )
increases, more samples are needed to reach a fixed ¢ toler-
ance. In controls parlance, the matrix P, is known as the
controllability gramian. A system with large k(P ) is one
where different modes exhibit qualitatively different behav-
iors. The simplest example of this is when the closed-loop
matrix is L = diag(p1, ..., pn) With pi € (0,1), in which
case Po, = diag(1/(1—p3?),...,1/(1—p2)). Here, as p; in-
creases towards one, (4.6) predicts that estimating the value
function requires more samples. In Section 5.1, we show
that this predicted behavior actually occurs in numerical
simulations.

Let us compare (4.6) to the setting of Dean et al. (2017),
where ordinary least-squares is used to estimate the state-
transition matrices (A, B) of (4.4), and a robust control
procedure is used to design a controller to stabilize (4.4).
Ignoring problem specific parameters, Corollary 4.3 of Dean
et al. states that at most Q(n/c?) samples are needed to
design a controller which incurs a relative error of at most €.
On the other hand, (4.6) suggests that 2(n? /&%) samples are
needed to estimate a single value function. While this gap in
the upper bounds is not directly comparable, it does suggests
that for LQR, model-based methods may perform better
than policy-iteration methods such as Least-Squares Policy
Iteration (LSPI), which require multiple policy evaluation
steps. In Section 5.2, we provide empirical evidence that
shows this is indeed the case for certain LQR instances. We
leave as future work lower bounds to separate the sample
complexities of model-free and model-based methods.

The remainder of the section is dedicated to a proof sketch of
Theorem 4.3. Because the estimator (4.3) is not a standard
least-squares estimator (despite its name), some analysis is
needed to manipulate the estimator into a form that is easier
to analyze. We follow the development in Lazaric et al. and
state the main structural result of their paper below.

Lemma 4.4 (Lazaric et al. (2012)). As long as ® has full
column rank, the LSTD estimator P satisfies the following
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inequality,

0[S0 0r(Grs1 — Eldnra X)) Tve
Amin (Zi@v:1 stfls—;.lc—)

IP = Prllp <

The proof of Theorem 4.3 proceeds by bounding the terms
that appear in Lemma 4.4. Theorem 2.1 from Section 2
combined with the mixing analysis in Section 3 can be
directly apjglied to estimate the minimum eigenvalue of the
matrix y_,_; #(X;)$#(Xx)T. The term in the numerator
can also be dealt with via standard martingale techniques.
The two bounds are stated below.

Lemma 4.5. Suppose that the hypothesis of Theorem 4.3
hold. Then, with probability at least 1 — 6,

N
)\min <Z ¢(Xk)¢(Xk)T> 2 Q(N)‘inn(POO)) .
k=1

Lemma 4.6. With probability at least 1 — 6,

N
> 6(Xk)(A(Xkt1) — Elp(Xi11)| X)) vr
k=1

< O(||va VN (Tr(Py) + nv/m)|LPY ) -

5. Experiments

We conduct numerical experiments on LSTD for value func-
tion estimation, and Least-Squares Policy Iteration (LSPI)
for an end-to-end comparison with the model-based meth-
ods in Dean et al. (2017). Our implementation is carried out
in Python using numpy for linear algebraic computations
and PyWren (Jonas et al., 2017) for parallelization.

In our first set of experiments, we construct synthetic exam-
ples where we vary the condition number of the resulting
closed-loop controllability gramian matrix. We find that
on these instances, as the condition number increases, the
required number of samples to estimate the value function
to fixed relative error increases, as predicted by our result
in Theorem 4.3. In our second set of experiments, we com-
pare model-free policy iteration (LSPI) to two model-based
methods: (a) the naive nominal model controller which
uses a controller designed assuming that the nominal model
has zero error, and (b) a controller based on a semidefinite
relaxation to the non-convex robust control problem with
static state-feedback. Our experiments show that model-free
policy iteration requires more samples than model-based
methods for the instances we consider.

5.1. Synthetic Data

The goal in this section is to showcase the qualitative be-
havior of LSTD on LQR predicted by Theorem 4.3 as
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Figure 1: Performance of LSTD on LQR instances where
the closed loop response is L = A + BK = pls for
p € {0.1,0.5,0.9}. The dashed line represents the median
relative error, and the shaded region covers the 25-th to 75-th
percentile of the relative error out of 100 trajectories.
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Figure 2: Performance of LSTD on LQR instances where
B = K = 05x5 and A is generated randomly with spectral
radius p(A) € {0.1,0.5,0.9}. The dashed line represents the
median relative error, and the shaded region covers the 25-th
to 75-th percentile of the relative error out of 100 trajectories.

the conditioning of the closed-loop controllability gramian
varies. We consider several instances of LQR with n = 5,
Q = R = 0.115, and v = 0.9, where the state transition
matrices (A, B) and the policy 7(z) = Ka will be speci-
fied later. For each configuration, we collect 100 trajectories
of length N = 1000. For each trajectory, we take the first
N, points for N,, € {100,200, ...,1000} and compute the
LSTD estimator 13N,, on the first V,, data points. We then

. P.—P,
compute the relative error % for each IV,,, and

report the median and 25-th to 75-th percentile over the 100
trajectories.

In the first experiment, we set A = B = I5, and we vary
K e {diag(—(1 —p),—(1 = p),...,—(1 —0.01)) : p €
{0.1,0.5,0.9}} so that L = A+ BK = diag(p, p, ...,0.01)
and #(Ps) = 1=5(1 = 0.01%) for p € {0.1,0.5,0.9}.
Theorem 4.3 predicts that as p increases towards one, the
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number of samples required for e-relative error increases as
well. Figure 1 corroborates this finding.

For our second experiment, we set B = K = 0545 so that
the closed-loop response is simply A. We generate random
instances of A as follows. For each p € {0.1,0.5,0.9}, we
generated 1000 A instances by setting A;; = p for all diag-
onal entries and A;; ~ clip(\V(0,1), -1, 1) independently
for all upper triangular entries. We order the A instances by
K(Ps(A)), where AP, (A)AT — Po (A) + I = 0 and take
the median. This results in x ~ 7, k ~ 35, and k =~ 7 x 10°
for p = 0.1,0.5, 0.9, respectively. We then run LSTD on
the three median instances, reporting the results in Figure 2.
Once again, as x(Px(A)) increases, the required trajectory
length increases, as suggested by Theorem 4.3. We note,
however, that Theorem 4.3 appears to be conservative in
predicting the actual scaling behavior with (P (A)).

5.2. Least-Squares Policy Iteration

We now describe our comparison of the Least-Squares
Policy Iteration (LSPI) algorithm from Lagoudakis and
Parr (2003) to the model-based approaches of Dean et
al. (2017). It is interesting to empirically compare the end-
to-end sample complexity of model-free versus model-based
methods for LQR in order to reach a specified controller
cost, since our theoretical results in Section 4.2 suggest that
LSPI can require more samples than the model-based ap-
proaches. We look at the same LQR instance from Dean et
al., which is described by

1.0l 0.0l O
A= 1001 101 001, B=1I;, (50
0 0.0l 101

with cost matrices Q = 1073I3 and R = I5. We con-
sider both the discounted LQR problem with v = 0.98 and
the average cost LQR problem. The choice of v = 0.98
ensures that the closed-loop system A + BK with K the
optimal discounted controller is stable. Our metric of inter-
est is the relative error J(KJi):J*, where J, is the optimal
infinite-horizon cost on either the discounted or average cost
objective, and J(K) is the infinite-horizon cost of using the
controller K in feedback with the true system (5.1).

We run our experiments as follows. We collect M
independent trajectories of the system (5.1) excited by
independent Gaussian noise N'(0,I3) of length N =
20. This produces a collection of M N tuples D =
{(x,(f), ugf), r,(ce), a:,(ﬁl) oM . We repeat this whole pro-
cess 100 times. In our expériments, we will refer to the
value M' N as the number of timesteps, and each set D of
M N tuples collected will be referred to as a trial. As in the
previous experiment, we use the prefix of the data to report
different values for the number of timesteps used. We now
describe in more detail the different algorithms we evaluate.
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Figure 3: A comparison of how frequently (out of 100 trials)
both LSPI and the nominal synthesis procedure were able to
produce a controller K such that the matrix V(A + BK )
was stable. This condition is necessary and sufficient for the
discounted infinite-horizon cost to be finite.
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Figure 4: A comparison of the relative error of the controllers
produced by both LSPI and the nominal synthesis procedure
for the discounted LQR problem. The points along the dashed
line denote the median cost, and the shaded region covers the
25-th to 75-th percentile out of 100 trials.

LSPI. To run LSPI, we need a starting controller K. The
trivial controller Ky = 03«3 is insufficient, since the ma-
trix /7 A is not stable and hence does not induce a finite
Q-function. This is a drawback of LSPI; a reasonable ini-
tialization must be chosen for the algorithm to work. For
the purposes of comparison, we set K such that the closed
loop matrix A + BK, = diag(0.6,0.6,0.6) and is hence a
valid starting point for LSPI. Furthermore, the relative er-
ror (J(Ko) — J4)/Jy = 6.603 for the discounted case and
(J(Ko) — Jx)/Jx == 4.778 for the average cost case. When
running LSPI for discounted cost (resp. average cost), if at
any point we estimate a policy K such that \/7(A + BK})
(resp. A + BKj,) is not stable, we consider the algorithm as
having failed and assign it a score of +o00.

Nominal controller. The nominal controller works by
first estimating the state-transition matrices (A, B) from
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Figure 5: A comparison of how frequently (out of 100 tri-
als) LSPI, the nominal synthesis procedure, and the common
Lyapunov (CL) synthesis procedures were able to produce a
controller K such that the matrix A + BK was stable. This
condition is necessary and sufficient for the average infinite-
horizon cost to be finite.
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Figure 6: A comparison of the relative error of the controllers
produced by LSPI, the nominal synthesis procedure, and the
common Lyapunov (CL) procedures for the average cost LQR
problem. The points along the dashed line denote the median
cost, and the shaded region covers the 25-th to 75-th percentile
out of 100 trials.

the given trajectories via ordinary least-squares. With the es-
timates (A, B), we directly solve via algebraic Ricatti equa-
tions for the optimal discounted/average cost controllers
under the assumption that the dynamics are exactly (A, B).
We then check to see if the resulting costs with the nominal
controller in feedback with the true system are finite, and
assign a score of +oo otherwise.

Common Lyapunov controller. The common Lyapunov
synthesis procedure is developed in Dean et al. as a semidef-
inite (SDP) relaxation to the non-convex robust controller
synthesis problem with static state-feedback. If the program
succeeds, it provides a certificate that the actual closed-loop
system is stable (this is not guaranteed by the nominal con-
troller, nor LSPI). Since the formulation in Dean et al. is

for the average cost setting, we only run the procedure in
this setting. Because the procedure is a robust synthesis al-
gorithm, it takes as input an upper bound on the estimation
errors ||A— Al < e4 and | B — B|| < . We use both the
true errors and 2 x the true errors as the input bounds. The
former showcases the best possible performance, and the
latter simulates the non-parametric bootstrap method used in
Dean et al. to compute these confidence bounds; their results
suggest that the bootstrap over-estimates the true errors by
roughly a factor of two. We solve the resulting SDPs using
cvxpy (Diamond & Boyd, 2016) with MOSEK (2015).

The results for the discounted LQR problem are shown in
Figure 3 and Figure 4, and the results for the average cost
LQR problem are shown in Figure 5 and Figure 6. We
observe on the discounted problem that LSPI less robust
and more sample inefficient than the nominal controller. In
Figure 3, we observe that even with 3000 timesteps the fre-
quency of stability for LSPI is worse than that of the nominal
controller at 250 timesteps. Similarly, in Figure 4, we see
that the relative error achieved by LSPI at 3000 timesteps
is comparable to that achieved by the nominal controller at
250 timesteps. The qualitative differences between LSPI
and the nominal controller remain the same when we move
to the average cost controller. In Figure 6, we see that the
nominal controller and the common Lyapunov controller
given the actual error bounds perform the best, the com-
mon Lyapunov controller given 2 x the actual error bound
performs slightly worse, and the performance of LSPI is
substantially behind the rest, taking for instance over 10x
more samples compared to the nominal controller to achieve
a relative error of 1071 .

6. Conclusion

We studied the number of samples needed for the LSTD
estimator to return a e-accurate solution in relative error
for the value function associated to a fixed policy = for
LQR. In the process of deriving our result, we provided
a concentration result for the minimum eigenvalue of a
sample covariance matrix formed along the trajectory of a
[B-mixing stochastic process. Empirically, we demonstrated
that model-free policy iteration (LSPI) requires substantially
more samples on certain LQR instances than the model-
based methods from Dean et al.

We hope our results encourage further investigation into
the foundations of RL for continuous control problems. In
particular, some interesting extensions of our work include
providing an end-to-end guarantee for LSPI with noisy pol-
icy evaluations, establishing algorithmic and information-
theoretic lower bounds for RL algorithms on the LQR prob-
lem, and also analyzing other widely used RL algorithms
such as policy gradient (Williams, 1992) and Trust Region
Policy Optimization (Schulman et al., 2015).
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