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Abstract

We present a reinforcement learning framework,
called Programmatically Interpretable Reinforce-
ment Learning (PIRL), that is designed to gen-
erate interpretable and verifiable agent policies.
Unlike the popular Deep Reinforcement Learn-
ing (DRL) paradigm, which represents policies
by neural networks, PIRL represents policies us-
ing a high-level, domain-specific programming
language. Such programmatic policies have the
benefits of being more easily interpreted than neu-
ral networks, and being amenable to verification
by symbolic methods. We propose a new method,
called Neurally Directed Program Search (NDPS),
for solving the challenging nonsmooth optimiza-
tion problem of finding a programmatic policy
with maximal reward. NDPS works by first learn-
ing a neural policy network using DRL, and then
performing a local search over programmatic poli-
cies that seeks to minimize a distance from this
neural “oracle”. We evaluate NDPS on the task of
learning to drive a simulated car in the TORCS car-
racing environment. We demonstrate that NDPS
is able to discover human-readable policies that
pass some significant performance bars. We also
show that PIRL policies can have smoother trajec-
tories, and can be more easily transferred to en-
vironments not encountered during training, than
corresponding policies discovered by DRL.

1. Introduction
Deep reinforcement learning (DRL) has had a massive im-
pact on the field of machine learning and has led to re-
markable successes in the solution of many challenging
tasks (Mnih et al., 2015; Silver et al., 2016; 2017). While
neural networks have been shown to be very effective in
learning good policies, the expressivity of these models

1Rice University 2Google Brain 3Deepmind. Correspondence
to: Abhinav Verma <averma@rice.edu>.

Proceedings of the 35 th International Conference on Machine
Learning, Stockholm, Sweden, PMLR 80, 2018. Copyright 2018
by the author(s).

makes them difficult to interpret or to be checked for consis-
tency for some desired properties, and casts a cloud over the
use of such representations in safety-critical applications.

Motivated to overcome this problem, we propose a learning
framework, called Programmatically Interpretable Rein-
forcement Learning (PIRL)1, that is based on the idea of
learning policies that are represented in a human-readable
language. The PIRL framework is parameterized on a high-
level programming language for policies. A problem in-
stance in PIRL is similar to a one in traditional RL, but also
includes a (policy) sketch that syntactically defines a set of
programmatic policies in this language. The objective is to
find a program in this set with maximal long-term reward.

Intuitively, the policy programming language and the sketch
characterize what we consider “interpretable”. In addition to
interpretability, the syntactic restriction on policies has three
key benefits. First, the language can be used to implicitly
encode the learner’s inductive bias that will be used for
generalization. Second, the language can allow effective
pruning of undesired policies to make the search for a good
policy more efficient. Finally, it allows us to use symbolic
program verification techniques to formally reason about
the learned policies and check consistency with correctness
properties. At the same time, policies in PIRL can have rich
semantics, for example allowing actions to depend on events
far back in history.

A key technical challenge in PIRL is that the space of poli-
cies permitted in an instance can be vast and nonsmooth,
making optimization extremely challenging. To address
this, we propose a new algorithm called Neurally Directed
Program Synthesis (NDPS). The algorithm first uses DRL to
compute a neural policy network that has high performance,
but may not be expressible in the policy language. This
network is then used to direct a local search over program-
matic policies. In each iteration of this search, we maintain
a set of “interesting” inputs, and update the program so as to
minimize the distance between its outputs and the outputs
of the neural policy (an “oracle”) on these inputs. The set of
interesting inputs is updated as the search progresses. This
strategy, inspired by imitation learning (Ross et al., 2011;
Schaal, 1999), allows us to perform direct policy search in a
highly nonsmooth policy space.

1PIRL is pronounced Pi-R-L (as in π-RL)
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We evaluate our approach in the task of learning to
drive a simulated car in the TORCS car-racing environ-
ment (Wymann et al., 2014), as well as three classic control
games (we discuss the former in the main paper, and the lat-
ter in the Appendix). Experiments demonstrate that NDPS
is able to find interpretable policies that, while not as perfor-
mant as the policies computed by DRL, pass some signifi-
cant performance bars. Specifically, in TORCS, our policy
sketch allows an unbounded set of programs with branches
guarded by unknown conditions, each branch representing a
Proportional-Integral-Derivative (PID) controller (Åström &
Hägglund, 1995) with unknown parameters. The policy we
obtain can successfully complete a lap of the race, and the
use of the neural oracle is key to doing so. Our results also
suggest that a well-designed sketch can serve as a regular-
izer. Due to constraints imposed by the sketch, the policies
for TORCS that NDPS learns lead to smoother trajectories
than the corresponding neural policies, and can tolerate
greater noise. The policies are also more easily transferred
to new domains, in particular race tracks not seen during
training. Finally, we show, using several properties, that
the programmatic policies that we discover are amenable to
verification using off-the-shelf symbolic techniques.

2. Programmatically Interpretable
Reinforcement Learning

In this section, we formalize the problem of programmati-
cally interpretable reinforcement learning (PIRL).

We model a reinforcement learning setting as a Partially
Observable Markov Decision Process (POMDP) M =
(S,A,O, T (·|s, a), Z(·|s), r, Init , γ). Here, S is the set of
(environment) states. A is the set of actions that the learning
agent can perform, and O is the set of observations about
the current state that the agent can make. An agent action a
at the state s causes the environment state to change proba-
bilistically, and the destination state follows the distribution
T (·|s, a). The probability that the agent makes an observa-
tion o at state s is Z(o|s). The reward that the agent receives
on performing action a in state s is given by r(s, a). Init
is the initial distribution over environment states. Finally,
0 < γ < 1 is a real constant that is used to define the agent’s
aggregate reward over time.

A history of M is a sequence h = o0, a0, . . . , ak−1, ok,
where oi and ai are, respectively, the agent’s observation
and action at the i-th time step. Let HM be the set of
histories in M . A policy is a function π : HM → A
that maps each history as above to an action ak. For each
policy, we can define a set of histories that are possible when
the agent follows π. We assume a mechanism to simulate
the POMDP and sample histories that are possible under a
policy. The policy also induces a distribution over possible
rewards Ri that the agent receives at the i-th time step.

The agent’s expected aggregate reward under π is given by
R(π) = E[

∑∞
i=0 γ

iRi]. The goal in reinforcement learning
is to discover a policy π∗ that maximizes R(π).

A Programming Language for Policies. The distinctive
feature of PIRL is that policies here are expressed in a high-
level, domain-specific programming language. Such a lan-
guage can be defined in many ways. However, to facilitate
search through the space of programs expressible in the
language, it is desirable for the language to express compu-
tations as compactly and canonically as possible. Because
of this, we propose to express parameterized policies using
a functional language based on a small number of side-
effect-free combinators. It is known from prior work on
program synthesis (Feser et al., 2015) that such languages
offer natural advantages in program synthesis.

We collectively refer to observations and actions, as well as
auxiliary integers and reals generated during computation,
as atoms. Our language considers two kinds of data: atoms
and sequences of atoms (including histories). We assume a
finite set of basic operators over atoms that is rich enough to
capture all common operations on observations and actions.

Figure 1 shows the syntax of this language. The nontermi-
nals E and α represent expressions that evaluate to atoms
and histories, respectively. We sketch the semantics of the
various language constructs below.

• c ranges over a universe of numerical constants, and ⊕
is a basic operator

• [ ] is the empty sequence, hd returns the element in
an input sequence representing the most recent time
point, and tl returns the prefix of the sequence up to
(and excluding) this element. “push e a” evaluates
the atom-valued expression e, then puts the result on
top of the history to which a evaluates;

• map, fold, filter are the standard higher-order com-
binators over sequences with the semantics:
map(f, [e1, . . . , ek]) = [f(e1), . . . , f(ek)]
fold(f, [e1, . . . , ek], e) = f(ek, f(ek−1, ...f(e1, e)))
filter(f, [e1, . . . , ek]) = [ef1 , . . . , efj ] where for all
1 ≤ i ≤ j, f(efi) is true;

• x, x1, x2 are variables. As usual, unbound variables
are assumed to be inputs.

The language comes with a type system that distinguishes
between different types of atoms, and ensures that language
constructs are used consistently. The type system can catch
common errors, such as applying hd to the empty sequence.
This type system identifies a set of expressions whose inputs
are histories and outputs are actions. These expressions are
known as programmatic policies, or simply programs.
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E ::= c | x | ⊕(E1, . . . , Ek) | hd (α) |
fold ((λx1, x2. E1), α)

α ::= x | [ ] | tl (α1) | push (E,α1) |map ((λx. E), α1) |
filter ((λx. E), α1)

Figure 1. Syntax of the policy language. Here, E and α represent
expressions that evaluate to atoms and histories, respectively.

Sketches. Discovering an optimal programmatic policy
from the vast space of legitimate programs is typically im-
practical without some prior on the shape of target poli-
cies. PIRL allows the specification of such priors through
instance-specific syntactic models called sketches.

We define a sketch as a grammar of expressions over atoms
and sequences of atoms, obtained by restricting the grammar
in Figure 1. The set of programs permitted by a sketch S is
denoted by [[S]].

PIRL. The PIRL problem can now be stated as follows.
Suppose we are given a POMDP M and a sketch S. Our
goal is to find a program e∗ ∈ [[S]] with optimal reward:

e∗ = argmax
e∈[[S]]

R(e). (1)

Example. Now we consider a concrete example of PIRL,
considered in more detail in Section 5.

Suppose our goal is to make a (simulated) car complete
laps on a track. We want to do so by learning policies for
tasks like steering and acceleration. Suppose we know that
we could get well-behaved policies by using PID control —
specifically, by switching back and forth between a set of
PID controllers. However, we do not know the parameters
of these controllers, and neither do we know the conditions
under which we should switch from one controller to an-
other. We can express this knowledge using the following
sketch:

P ::= (ε− hd(hi))

I ::= fold(+, hi)

D ::= hd(tl(hi))− hd(hi)

C ::= c1 + c2 ∗ P + c3 ∗ I + c4 ∗D
B ::= c0 + c1 ∗ hd(h1) + · · ·+ ck ∗ hd(hk) > 0 |

B1 or B2 | B1 and B2

E ::= C | if B then E1 else E2.

Here, E represents programs permitted by the sketch. The
program’s input is a history h. We assume that this sequence
is split into a set of sequences {h1, . . . , hk}, where hi is the
sequence of observations from the i-th of k sensors. The
sensor’s most recent reading is given by hd(hi), and its

second most recent reading is hd(tl(hi)). The operators
+, −, ∗, >, and if-then-else are as usual. The program
(optionally) evaluates a set of boolean conditions (B) over
the current sensor readings, then chooses among a set of
PID controllers, represented by C. In the definition of C, P
is the proportional term, I is the integral term (represented
as a fold), and D is a finite-difference approximation of
the derivative term, ε is a known constant and represents
the target for the controller. The symbols ci are real-valued
parameters.

The program in Figure 2 shows the body of a policy for
acceleration that the NDPS algorithm finds given this sketch
in the TORCS car racing environment. The program’s in-
put consists of histories for 29 sensors; however, only two
of them, TrackPos and RPM, are actually used in the pro-
gram. While the sensor TrackPos (for the position of the
car relative to the track axis) is used to decide which con-
troller to use, only the RPM sensor is needed to calculate the
acceleration.

3. Neurally Directed Program Search
Imitating a Neural Policy Oracle. The NDPS algorithm
is a direct policy search that is guided by a neural “oracle”.
Searching over policies is a standard approach in reinforce-
ment learning. However, the nonsmoothness of the space of
programmatic policies poses a fundamental challenge to the
use of such an approach in PIRL. For example, a conceiv-
able way of solving the search problem would be to define
a neighborhood relation over programs and perform local
search. However, in practice, the objective R(e) of such
a search can vary irregularly, leading to poor performance
(see Section 5 for experimental results on this).

In contrast, NDPS starts by using DRL to compute a neural
policy oracle eN for the given environment. This policy is
an approximation of the programmatic policy that we seek
to find. To a first approximation, NDPS is a local search
over programmatic policies that seeks to find a program e∗

that closely imitates the behavior of eN . The main intuition
here is that distance from eN is a simpler objective than
the reward function R(e), which aggregates rewards over
a lengthy time horizon. This approach can be seen to be a
form of imitation learning (Schaal, 1999).

The distance between eN and the estimate e of e∗ in a search
iteration is defined as d(eN , e) =

∑
h∈H‖e(h)− eN (h)‖,

whereH is a set of “interesting” inputs (histories) and ‖·‖
is a suitable norm. During the iteration, we search the
neighborhood of e for a program e′ that minimizes this
distance. At the end of the iteration, e′ becomes the new
estimate for e∗.

Input Augmentation. One challenge in the algorithm is
that under the policy e, the agent may encounter histories
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if (0.001− hd(hTrackPos) > 0) and (0.001 + hd(hTrackPos) > 0)
then 1.96 + 4.92 ∗ (0.44− hd(hRPM)) + 0.89 ∗ fold(+, hRPM) + 49.79 ∗ (hd(tl(hRPM))− hd(hRPM))
else 1.78 + 4.92 ∗ (0.40− hd(hRPM)) + 0.89 ∗ fold(+, hRPM) + 49.79 ∗ (hd(tl(hRPM))− hd(hRPM))

Figure 2. A programmatic policy for acceleration, automatically discovered by the NDPS algorithm. hRPM and hTrackPos represent histories
for the RPM and TrackPos sensors, respectively.

that are not possible under eN , or any of the programs en-
countered in previous iterations of the search. For example,
while searching for a steering controller, we may arrive at
a program that, under certain conditions, steers the car into
a wall, an illegal behavior that the neural policy does not
exhibit. Such histories would be irrelevant to the distance
between eN and e if the set H were constructed ahead of
time by simulating eN , and never updated. This would be
unfortunate as these are precisely the inputs on which the
programmatic policy needs guidance.

Our solution to this problem is input augmentation, or pe-
riodic updates to the setH. More precisely, after a certain
number of search steps for a fixed set H, and after choos-
ing the best available synthesized program for this set, we
sample a set of additional histories by simulating the current
programmatic policy, and add these samples toH.

3.1. Algorithm Details

Algorithm 1 Neurally Directed Program Search
Input: POMDP M , neural policy eN , sketch S
H ← create histories(eN ,M)
e← initialize(eN ,H,M,S)
R← collect reward(e,M)
repeat
(e′, R′)← (e,R)
H ← update histories(e, eN ,M,H)
E ← neighborhood pool(e)
e← argmine′∈E

∑
h∈H‖e′(h)− eN (h)‖

R← collect reward(e,M)
until R′ ≥ R
Output: e′

We show pseudocode for NDPS in Algorithm 1. The inputs
to the algorithm are a POMDP M , a neural policy eN for
M that serves as an oracle, and a sketch S. The algorithm
first samples a set of histories of eN using the procedure
create histories. Next it uses the routine initialize
to generate the program that is the starting point of the policy
search. Then the procedure collect reward calculates the
expected aggregate reward R(e) (described in Section 2),
by simulating the program in the POMDP.

From this point on, NDPS iteratively updates its estimate e
of the target program, as well as its estimate H of the set

of interesting inputs used for distance computation. To do
the former, NDPS uses the procedure neighborhood pool

to generate a space of programs that are structurally similar
to e, then finds the program in this space that minimizes
distance from eN . The latter task is done by the routine
update histories, which heuristically picks interesting
inputs in the trajectory of the learned program and then
obtains the corresponding actions from the oracle for those
inputs. This process goes on until the iterative search fails
to improve the estimated reward R of e.

The subroutines used in the above description can be imple-
mented in many ways. Now we elaborate on our implemen-
tation of the important subroutines of NDPS.

The optimization step. The search for a program e′ at
minimal distance from the neural oracle can be implemented
in many ways. The approach we use has two steps. First, we
enumerate a set of program templates — numerically param-
eterized programs — that are structurally similar to e and
are permitted by the sketch S , giving priority to shorter tem-
plates. Next, we find optimal parameters for the enumerated
templates. Our primary tool for the second step is Bayesian
optimization (Snoek et al., 2012), though we also explored
a symbolic optimization technique based on Satisfiability
Modulo Theories (SMT) solving (Appendix B).

The initialization step. The performance of NDPS turns
out to be quite sensitive to the choice of the program that
is the starting point of the search. Our initialization routine
initialize is broadly similar to the optimization step, in
that it attempts to find programs that closely imitate the
oracle through a combination of template enumeration and
parameter optimization. However, rather than settling on a
single program, initialize generates a pool of programs
that are close in behavior to the oracle. After this, it simu-
lates the programs in the POMDP and returns the program
that achieves the highest reward.

4. Environments for Experiments
In this section, we describe the environments (modeled by
POMDPs) on which we evaluated the NDPS algorithm.

TORCS. We use NDPS to generate controllers for cars in
The Open Racing Car Simulator (TORCS) (Wymann et al.,
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2014). TORCS has been used extensively in AI research,
for example in (Salem et al., 2017), (Koutnı́k et al., 2013),
and (Loiacono et al., 2010) among others. (Lillicrap et al.,
2015a) has shown that a Deep Deterministic Policy Gradient
(DDPG) network can be used in RL environments with
continuous action spaces. The DRL agents for TORCS in
this paper implement this approach.

In its full generality TORCS provides a rich environment
with input from up to 89 sensors, and optionally the 3D
graphic from a chosen camera angle in the race. The con-
trollers have to decide the values of 5 parameters during
game play, which correspond to the acceleration, brake,
clutch, gear and steering of the car. Apart from the imme-
diate challenge of driving the car on the track, controllers
also have to make race-level strategy decisions, like making
pit-stops for fuel. A lower level of complexity is provided
in the Practice Mode setting of TORCS. In this mode all
race-level strategies are removed. Currently, so far as we
know, state-of-the-art DRL models are capable of racing
only in Practice Mode, and this is also the environment that
use. Here we consider the input from 29 sensors, and decide
values for the acceleration and steering actions.

The sketches used in our experiments are as in the ex-
ample in Section 2, and provide the basic structure of a
proportional-integral-derivative (PID) program, with appro-
priate holes for parameter and observation values. To obtain
a practical implementation, we constrain the fold calculation
to the five latest observations of the history. This constraint
corresponds to the standard strategy of automatic (integral)
error reset in discretized PID controllers (Astrom & Hag-
glund, 1984).

Each track in TORCS can we viewed as a distinct POMDP.
In our implementation of NDPS for TORCS we choose one
track and synthesize a program for it. Whenever the algo-
rithm needs to interact with the POMDP, we use the program
or DRL agent to race on the track. For example, in the pro-
cedure collect reward we use the synthesized program
to race one lap, and the reward is a function of the speed,
angle and position of the car at each time step.

For the create histories procedure we use the DRL
agent to complete one lap of the track (an episode), record-
ing the sensor values and environment state at each time
step. The update histories procedure uses a two step
process. First, the synthesized program is used to race one
lap and we store the sequence of observations (given by sen-
sor values) o1, o2, . . . provided by TORCS during this lap.
Then, we use the DRL agent to generate the corresponding
action ai for each observation oi, and sample an observation
o′i from the resulting state. Each triple (oi, ai, o

′
i) is then

added to the set of histories.

Classic Control Games. In addition to TORCS, we evalu-
ated our approach in three classic control games, Acrobot,
CartPole, and MountainCar. These games provide simpler
RL environments, with fewer input sensors than TORCS and
only a single discrete action at each time step, compared to
two continuous actions in TORCS. These results appear in
Appendix A.

5. Experimental Analysis
Now we present an empirical evaluation of the effectiveness
of our algorithm in solving the PIRL problem. We synthe-
size programs for two TORCS tracks, CG-Speedway-1 and
Aalborg. These tracks provide varying levels of difficulty,
with Aalborg being the more difficult track of the two.

5.1. Evaluating Performance

A controller’s performance is measured according to two
metrics, lap time and reward. To calculate the lap time,
the programs are allowed to complete a three lap race, and
we report the average time taken to complete a lap during
this race. The reward function is calculated using the car’s
velocity, angle with the track axis, and distance from the
track axis. The same function is used to train the DRL agent
initially. In the experiments we compare the average reward
per time step, obtained by the various programs.

We compare among the following RL agents:

A1: DRL. An agent which uses DRL to find a policy rep-
resented as a deep neural network. The specific DRL
algorithm we use is Deep Deterministic Policy Gra-
dients (Lillicrap et al., 2015b), which has previously
been used on TORCS.

A2: Naive. Program synthesized without access to a policy
oracle.

A3: NoAug. Program synthesized without input augmenta-
tion.

A4: NoSketch. Program synthesized in our policy language
without sketch guidance.

A5: NoIF. Programs permitted by a restriction of our
sketch that does not permit conditional branching.

A6: NDPS. The Program generated by the NDPS algorithm.

In Table 1 we present the performance results of the above
list. The lap times in that table are given in minutes and
seconds. The TIMEOUT entries indicate that the synthesis
process did not return a program that could complete the
race, within the specified timeout of twelve hours.

These results justify the various choices that we made in our
NDPS algorithm architecture, as discussed in Section 3. In
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many cases those choices were necessary to be able to syn-
thesize a program that could successfully complete a race.
As a consequence of these results, we only consider the DRL
agent and the NDPS program for subsequent comparisons.

The NoAug and NoSketch agents are unable to generate
programs that complete a single lap on either track. In the
case of NoSketch this is because the syntax of the policy
language (Figure 1), defines a very large program space. If
we randomly sample from this space without any constraints
(like those provided by the sketch), then the probability of
getting a good program is extremely low and hence we are
unable to reliably generate a program that can complete
a lap. The NoAug agent performs poorly because without
input augmentation, the synthesizer has no guidance from
the oracle regarding the “correct” behavior once the program
deviates even slightly from the oracle’s trajectory.

Table 1. Performance results in TORCS. Lap time is given in Min-
utes:Seconds. Timeout indicates that the synthesizer did not return
a program that completed the race within the specified timeout.

MODEL CG-SPEEDWAY-1 AALBORG
LAP TIME REWARD LAP TIME REWARD

DRL 54.27 118.39 1:49.66 71.23
Naive 2:07.09 58.72 TIMEOUT −
NoAug TIMEOUT − TIMEOUT −
NoSketch TIMEOUT − TIMEOUT −
NoIF 1:01.60 115.25 2:45.13 52.81
NDPS 1:01.56 115.32 2:38.87 54.91

5.2. Qualitative Analysis of the Programmatic Policy

We provide qualitative analysis of the inferred programmatic
policy through the lens of interpretability, and its behavior
in acting in the environment.

Interpretability. Interpretability is a qualitative metric,
and cannot be easily demonstrated via experiments. The
DRL policies are considered uninterpretable because their
policies are encoded in black box neural networks. In con-
trast, the PIRL policies are compact and human-readable by
construction, as exemplified by the acceleration policy in
Figure 2. More examples of our synthesized policies are
given in Appendix C.

Behavior of Policy. Our experimental validation showed
that the programmatic policy was less aggressive in terms
of its use of actions and resulting in smoother steering ac-
tions. Numerically, we measure smoothness in Table 2 by
comparing the population standard deviation of the set of
steering actions taken by the program during the entire race.
In Figure 3 we present a scatter plot of the steering actions
taken by the DRL agent and the NDPS program during a
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Figure 3. Slice of steering actions taken by the DRL and NDPS

agents, during the CG-Speedway-1 race. This figure demonstrates
that the NDPS agent drives more smoothly.

slice of the CG-Speedway-1 race. As we can see, the NDPS
program takes much more conservative actions.

Table 2. Smoothness measure of agents in TORCS, given by the
standard deviation of the steering actions during a complete race.
Lower values indicate smoother steering.

MODEL CG-SPEEDWAY-1 AALBORG

DRL 0.5981 0.9008
NDPS 0.1312 0.2483

5.3. Robustness to Missing/Noisy Features

To evaluate the robustness of the agents with respect to de-
fective sensors we introduce a Partial Observability variant
of TORCS. In this variant, a random sample of k sensors are
declared defective. During the race, one or more of these
defective sensors are blocked with some fixed probability.
Hence, during game-play, the sensor either returns the cor-
rect reading or a null reading. For sufficiently high block
probabilities, both agents will fail to complete the race. In
Table 3 we show the distances raced for two values of the
block probability, and in Figure 4 we plot the distance raced
as we increase the block probability on the Aalborg track.
In both these experiments, the set of defective sensors was
taken to be {RPM, TrackPos} because we know that the
synthesized programs crucially depend on these sensors.

Table 3. Partial observability results in TORCS blocking sensors
{RPM, TrackPos} . For each track and block probability we give
the distance, in meters, raced by the program before crashing.

MODEL CG-SPEEDWAY-1 AALBORG
50% 90% 50% 90%

DRL 21 17 71 20
NDPS 1976 200 1477 287
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Figure 4. Distance raced by the agents as the block probability
increases for a particular sensor(s) on Aalborg. The NDPS agent is
more robust to blocked sensors.

5.4. Evaluating Generalization to New Instances

To compare the ability of the agents to perform on unseen
tracks, we executed the learned policies on tracks of compa-
rable difficulty. For agents trained on the CG-Speedway-1
track, we chose CG track 2 and E-Road as the transfer tracks,
and for Aalborg trained tracks we chose Alpine 2 and Ru-
udskogen. As can be seen in Tables 4 and 5, the NDPS
programmatically synthesized program far outperforms the
DRL agent on unseen tracks. The DRL agent is unable
to complete the race on any of these transfer tracks. This
demonstrates the transferability of the policies NDPS finds.

Table 4. Transfer results with training on CG-Speedway-1. ‘Cr’
indicates that the agent crashed after racing the specified distance.

MODEL CG TRACK 2 E-ROAD
LAP TIME REWARD LAP TIME REWARD

DRL CR 1608M − CR 1902M −
NDPS 1:40.57 110.18 1:51.59 98.21

Table 5. Transfer results with training on Aalborg. ‘Cr’ denotes
the agent crashed, after racing the specified distance.

MODEL ALPINE 2 RUUDSKOGEN
LAP TIME REWARD LAP TIME REWARD

DRL CR 1688M − CR 3232M −
NDPS 3:16.68 67.49 3:19.77 57.69

5.5. Verifiability of Policies

Now we use established symbolic verification techniques
to automatically prove two properties of policies generated
by NDPS. So far as we know, the current state of the art

neural network verifiers cannot verify the DRL network we
are using in a reasonable amount of time, due to the size and
complexity of the network used to implement the DDPG
algorithm. For example, the Reluplex (Katz et al., 2017)
algorithm was tested on networks at most 300 nodes wide,
whereas our network has three layers with 600 nodes each,
and other smaller layers.

Smoothness Property For the program given in Figure 2
we proved, we have ∀k

∑k
i=k−5‖RPMi+1 − RPMi‖ <

0.006 =⇒ ‖Accelerationk+1 − Accelerationk‖ < 0.49.
Intuitively, this means that if the sum of the consecutive
differences of the last six RPM sensor values is less than
0.006, then the acceleration actions calculated at the last
and penultimate step will not differ by more than 0.49.
Similarly, for a policy given in Appendix C, we prove
∀k

∑k
i=k−5‖TrackPosi+1 − TrackPosi‖ < 0.006 =⇒

‖Steeringk+1 − Steeringk‖ < 0.11. This proof gives us a
guarantee of the type of smooth steering behavior that we
empirically examined earlier in this section.

Universal Bounds We can prove that the program in Fig-
ure 2 satisfies the property ∀i (0 ≤ RPMi ≤ 1 ∧ −1 ≤
TrackPosi ≤ 1) =⇒ (‖Steering i‖ < 101.08 ∧
−54.53 < Accelerationi < 53.03). Intuitively, this means
that we have proved global bounds for the action values in
this environment, assuming reasonable bounds on some of
the input values. In the TORCS environment these bounds
are not very useful, since the simulator clips these actions
to certain pre-specified ranges. However, this experiment
demonstrates that our framework allows us to prove uni-
versal bounds on the actions, and this could be a critical
property for other environments.

6. Related Work
Syntax-Guided Synthesis. The original formulation of
inductive program synthesis is to search for a program in a
hypothesis space (programming language) that is consistent
with a specification (such as IO examples). However, this
search is often intractable because of the large (potentially
infinite) hypothesis space. One of the key ideas to make
this search tractable is to provide the synthesizer a sketch of
the desired program in addition to the examples, for exam-
ple in (Solar-Lezama, 2009) and (Feser et al., 2015). The
program sketch in addition to providing structure to the
search space also allows users to provide additional insights.
This approach has been generalized in a framework called
Syntax-Guided Synthesis (SYGUS) (Alur et al., 2015). Our
PIRL approach is inspired by SYGUS in the sense that we
also use a high-level grammar to constrain the shape of
the possible learnt policies in a policy language grammar.
However, unlike SYGUS and previous sketch-based synthe-
sis approaches that use logical constraints as specification,
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PIRL searches for policies with quantitative objectives.

Imitation Learning. Imitation learning (Schaal, 1999)
has been a successful paradigm for reducing the sample
complexity of reinforcement learning algorithms by allow-
ing the agent to leverage the additional supervision provided
in terms of expert demonstrations for the desired behaviors.
The DAGGER (Dataset Aggregation) algorithm (Ross et al.,
2011) is an iterative algorithm for imitation learning that
learns stationary deterministic policies, where in each it-
eration i it uses the current learnt policy πi to collect new
trajectories and adds them to the dataset D of all previously
found trajectories. The policy for the next iteration πi+1

is a policy that best mimics the expert policy π∗ on the
whole dataset D. Our Neurally Directed Program Search
(NDPS) is inspired by the DAGGER algorithm, where we
use the trained DeepRL agent as the expert (oracle), and
iteratively perform IO augmentation for unseen input states
explored by our synthesized policy with the current best
reward. However, one key difference is that NDPS uses the
expert trajectories to only guide the local program search in
our policy language grammar to find a policy with highest
rewards, unlike the imitation learning setting where the goal
is to match the expert demonstrations perfectly.

Neural Program Synthesis and Induction. Many recent
efforts use neural networks for learning programs. These ef-
forts have two flavors. In neural program induction, the goal
is to learn a network that encodes the program semantics us-
ing internal weights. These architectures typically augment
neural networks with differentiable computational substrates
such as memory (Neural Turing Machines (Graves et al.,
2014)), modules (Neural RAM (Kurach et al., 2015)) or
data-structures such as stacks (Joulin & Mikolov, 2015),
and formulate the program learning problem in an end-to-
end differentiable manner. In neural program synthesis,
the architectures generate programs directly as outputs us-
ing multi-task transfer learning (e.g. ROBUSTFILL (Devlin
et al., 2017), DEEPCODER (Balog et al., 2016), BAYOU (Mu-
rali et al., 2018)), where the network weights are used to
guide the program search in a DSL. There have also been
some recent approaches to use RL for learning to search
programs in DSLs (Bunel et al., 2018; Abolafia et al., 2018).
Our approach falls in the category of program synthesis ap-
proaches where we synthesize policies in a policy language.
However, we learn richer policy programs with continuous
parameters using the NDPS algorithm.

Interpretable Machine Learning. Many recent efforts
in deep learning aim to make deep networks more inter-
pretable (Montavon et al., 2017; Lipton, 2016; Garnelo
et al., 2016; Zahavy et al., 2016; Shanahan, 2005; Lake
et al., 2016). There are three key approaches explored for
interpreting DNNs: i) generate input prototypes in the input

domain that are representatives of the learned concept in the
abstract domain of the top-level of a DNN, ii) explaining
DNN decisions by relevance propagation and computing
corresponding representative concepts in the input domain,
and iii) Using symbolic techniques to explain and interpret
a DNN. Our work differs from these approaches in that we
are replacing the DRL model with human readable source
code, that is programmatically synthesized to mimic the
policy found by the neural network. Working at this level
of abstraction provides a method to apply existing synthesis
techniques to the problem of making DRL models inter-
pretable.

Verification of Deep Neural Networks. Reluplex (Katz
et al., 2017) is an SMT solver that supports linear real arith-
metic with ReLU constraints, and has been used to verify
several properties of DNN-based airborne collision avoid-
ance systems, such as not producing erroneous alerts and
uniformity of alert regions. Unlike Reluplex, our frame-
work generates interpretable program source code as output,
where we can use traditional symbolic program verification
techniques (King, 1976) to prove program properties.

7. Conclusion
We have introduced a framework for interpretable reinforce-
ment learning, called PIRL. Here, policies are represented
in a high-level language. The goal is to find a policy that fits
a syntactic “sketch” and also has optimal long-term reward.
We have given an algorithm inspired by imitation learning,
called NDPS, to achieve this goal. Our results show that
the method is able to generate interpretable policies that
clear reasonable performance goals, are amenable to sym-
bolic verification, and, assuming a well-designed sketch, are
robust and easily transferred to unseen environments.

The experiments in this paper only considered environments
with symbolic inputs. Handling perceptual inputs may raise
additional algorithmic challenges, and is a natural next step.
Also, in this paper, we only considered deterministic (if
memoryful) policies. Extending our framework to stochastic
policies is a goal for future work. Finally, while we explored
policies in the context of reinforcement learning, one could
define similar frameworks for other learning settings.
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