DVAE++: Discrete Variational Autoencoders with Overlapping Transformations

A. Overlapping Transformation with the
Mixture of Exponential Distributions

The CDF for each conditional distribution is given by
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To simplify notation, the mean of the Bernoulli distribution
g(z = 1lz) is denoted by ¢q. The CDF for the mixture
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Defining m = e P¢ and d = e P, the inverse CDF is
found by solving F;(¢)(¢) — p = 0 which gives rise to the
quadratic equation
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which has solutions m = (—b=++/b? — 4¢) /2. Since —4c >
0 (as ¢ > 0 and d > 0), there are two real solutions. Further,
m = (=b+ Vb? —4c)/2 is the valid solution since m
must be positive (recall m = e~”¢) and v/b2 — 4c > |b|.
Lastly, the inverse CDF is obtained using { = —logm/f.
The inverse CDF is a differentiable mapping from uniform
samples p ~ U(0, 1) to samples from ¢(¢|z).

B. Overlapping Transformation with the
Mixture of Logistic Distributions

The Dirac § distribution can be approximated by a normal
distribution whose variance approaches to zero. We use
this observation to define a smoothing transformation where
each r({|z) is modeled with a Normal distribution (with
¢ eR):

r(Clz=0) = N(C0,0%)

r(Clz=1) = N(C[1,0%).
The resulting mixture ¢(¢|z) = Y. 7(¢|2)q(z|x) converges
to a Bernoulli distribution as ¢ goes to 0, but its CDF (which

is a mixture of error functions) cannot be inverted in closed
form.

To derive a Normal-like distribution with an invertible CDF
and support ¢ € R, we define a smoothing transformation
using the logistic distribution

r(Clz=0) = L(Clpo,s)
r(Clz=1) = L(Clm,s)

where
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For the mixture distribution’

q(Clz) = (1 — q)L(C, po, 8) + ¢L(C, p11, 5),

the inverse CDF is derived by solving
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Defining m = e~¢/%, dy = e#°/* and d; = e"*/* yields a
quadratic in m
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which has the valid solution
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This gives the inverse CDF as F(;(glm (p) = —slogm™.

When s is very small and 1 > g, d; is suceptible to
overflow. A numerically stable solution can be obtained by
applying the change of variable m’ = \/dodym.

C. Visualization of Inverse CDFs

To provide insight into the differences between overlapping
transformations, Concrete (Maddison et al., 2016; Jang et al.,
2016), and spike-and-exponential (Rolfe, 2016) smoothing,
Fig.5 visualizes the inverse CDFs at different temperatures.
In cases where Concrete and spike-and-exponential have
small gradients with respect to ¢(z = 1|x) (thereby slow-
ing learning), overlapping transformations provide a larger
gradient signal (for faster learning).

D. Joint versus Marginal ELBOs

We have presented two alternative ELBO bounds, one based
on a joint inference model ¢(¢, {5, 21, 22|2) and the other
based on ¢(¢;,(,|x) obtained by marginalizing the discrete
variables. Here, we show that variational bound obtained
with the marginal model is tighter.

For simplicity we consider a model with only one latent
variable. Figs. 6(a) and (b) visualize the generative and
inference models. Figs. 6(c) and (d) show the joint mod-
els, and Figs. 6(e) and (f) show the marginal models. The

! is again shorthand for q(z = 1|x).
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Figure 5: Visualization of inverse CDF as a function of ¢(z = 1|x) at p = 0.25 for different smoothing transformations with
three different temperatures () and inverse temperatures (3). We have selected temperature values that are often used in

practice.
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Figure 6: (a) A generative model with binary latent variable
z. (b) The corresponding inference model. In (c) and (d),
the continuous ( is introduced and dependency on z is trans-
ferred to dependency on (. In (e) and (f) the binary latent
variable z is marginalized out.

respective variational bounds are
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which is clearly positive since KL(+||-) > 0. Thus, Ly (),

the marginal ELBO, provides a tighter bound.

E. Adding the Gradient of log Z to the
Objective Function

For training the DVAE++ model with an RBM prior, the
gradient of log Z is needed for each parameter update.
Since log Z only depends on the prior parameters § =
{a1,a2, W}, its gradient is
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This expectation is estimated using Monte Carlo samples
from the RBM. We maintain persistence chains and run
block Gibbs updates for a fixed number of iterations (40) to
update the samples after each parameter update. This ap-
proach is known as persistent contrastive divergence (PCD)
(Younes, 1989; Tieleman, 2008).

Instead of manually coding the gradient of the negative
energy function for each sample and modifying the gra-
dient of whole objective function, we compute the neg-
ative average energy on L samples (indexed by [l) gen-
erated from PCD chains (— Zle Ey (zzgl),z2 )/ L where

zgl),zé) ~ py(z1,22)). This gives a scalar tensor whose
gradient is the sample-based approximation to 9Z/96. By
adding this tensor to the objective function, an automatic dif-
ferentiation (AD) library backpropagates through this tensor

and computes the appropriate gradient estimate. Note that
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an AD library cannot backpropagate the gradients through
the samples generated from the PCD computation graph
because of the discrete nature of the process. However, one
can use stop gradient commands on the samples to prevent
unnecessary AD operations.

F. Implementation Details for the RBM Prior
Experiments

In this section, we summarize the implementation details
for the experiments reported in Sec.7.3 on the RBM prior
VAE. During training, the KL term is annealed linearly from
0 to 1 in 300K iterations. The learning rate starts at 3 - 103
and is multiplied by 0.3 at iterations 600K, 750K, and 950K.
Batch normalization is used for the nonlinear deterministic
hidden layers. Training runs for 1M iterations with batch
size of 100 and the performance is measured using 4000-
sample importance weight estimation of log-likelihood. 3 is
fixed during training for all methods and is cross-validated
from the set {5, 6,8, 10}. Nonlinear models use two hidden
layers of size 200 with tanh activations. There are 200
stochastic latent variables in each layer.

G. Implementation Details for the DVAE++
Experiments

The network architecture visualized in Fig. 7 is divided
into three parts: i) the inference network or encoder that
represents ¢(z,(, h|x), ii) the prior network that models
p(2,(,h), and iii) the decoder network that implements
p(x|¢, h). Our architecture consists of many modules that
may differ for different datasets. The details here describe
the network architecture used for CIFAR10 data. Table 4
lists the specifics of the networks for all the datasets.

For the encoder side, “down 1 denotes a series of down-
sampling residual blocks that extract convolutional features
from the input image. The output of this network is a feature
of size 8 x 8 x 256 (expressed by height x width x depth).
The module “down 2” denotes another residual network
that takes the output of “down 1” and progressively reduces
the spatial dimensions of the feature maps until it reaches
to a feature map of size 1 x 1 x 1024. This feature map
is flattened and is iteratively fed to a series of fully con-
nected networks that model ¢(z;|z,{_;). In addition to the
feature map, each network accepts the concatenation of sam-
ples drawn from the smoothed variables. These networks
have identical architecture with no parameter sharing and
all model factorial Bernoulli distributions in their output.

The concatenation of samples from smoothed variables (;
is fed to “upsample”, a residual network that upsamples its
input to 8 X 8 x x32 dimensions using transposed convolu-
tions. These features are concatenated with the feature map
generated by “down 1. The concatenated feature is then

iteratively fed to a series of residual network that defines
q(hjlz, ¢, h<;). Each network accepts the concatenation
samples from local variables in the previous group (h.;) in
addition to the concatenated feature. When the local latent
variables are modeled by normal distributions, these net-
works return mean and logarithm of the standard deviation
of the elements in h; similar to the original VAE (Kingma
& Welling, 2014).

In the prior network, the same “upsample” network defined
above is used to scale-up the global latent variables to the
intermediate scale (8 x 8 x 32). Then, the output of this
network is fed to a set of residual networks that defines
p(h;|¢, h<;) one at a time in the same scale. Similar to the
encoder, these network accept the concatenation of all the
local latent variables and they generate the parameters of
the same type of distribution.

In the decoder network, the “context” residual network first
maps the concatenation of all the local latent variables and
upsampled global latent variables to a feature space. The
output of this network is fed to a convolutional layer that
generated parameters of a distribution on x, which is sub-
sampled z at scale 4 x 4. In the case of CIFAR10, the output
of this layer correspond to the mixture of discretized logistic
distribution (Salimans et al., 2017) with 10 mixtures. In the
binary datasets, it is the parameters of a factorial Bernoulli
distribution. The residual network input 4 x 4 is applied
to the sample from this scale and its output is concatenated
with the output of “context”. The distribution on the next
scale is formed similarly using another upsampling residual
network. This process is repeated until we generate the
image in the full scale.

The residual blocks in our work consist of two convolutional
layers with an skip connection. Resizing the dimensions
is always handled in the first convolutional layer. Down-
sampling is done using stride of 2 and upsampling is im-
plemented using transposed convolution. The squeeze and
excitation unit is applied with the reduction ratio » = 4 (Hu
etal., 2017).

The SELU (Klambauer et al., 2017) and ELU (Clevert et al.,
2015) activation functions are used in all the fully connected
and convolutional layers respectively. No batch normaliza-
tion was used except in the input of the encoder, the output
of “down 17, and “down 2”. AdaMax (Kingma & Ba, 2014)
is used for training all the models. The learning rate is set
to 0.001 and is decreased when the value of the variational
bound on the validation set plateaus. The batch size is 100
for all the experiments. In all experiments, the 5 smoothing
parameter is set to 8.

We use parallel tempering (Hukushima & Nemoto, 1996;
Iba, 2001) to approximate the partition function of the RBM
which is required to evaluate generative log-likelihoods.
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Figure 7: The DVAE++ architecture is divided into three parts: a) the inference network or encoder that represents
q(2,¢, h|z), b) the prior network that models p(z,(, h), and c) the decoder network that implements p(z|¢, h). Each part
consists of different modules colored differently based on their type. The specific detail for each module is listed in Table 4.

Table 4: The architecture specifics for each module in DVAE++ for different datasets. The numbers correspond to the
number of filters used in residual and convolutional blocks or the number of units used in the fully connected layers starting
from the first hidden layer up to the last layer in each module. The arrows | and 1 in front of each number indicate that the
corresponding block is downsampling or upsampling its input. For Binarized MNIST and MNIST, we used an identical
architecture to OMNIGLOT except that the autoregressive connections are disabled when forming p(z|{, h) in the decoder.

Module Type OMNIGLOT Caltech-101 CIFARI10
down 1 residual 32], 32,64, 64, 128 8], 8] 64/, 64,256, 256
down 2 residual 256],512] 8),164,16] |512],512,1024], 1024
q(zilz,{ ;) | fully connected 4 4 16
upsample residual 1281, 1281 327, 321, 321 1287, 641, 3271
q(h;|lz,¢, hey) residual 32,32,32,32,64 |32,32,32,32,64 32, 64
p(h;|¢, hey) residual 32,32, 64 32,32,32,32,64 32,32,32,32,64
context residual 16 16 256
upsample 1 residual 167, 16, 8, 8 128, 128,
upsample 2 residual 161, 8 81, 4 641, 64
upsample 3 residual 8T 41 327
p(z;|¢,h,z;) | convolutional 1 1 100

input h X w residual 32 32 32
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Figure 8: In the conditional decoder we decompose an
image into several scales. The generative process starts
from the subset of pixels, x(, at the lowest scale (4 x 4).
Conditioned on x(, we generate the 8 x 8 subset, =, at the
next larger scale. Conditioned on z( and =, we generate
the 16 x 16 subset, 2o, at the next larger scale. This process
is repeated until all pixels are covered. In this figure, pixels
in z(/z/x, are indicated by their corresponding color. In
order to have a consistent probabilistic model, given z ;,
we only generate the remaining pixels, x;, at scale i.

We use chains at an adaptive number of temperatures, and
perform 100,000 sweeps over all variables to ensure that the
log Z estimate is reliable.

G.1. Conditional Decoder

The conditional decoder for a 16 x 16-pixel image is illus-
trated in Fig. 8.

H. Balancing the KL Term

With many layers of latent variable, the VAEs tend to disable
many stochastic variables (Bowman et al., 2016; Sgnderby
et al., 2016). Common mitigations to this problem include
KL annealing (Sgnderby et al., 2016), free bits (Kingma
et al., 2016), and soft free bit (Chen et al., 2016).

In our experiments, we observe that annealing the KL term
is more effective in maintaining active latent variables than
the free bits method. Nevertheless, at the end of training, the
units tend to be disabled unevenly across different groups.
Some are completely inactive while other groups have many
active variables. To address this, we modify the VAE objec-
tive function to

Eqy(z1z) [log p(z|2)] — v Z i KL(q(z4]®)||p(2i))-

(3

v is annealed from zero to one during training, and «; is
introduced to balance the KL term across variable groups.
As in soft free bits, we reduce «y; if the i*" group has a lower
KL value in comparison to other groups and increase it if

Table 5: The generative performance of DVAE++ improves
with the number of local variable groups. Performance is
measured by test set log-likelihood in bits per dim.

#groups | 8 | 12 ] 16 | 20 | 24
Bits per dim. | 3.45 | 3.41| 3.40 | 3.40 | 3.39

Table 6: The performance of DVAE++ improves with the
number of global variable groups in the inference model
(.e. q(2;|x,{.;)). Performance is measured by test set
log-likelihood in bits per dim.

# groups ‘ 1 ‘ 2 ‘ 4
Bits per dim. | 3.39|3.38[3.37

the KL value is higher for the group. In each parameter
update «; is determined as

Néy
Zj o

N is the number of latent groups, M is the current mini-
batch, and ¢ = 0.1 is a small value that softens the coeffi-
cients for very small values of K L. In this way, a group is
penalized less in the KL term if it has smaller a KL value,
thereby encouraging the group to use more latent variables.
We apply a stop gradient operation on ¢; to prevent the AD
from backpropagating through these coefficients. The «;
are included in the objective only while + is annealed. After
~ saturates at one, we set all a; = 1 to allow the model to
maximize the variational lower bound.

;= where &; = Egzo i [KL(q(24|2)||p(2:))] +e.

I. Additional Ablation Experiments

In this section, we provide additional ablation experiments
that target individual aspects of DVAE++. The test-set eval-
uations reported in this section do not use the binary model
(8 = ), but instead use the same J that was used during
training.

L.1. Hierarchical Models Help

As expected, we observe that increasing the number of lo-
cal variable groups (the number of hierarchical levels) im-
proves the performance of the generative model. Table 5
summarizes the performance of the DVAE++ for CIFAR10
as the hierarchy of continuous local variables is increased.
Similarly, when global latent variables are modeled by an

Table 7: DVAE++ with and without conditional decoder

MNIST MNIST OMNI- Caltech- CIFAR10

Baseline (static) (dynamic) GLOT 101
Conditional 7937 _ -78.62 -92.36 -81.85 337
Unconditional -79.12  -78.47 92.94 -82.40 301
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Table 8: DVAE++ is compared against baselines with either
no global latent variables or no KL balancing coefficients.

Baseline MNIST OMNIGLOT CIFARI0
(static)

DVAE++ -79.12 -92.36 3.37

DVAE++ w/o global latent -78.96 -92.60 3.41

DVAE++ w/o kl balancing -79.72 -92.74 342

RBM, dependencies between discrete latent variables can
develop. Modeling of these dependencies can require a
deeper hierarchical inference model. Table 6 summarizes
the performance of DVAE++ on CIFARI10. In this experi-
ment the number of local groups is fixed to 16. The RBM
consists of 128 binary variables and the number of hierar-
chical levels in the inference model is varied from 1 to 4.
Deeper inference models generate high log-likelihoods (low
bits per dimmension).

1.2. Conditional vs. Unconditional Decoder

In Table 7, the performance of DVAE++ with and without
conditional decoder is reported. Multi-scale conditional
decoders improve generative performance in all the datasets
but MNIST.

1.3. Global Latent Variables and KL Balancing

Table 8 compares the performance of DVAE++ with global
latent variables trained with KL balancing with two base-
lines on three datasets. In the first baseline, the global latent
variables are completely removed from the model. In the
second baseline, the KL balancing coefficient (c; in Sec. H)
is removed from original DVAE++. Removing either the
global latent variables or the balancing coefficients typically
decreases the performance of our generative model. How-
ever, on binarized MNIST, DVAE++ without a global prior
attains a new state-of-the-art result at -78.96 nats.



