
Appendix: Programmatically Interpretable Reinforcement Learning

A. Evaluation on Classic Control Games

In this section, we provide results of additional experimen-
tal evaluation on some classic control games. We use the
OpenAI Gym environment implementation of these games.
A brief description of these games is given below.

We used the DUEL-DDQN algorithm (Wang et al., 2015)
to obtain our neural policy oracle for these games, rather
than DDPG, as an implementation of Duel-DDQN already
appears on the OpenAI Gym leader-board.

Table 6. Rewards achieved in Classic Control Games. Acrobot
does not have threshold at which it is considered solved.

ACROBOT CARTPOLE MOUNTAINCAR

SOLVED � 195 -110
DRL -63.17 197.53 -84.73
NDPS-SMT -84.16 183.15 -108.06
NDPS-BOPT -127.21 143.21 -143.86
MINIMUM -200 8 -200

Acrobot. This environment consists of a two link, two
joint robot. The joint between the links is actuated. At the
start of the episode, the links are hanging downwards. At
every timestep the agent chooses an action that correspond
to applying a force to move the actuated link to the right, to
the left, or to not applying a force. The episode is over once
the end of the lower link swings above a certain height. The
goal is to end the episode in the fewest possible timesteps.

We use the OpenAI Gym ‘Acrobot-v1’ environment. This
implementation is based on the system presented in (Geram-
ifard et al., 2015). Each observation is a set consisting of
readings from six sensors, corresponding to the rotational
joint angles and velocities of joints and links. The action
space is discrete with three elements, and at each timestep
the environment returns the observation and a reward of �1.
An episode is terminated after 200 time steps irrespective
of the state of the robot. This is an unsolved environment,
which means it does not have a specified reward threshold
at which it’s considered solved.

CartPole. This environment consists of a pole attached by
an un-actuated joint to a cart that moves along a frictionless
track. At the beginning, the pole is balanced vertically on
the cart. The episode ends when the pole is more than 15�

from vertical, or the cart moves more than 2.4 units from the

center. At every timestep the agent chooses to apply a force
to move the cart to the right or to the left, and the goal is to
prevent an episode from ending for the maximum possible
timesteps.

We use the OpenAI Gym ‘CartPole-v0’ environment, based
on the system presented in (Barto et al., 1983). The sensor
values correspond to the cart position, cart velocity, pole
angle and pole velocity. The action space is discrete with
two elements, and at each timestep the environment returns
the observation and a reward of +1. An episode is termi-
nated after 200 time steps irrespective of the state of the cart.
CartPole-v0 defines “solving” as getting an average reward
of at least 195.0 over 100 consecutive trials.

MountainCar. This environment consists of an under-
powered car on a one-dimensional track. At the beginning,
the car is placed between two ‘hills’. The episode ends
when the car reaches the top of the hill in front of it. Since
the car is underpowered, the agent needs to drive it back
and forth to build momentum. At every timestep the agent
chooses to apply a force to move the car to the right, to the
left, or to not apply a force. The goal is to end the episode
in the fewest possible timesteps.

We use the OpenAI Gym ‘MountainCar-v0’ environment.
This implementation is based on the system presented
in (Moore, 1991). The sensors provide the position and
velocity of the car. The action space is discrete with three
elements, and at each timestep the environment returns the
observation and a reward of �1. An episode is terminated
after 200 time steps irrespective of the state of the robot.
MountainCar-v0 is considered “solved” if the average re-
ward over 100 consecutive trials is not less than -110.0.

Results. Table 6 shows rewards obtained by optimal poli-
cies found using various methods in these environments.
The first row gives numbers for the DRL method. The rows
NDPS-SMT and NDPS-BOPT for versions of the NDPS al-
gorithm that respectively use SMT-based optimization and
Bayesian optimization to find template parameters (more on
this below).

B. Additional Details on Algorithm

Now we elaborate on the optimization techniques we used
in the distance computation step argmine0

P
h2H

ke0(h)�
eN (h)k, to find a program similar to a given program e, in
Algorithm 1.



Programmatically Interpretable Reinforcement Learning

0.97 ⇤ (0.0� hd(hTrackPos))+ 0.05 ⇤ fold(+, hTrackPos)+ 49.98 ⇤ (hd(tl(hTrackPos))� hd(hTrackPos))

Figure 5. A programmatic policy for steering, automatically discovered by the NDPS algorithm with training on Aalborg.

if (0.0001� hd(hTrackPos) > 0) and (0.0001 + hd(hTrackPos) > 0)
then 2.02 + 0.95 ⇤ (0.64� hd(hRPM)) + 0.63 ⇤ fold(+, hRPM) + 3.89 ⇤ (hd(tl(hRPM))� hd(hRPM))
else 1.89 + 0.95 ⇤ (0.60� hd(hRPM)) + 0.63 ⇤ fold(+, hRPM) + 3.89 ⇤ (hd(tl(hRPM))� hd(hRPM))

Figure 6. A programmatic policy for acceleration, automatically discovered by the NDPS algorithm with training on CG-Speedway-1.

2.76 ⇤ (0.0� hd(hTrackPos)) + 0.69 ⇤ fold(+, hTrackPos) + 46.51 ⇤ (hd(tl(hTrackPos))� hd(hTrackPos))

Figure 7. A programmatic policy for steering, automatically discovered by the NDPS algorithm with training on CG-Speedway-1.

As mentioned in the main paper, we start by enumerating
a list of program templates, or programs with numerical-
valued parameters ✓. This is done by first replacing the
numerical constants in e by parameters, eliding some subex-
pressions from the resulting parameterized program, and
then regenerating the subexpressions using the rules of S
(without instantiating the parameters), giving priority to
shorter expressions. The resulting program template e✓ fol-
lows the sketch S and is also structurally close to e. Now
we search for values for parameters ✓ that optimally imitate
the neural oracle.

Bayesian optimization. We use Bayesian optimization as
our primary tool when searching for such optimal parameter
values. This method applies to problems in which actions
(program outputs) can be represented as vectors of real
numbers. All problems considered in our experiments fall
in this category. The distance of individual pairs of outputs
of the synthesized program and the policy oracle is then
simply the Euclidean distance between them. The sum of
these distances is used to define the aggregate cost across
all inputs in H. We then use Bayesian optimization to find
parameters that minimize this cost.

SMT-based Optimization. We also use a second param-
eter search technique based on SMT (Satisfiability Modulo
Theories) solving. Here, we generate a constraint that stip-
ulates that for each h 2 H, the output e✓(h) must match
eN (h) up to a constant error. Here, eN (h) is a constant
value obtained by executing eN . The output e✓(h) depends
on unknown parameters ✓; however, constraints over e✓(h)
can be represented as constraints over ✓ using techniques
for symbolic execution of programs (Cadar & Sen, 2013).
Because the oracle is only an approximation to the optimal
policy in our setting, we do not insist that the generated
constraint is satisfied entirely. Instead, we set up a Max-Sat
problem which assigns a weight to the constraint for each
input h, and then solve this problem with a Max-Sat solver.

if (0.1357 + hd(h4)) < 0
then 2
else 0

Figure 8. A programmatic policy for Acrobot, automatically dis-
covered by the NDPS algorithm.

if (fold(+, h0)� hd(h3)) > 0
then 0
else 1

Figure 9. A programmatic policy for CartPole, automatically dis-
covered by the NDPS algorithm.

if (0.2498� hd(h0) > 0) and (0.0035� hd(h1) < 0)
then 0
else 2

Figure 10. A programmatic policy for MountainCar, automatically
discovered by the NDPS algorithm.

Unfortunately, SMT-based optimization does not scale well
in environments with continuous actions. Consequently, we
exclusively use Bayesian optimization for all TORCS based
experiments. SMT-based optimization can be used in the
classic control games, however, and Table 6 shows results
generated using this technique (in row NDPS-SMT).

The results in Table 6 show that for the classic control games,
SMT-based optimization gives better results. This is because
the small number of legal actions in these games, limited to
at most three values {0, 1, 2}, are well suited for the SMT
setting. The SMT solver is able to efficiently perform pa-
rameter optimization, with a small set of histories. Whereas,
the limited variability in actions forces the Bayesian opti-
mization method to use a larger set of histories, and makes
it harder for the method to avoid getting trapped in local



Programmatically Interpretable Reinforcement Learning

minimas.

C. Policy Examples

In this section we present more examples of the policies
found by the NDPS algorithm.

The program in Figure 5 shows the body of a policy for
steering, which together with the acceleration policy given
in the paper (Figure 2), was found by the NDPS algorithm
by training on the Aalborg track. Figures 6 & 7 likewise
show the policies for acceleration and steering respectively,
when trained on the CG-Speedway-1 track. Similarly, Fig-
ures 8, 9 & 10 show policies found for Acrobot, CartPole,
and MountainCar respectively. Here hi is the sequence of
observations from the i-th of k sensors, for example h0

is the 0-th sensor. The sensor order is determined by the
OpenAI simulator.

D. TORCS Video

We provide a video at the following link, which depicts clips
of the DRL agent and the NDPS algorithm synthesized pro-
gram, on the training track and one of the transfer (unseen)
tracks, in that order:

https://goo.gl/Z2X5x6

On the training track, we can see that the steering actions
taken by the DRL agent are very irregular, especially when
compared to the smooth steering actions of the NDPS agent
in the following clip. For the transfer track, we show the
agents driving on the E-Road track. We can see that the
DRL agent crashes before completing a full lap, while the
NDPS agent does not crash. We have provided only small
clips of the car during a race, to keep the video length and
size small, but the behavior is representative of the agent for
the entire race.


