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Organization. In this supplementary material, we
include the technical sections in its entirety (and not
just the proofs of the lemma and theorem statements
in the main body), for convenience. First we provide
a more comprehensive literature review and review of
prior work on mixtures of Gaussians. In Section 7,
we introduce the notation in more detail, and provide
proofs of various properties that will be useful in both
the upper bound and lower bound. In Section 8, we
prove that the k-means++ algorithm (or Lloyd’s with
appropriate initialization) recovers most of the cluster
memberships correctly. In Section 9, we show that any
locally optimal algorithm (including Lloyd’s algorithm)
makes at least Ω(kd/∆4) points.

6. Introduction and Related Work
Considerations in the choice of the Semi-
random GMM model. Here we briefly discuss dif-
ferent semi-random models, and considerations involved
in favoring Definition 1.1. Another semi-random model
that comes to mind is one that can move each point
closer to the mean of its own cluster (closer just in
terms of distance, regardless of direction). Intuitively
this seems appealing since this improves the cost of
the planted clustering. However, in this model the
optimal k-means clustering of the perturbed instance
can be vastly different from the planted solution. This
is because one can move many points x in cluster Ci in
such a way that x becomes closer to a different mean
rather than µi. For high dimensional Gaussians it is
easy to see that the distance of each point to its own
mean will be on the order of (

√
d+ 2

√
logN)σ. Hence,

in our regime of interest, the inter mean separation of√
k logNσ could be much smaller than the radius of

any cluster (when d� k). Consider an adversary that
moves a large fraction of the points in a given cluster
to the mean of another cluster. While the distance of
these points to their cluster mean has only decreased
from roughly (

√
d+ 2

√
logN)σ to around

√
k logNσ,

these points now become closer to the mean of a differ-
ent cluster! In the semi-random GMM model on the
other hand, the adversary is only allowed to move the
point x along the direction of x− µ; hence, each point
x becomes closer to its own mean than to the means of
other clusters. Our results show that in such a model,
the optimal clustering solution can change by at most
Õ(d/∆4) points.

6.1. Related Work

There has been a long line of algorithmic results on
Gaussian mixture models starting from (Teicher, 1961;
1967; Pearson, 1894). These results fall into two broad

categories: (1) Clustering algorithms, which aim to re-
cover the component/cluster memberships of the points
and (2) Parameter estimation, where the goal is to es-
timate the parameters of the Gaussian components.
When the components of the mixture are sufficiently
well-separated, i.e., ‖µi − µj‖2 ≥ σ

√
log(Nk), then

the Gaussians do not overlap w.h.p., and then the
two tasks become equivalent w.h.p. We now review
the different algorithms that have been designed for
these two tasks, and comment on their robustness to
semi-random perturbations.

Clustering Algorithms. The first polynomial time
algorithmic guarantees were given by Dasgupta (Das-
gupta, 1999), who showed how to cluster a mixture of
k Gaussians with identical covariance matrices when
the separation between the cluster means is of the or-
der Ω(σ

√
dpolylog(N)), where σ denotes the maximum

variance of any cluster along any direction4. Distance-
based clustering algorithms that are based on strong
distance-concentration properties of high-dimensional
Gaussians improved the separation requirement be-
tween means µi and µj to be Ω(d1/4polylog(N))(σi +
σj) (Arora & Kannan, 2001; Dasgupta & Schulman,
2007), where σi denotes the maximum variance of
points in cluster i along any direction. Vempala and
Wang (Vempala & Wang, 2004) and subsequent re-
sults (Kannan et al., 2008; Achlioptas & McSherry,
2005) used PCA to project down to k dimensions (when
k ≤ d), and then used the above distance-based algo-
rithms to get state-of-the-art guarantees for many set-
tings: for spherical Gaussians a separation of roughly
‖µi − µj‖2 ≥ (σi + σj) min { k, d }1/4 polylog(N) suf-
fices (Vempala & Wang, 2004). For non-spherical Gaus-
sians, a separation of ‖µi−µj‖2 ≥ (σi+σj)k3/2√logN
is known to suffice (Achlioptas & McSherry, 2005; Kan-
nan et al., 2008). Brubaker and Vempala (Brubaker &
Vempala, 2008) gave a qualitative improvement on the
separation requirement for non-spherical Gaussians by
having a dependence only on the variance along the
direction of the line joining the respective means, as
opposed to the maximum variance along any direction.

Recent work has also focused on provable guaran-
tees for heuristics such as the Lloyd’s algorithm for
clustering mixtures of Gaussians (Kumar & Kan-
nan, 2010; Awasthi & Sheffet, 2012). Iterative al-
gorithms like the Lloyd’s algorithm (also called k-
means algorithm) (Lloyd, 1982) and its variants like
k-means++ (Ostrovsky et al., 2006; Arthur & Vassil-
vitskii, 2007) are the method-of-choice for clustering
in practice. The best known guarantee (Awasthi &

4The polylog(N) term involves a dependence of either
(logN)1/4 or (logN)1/2.
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Sheffet, 2012) along these lines requires a separation
of order σ

√
k logN between any pair of means, where

σ is the maximum variance among all clusters along
any direction. To summarize, for a mixture of k Gaus-
sians in d dimensions with variance of each cluster
being bounded by σ2 in every direction, the state-
of-the-art guarantees require a separation of roughly
σmin { k, d }1/4 polylog(N) between the means of any
two components (Vempala & Wang, 2004) for spherical
Gaussians, while a separation of σ

√
min { k, d } logN is

known to suffice for non-spherical Gaussians (Awasthi
& Sheffet, 2012).

The techniques in many of the above works rely
on strong distance concentration properties of high-
dimensional Gaussians. For instance, the arguments
of (Arora & Kannan, 2001; Vempala & Wang, 2004)
that obtain a separation of order min { k1/4, d1/4 } cru-
cially rely on the tight concentration of the squared dis-
tance around σ2(d±c

√
d), between any pair of points in

the same cluster. These arguments do not seem to carry
over to the semi-random model. Brubaker (Brubaker,
2009) gave a robust algorithm for clustering a mixture
of Gaussians when at most o(1/k) fraction of the points
are corrupted arbitrarily. However, it is unclear if the
arguments can be modified to work under the semi-
random model, since the perturbations can potentially
affect all the points in the instance. On the other hand,
our results show that the Lloyd’s algorithm of Kumar
and Kannan (Kumar & Kannan, 2010) is robust to
these semi-random perturbations.

Finally, there has also been significant work on de-
signing clustering algorithms under deterministic as-
sumptions on the data such as resilience of the optimal
clustering to distance perturbations (Ackerman & Ben-
David, 2009; Awasthi et al., 2012; Balcan & Liang,
2012; Angelidakis et al., 2017; Dutta et al., 2017). The
assumptions in these works are incomparable to those
in our work and, in particular the separation require-
ment is more stringent when applied to the special case
of the Gaussian mixture models.

Parameter Estimation. A different approach is to
design algorithms that estimate the parameters of the
underlying Gaussian mixture model, and then assuming
the means are well separated, accurate clustering can
be performed. A very influential line of work focuses
on the method-of-moments (Kalai et al., 2010; Moitra
& Valiant, 2010; Belkin & Sinha, 2010) to learn the
parameters of the model when the number of clusters
k = O(1). Moment methods (necessarily) require run-
ning time (and sample complexity) of roughly dO(k2),
but do not assume any explicit separation between
the components of the mixture. Recent work (Hsu

& Kakade, 2013; Bhaskara et al., 2014b; Goyal et al.,
2014; Bhaskara et al., 2014a; Anderson et al., 2014; Ge
et al., 2015) uses uniqueness of tensor decompositions
(of order 3 and above) to implement the method of
moments and give polynomial time algorithms assum-
ing the means are sufficiently high dimensional, and
do not lie in certain degenerate configurations (Hsu
& Kakade, 2012; Goyal et al., 2014; Bhaskara et al.,
2014a; Anderson et al., 2014; Ge et al., 2015).

Algorithmic approaches based on method-of-moments
and tensor decompositions rely heavily on the exact
parametric form of the Gaussian distribution and the
exact algebraic expressions to express various moments
of the distribution in terms of the parameters. These
algebraic methods can be easily foiled by a monotone
adversary, since the adversary can perturb any subset
to alter the moments significantly (for example, even
the first moment, i.e., the mean of a cluster, can change
by Ω(σ)).

Recent work has also focused on provable guarantees
for heuristics such as Maximum Likelihood estimation
and the Expectation Maximization (EM) algorithm for
parameter estimation (Dasgupta & Schulman, 2007;
Balakrishnan et al., 2014; Xu et al., 2016; Daskalakis
et al., 2016; Tang & Monteleoni, 2017). Very recently,
(Regev & Vijayaraghavan, 2017) considered other iter-
ative algorithms for parameter estimation of spherical
Gaussians, and studied the optimal order of separa-
tion required for parameter estimation. However, we
are not aware of any existing analysis that shows that
these iterative algorithms for parameter estimation are
robust to modeling errors.

Another recent line of exciting work concerns design-
ing robust high-dimensional estimators of the mean
and covariance of a single Gaussian (and mixtures of k
Gaussians) when an ε = Ωk(1) fraction of the points
are adversarially corrupted (Diakonikolas et al., 2016;
Lai et al., 2016; Charikar et al., 2017). However, these
results and similar results on agnostic learning do not
necessarily recover the ground-truth clustering. Fur-
ther, they typically assume that only a o(1/k) fraction
of the points are corrupted, while potentially all the
points could be perturbed in the semi-random model.
On the other hand, our work does not necessarily give
guarantees for estimating the means of the original
Gaussians (in fact the centers given by the planted
clustering in the semi-random instance can be Ω(σ)
far from the original means). Hence, our semi-random
model is incomparable to the model of robustness con-
sidered in these works.

Finally in concurrent and independent works (Hopkins
& Li, 2017; Kothari & Steinhardt, 2017; Diakoniko-
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las et al., 2017), algorithms based on sum-of-squares
relaxations and robust estimation techniques were
used to obtain algorithms with run time (and sample-
complexity) of (dk)O(1/ε) for clustering mixtures of
spherical Gaussians when the separation is of the order
of kε for any constant ε > 0. Some of these results
also tolerate a small fraction of each cluster containing
outliers as in (Diakonikolas et al., 2016). However,
to the best of our knowledge these guarantees does
not work in our semi-random model, and the results
are incomparable like the above works on robust es-
timation (Diakonikolas et al., 2016; Lai et al., 2016;
Charikar et al., 2017). Further, our algorithmic guaran-
tees are for Lloyd’s algorithm and k-means++, which
are practical heuristics that form the method-of-choice
in practice.

Semi-random models for other optimization
problems. There has been a long line of work on the
study of semi-random models for various optimization
problems. Blum and Spencer (Blum & Spencer, 1995)
initiated the study of semi-random models, and studied
the problem of graph coloring. Feige and Kilian (Feige
& Kilian, 1998) considered semi-random models in-
volving monotone adversaries for various problems in-
cluding graph partitioning, independent set and clique.
Makarychev et al. (Makarychev et al., 2012; 2014) de-
signed algorithms for more general semi-random mod-
els for various graph partitioning problems. The work
of (Moitra et al., 2015) studied the power of mono-
tone adversaries in the context of community detection
(stochastic block models), while (Makarychev et al.,
2016) considered the robustness of community detection
to monotone adversaries and different kinds of errors
and model misspecification. Semi-random models have
also been studied for correlation clustering (Mathieu
& Schudy, 2010; Makarychev et al., 2015), noisy sort-
ing (Makarychev et al., 2013) and coloring (David &
Feige, 2016).

7. Preliminaries and Semi-random
model

We first formally define the Gaussian mixture model.

Definition 7.1. (Gaussian Mixture Model). A Gaus-
sian mixture model with k components is defined by
the parameters (µ1, µ2, . . . µk,Σ1, . . . ,Σk, w1, . . . , wk).
Here µi ∈ Rd is the mean for component i and Σi ∈ Sd+
is the corresponding d×d covariance matrix. wi ∈ [0, 1]
is the mixing weight and we have that

∑k
i=1 wi = 1.

An instance X = {x(1), . . . , x(N) } from the mixture
is generated as follows: for each t ∈ [N ], sample a
component i ∈ [k] independently at random with prob-

ability wi. Given the component, sample x(t) from
N (µi,Σi). The N points can be naturally partitioned
into k clusters C1, . . . , Ck where cluster Ci corresponds
to the points that are sampled from component i. We
will refer to this as the planted clustering or ground
truth clustering.

Clustering data from a mixture of Gaussians is a natural
average-case model for the k-means clustering problem.
Specifically, if the means of a Gaussian mixture model
are well separated, then with high probability, the
ground truth clustering of an instance sampled from the
model corresponds to the k-means optimal clustering.
Definition 7.2. (k-means clustering). Given an in-
stance X = {x(1), . . . , x(N) } of N points in Rd, the
k-means problems is to find k points µ1, . . . , µk such
as to minimize

∑
t∈[N ] mini∈[k] ‖x(t) − µi‖2.

The optimal means or centers µ1, . . . , µk naturally de-
fine a clustering of the data where each point is assigned
to its closest cluster. A key property of the k-means
objective is that the optimal solution induces a locally
optimal clustering.
Definition 7.3. (Locally Optimal Clustering). A clus-
tering C1, . . . , Ck of N data points in Rd is locally
optimal if for each i ∈ [k], x(t) ∈ Ci, and j 6= i we have
that ‖x(t) − µ(Ci)‖ ≤ ‖x(t) − µj‖. Here µ(Ci) is the
average of the points in Ci.

Hence, given the optimal k-means clustering, the opti-
mal centers can be recovered by simply computing the
average of each cluster. This is the underlying principle
behind the popular Lloyd’s algorithm (Lloyd, 1982) for
k-means clustering. The algorithm starts with a choice
of initial centers. It then repeatedly computes new
centers to be the average of the clusters induced by the
current centers. Hence the algorithm converges to a lo-
cally optimal clustering. Although popular in practice,
the worst case performance of Lloyd’s algorithm can
be arbitrarily bad (Arthur & Vassilvitskii, 2005). The
choice of initial centers is very important in the success
of the Lloyd’s algorithm. We show that our theoretical
guarantees hold when the initialization is done via the
popular k-means++ algorithm (Arthur & Vassilvitskii,
2007). There also exist more sophisticated constant
factor approximation algorithms for the k-means prob-
lem (Kanungo et al., 2002; Ahmadian et al., 2016) that
can be used for seeding in our framework.

While the clustering C1, C2, . . . , Ck typically represents
a partition of the index set [N ], we will sometimes abuse
notation and use Ci to also denote the set of points in
X that correspond to these indices in Ci. Finally, many
of the statements are probabilistic in nature depending
on the randomness in the semi-random model. In the
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following section, w.h.p. will refer to a probability of
at least 1− o(1) (say 1− 1/poly(N)), unless specified
otherwise.

7.1. Properties of Semi-random Gaussians

In this section we state and prove properties of semi-
random mixtures that will be used throughout the
analysis in the subsequent sections. We first start
with a couple of simple lemmas that follow directly
from the corresponding lemmas about high dimensional
Gaussians.
Lemma 7.4. Consider any semi-random instance
X = {x(1), . . . , x(N) } with parameters µ1, . . . , µk, σ

2

and clusters C1, . . . , Ck. Then with high probability we
have

∀i ∈ [k], ∀` ∈ Ci, ‖x(t) − µi‖2 ≤ σ(
√
d+ 2

√
logN).

(9)

Proof. Let y(t) denote the point generated in the semi-
random model in step 2 (Definition 1.1) before the
semi-random perturbation was applied. Let x̄(t) =
x− µi, ȳ(t) = y − µi where t ∈ Ci. We have

∀i ∈ [k],∀t ∈ Ci, ‖x̄(t)‖2 ≤ ‖ȳ(t)‖2 ≤ σ(
√
d+2

√
logN),

from Lemma A.3.

Lemma 7.5. Consider any semi-random instance
X = {x(1), . . . , x(N) } with parameters µ1, . . . , µk, σ

2

and clusters C1, . . . , Ck, and let u be a fixed unit vector
in Rd. Then with probability at least (1− 1/(N3)) we
have

∀i ∈ [k], t ∈ Ci, |〈x(`) − µi, u〉| < 3σ
√

logN. (10)

Proof. Let y(t) denote the point generated in the semi-
random model in step 2 (Definition 1.1) before the
semi-random perturbation was applied. Let x̄(t) =
x− µi, ȳ(t) = y − µi where t ∈ Ci.

Consider the sample t ∈ Ci. Let Σi be the covariance
matrix of ith Gaussian component; hence ‖Σi‖ ≤ σ.
The projection 〈ȳ(t), u〉 is a Gaussian with mean 0 and
variance uTΣiu ≤ σ2. From Lemma A.1

P
[
|〈x̄(t), u〉| ≥ 3σ

√
logN

]
≤ P

[
|〈ȳ(t), u〉| ≥ 3σ

√
logN

]
≤ exp(−4 logN) ≤ N−4.

Hence from a union bound over all N samples, the
lemma follows.

The above lemma immediately implies the following
lemma after a union bound over the k2 < N2 directions
given by the unit vectors along (µi − µj) directions.

Lemma 7.6. Consider any semi-random instance
X = {x(1), . . . , x(N) } with parameters µ1, . . . , µk, σ

2

and clusters C1, . . . , Ck . Then with high probability we
have

∀i ∈ [k], t ∈ Ci,
∣∣∣∣〈x(`) − µi,

µi − µj
‖µi − µj‖2

〉∣∣∣∣ < 3σ
√

logN.

(11)

We next state a lemma about how far the mean of the
points in a component of a semi-random GMM can
move away from the true parameters.
Lemma 7.7. Consider any semi-random in-
stance X with N points generated with parameters
µ1, . . . , µk, C1, . . . , Ck such that Ni ≥ 4(d + log(kδ ))
for all i ∈ [k]. Then with probability at least 1− δ we
have that

∀i ∈ [k], ‖ 1
|Ci|

∑
x∈Ci

x− µi‖2 ≤ 2σ. (12)

Proof. For each point x ∈ Ci in the semi-random
GMM, let yx be the original point in the GMM
that is modified to produce x. Then, we know that
x − µi = λx(yx − µi) where λx ∈ [0, 1]. Hence,

1
|Ci|

∑
x∈Ci(x−µi) = 1

|Ci|AiDv, where Ai is the matrix
with columns as (yx − µi) for x ∈ Ci, D is a diagonal
matrix with values λx, and v is a unit length vector
in the direction of 1

|Ci|
∑
x∈Ci(x− µi). Then, we have

that ‖ 1
|Ci|

∑
x∈Ci x − µi‖ = ‖ 1

|Ci|AiDv‖ ≤
1
|Ci|‖A‖ ≤

2σ (from A.5).

The next lemma argues about the variance of compo-
nent i around µi in a semi-random GMM.
Lemma 7.8. Consider any semi-random in-
stance X with N points generated with parameters
µ1, . . . , µk, C1, . . . , Ck such that Ni ≥ 4(d + log(kδ ))
for all i ∈ [k]. Then with probability at least 1− δ we
have that

∀i ∈ [k], max
v:‖v‖=1

1
|Ci|

∑
x∈Ci

|〈x− µi, v〉|2 ≤ 4σ2. (13)

Proof. Exactly as in the proof of Lemma 7.7, we
can write maxv:‖v‖=1

1
|Ci|

∑
x∈Ci |〈x − µi, v〉|2 =

maxv:‖v‖=1
1
|Ci|

∑
x∈Ci |λ

2
x〈yx − µi, v〉|2 ≤

maxv:‖v‖=1
1
|Ci|

∑
x∈Ci |〈yx − µi, v〉|2. Further-

more, since yx are points from a Gaussian we know
that with probability at least 1 − δ, for all i ∈ [k],
maxv:‖v‖=1 ‖ 1

|Ci|
∑
x∈Ci |〈yx − µi, v〉|2 ≤ 4σ2. Hence,

the claim follows.
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We would also need to argue about the mean of a large
subset of points from a component of a semi-random
GMM.
Lemma 7.9. Consider any semi-random instance X
with N points generated with parameters µ1, . . . , µk and
planted clustering C1, . . . , Ck such that Ni ≥ 16(d +
log(kδ )) for all i ∈ [k]. Let Gi ⊆ Ci be such that
|Gi| ≥ (1− ε)|Ci| where ε < 1

2 . Then, with probability
at least 1− δ, we have that

∀i ∈ [k], ‖µ(Gi)− µi‖ ≤ (4 + 2√
1− ε

)σ. (14)

Proof. Let Ci be the set of points in component i and
let νi be the mean of the points in Ci. Notice that
from Lemma 7.7 and the fact that the perturbation is
semi-random, we have that with probability at least
1− δ

2 , ‖νi−µi‖ ≤ 2σ. Also, because the component is a
semi-random perturbation of a Gaussian, we have from
Lemma 7.8 that 1

|Ci| maxv:‖v‖=1
∑
x∈Ci [〈x− νi, v〉

2] ≤
4σ2 with probability at least 1− δ

2 .

Hence, with probability at least 1 − δ we have that
‖µ(Gi)−µi‖ ≤ ‖νi−µi‖+‖µ(Gi)−νi‖ ≤ 4σ+‖µ(Gi)−
νi‖. To bound the second term notice that ‖µ(Gi)−
νi‖ = |( 1

|Gi|
∑
x∈Gi〈x− νi, û〉|, where û is a unit vector

in the direction of (µ(Gi)− νi). Using Cauchy-Schwarz
inequality, this is at most 1√

|Gi|

√∑
x∈Ci〈x− νi, û〉

2 ≤
2σ√
1−ε . Combining the two bounds gives us the result.

Finally, we argue about the variance of the entire data
matrix of a semi-random GMM.
Lemma 7.10. Consider any semi-random in-
stance X with N points generated with parameters
µ1, . . . , µk, C1, . . . , Ck such that Ni ≥ 4(d + log(kδ ))
for all i ∈ [k]. Let A ∈ Rd×N be the matrix of data
points and let M ∈ Rd×N be the matrix composed of
the means of the corresponding clusters. Then, with
probability at least 1− δ, we have that

‖A−M‖ ≤ 4σ
√
N. (15)

Proof. Let M∗ be the matrix of true means cor-
responding to the cluster memberships. We can
write ‖A − M‖ ≤ ‖A − M∗‖ + ‖M∗ − M‖. Using
Lemma 7.7, we know that with probability at least 1− δ

2 ,
maxi ‖M∗i −Mi‖ ≤ 2σ. Hence, ‖M∗ −M‖ ≤ 2σ

√
N .

Furthermore, ‖A−M∗‖2 = maxv:‖v‖=1
∑
i

∑
x∈Ci |(x−

µi) · v|2. From Lemma 7.8, with probability at least
1− δ

2 , we can bound the sum by at most 4σ2N . Hence,
‖A −M∗‖ ≤ 2σ

√
N . Combining the two bounds we

get the claim.

8. Upper Bounds for Semi-random
GMMs

In this section we prove the following theorem that pro-
vides algorithmic guarantees for the Lloyd’s algorithm
with appropriate initialization, under the semi-random
model for mixtures of Gaussians in Definition 1.1.
Theorem 8.1. There exists a universal constant
c0, c1 > 0 such that the following holds. There ex-
ists a polynomial time algorithm that for any semi-
random instance X on N points with planted clustering
C1, . . . , Ck generated by the semi-random GMM model
(Definition 1.1) with parameters µ1, . . . , µk, σ

2 s.t.

∀i 6= j ∈ [k], ‖µi − µj‖2 > ∆σ (16)

where ∆ > c0
√

min { k, d } logN and N ≥ k2d2/w2
min

finds w.h.p. a clustering C ′1, C ′2, . . . , C ′k such that

min
π∈Permk

k∑
i=1

∣∣Cπ(i)4C ′i
∣∣ ≤ c1kd

∆4 ·max
{

1, log
( 3(
√
d+2
√

logN)
∆2

)}
.

In Section 9 we show that the above error bound is close
to the information theoretically optimal bound (up
to the logarithmic factor). The Lloyd’s algorithm as
described in Figure 1 consists of two stages, the ini-
tialization stage and an iterative improvement stage.

1. Let A be the N × d data matrix with rows Ai
for i ∈ [N ]. Use A to compute initial centers
µ

(1)
0 , µ

(2)
0 , . . . µ

(k)
0 as detailed in Proposition 8.2.

2. Use these k-centers to seed a series of Lloyd-type
iterations. That is, for r = 1, 2, . . . do:

• Set Zi be the set of points for which the closest
center among µ(1)

r−1, µ
(2)
r−1, . . . , µ

(k)
r−1 is µ(i)

r−1.
• Set µ(i)

r ← 1
|Zi|

∑
Aj∈Zi Aj .

Figure 1. Lloyd’s Algorithm

The initialization follows the same scheme as proposed
by Kumar and Kannan in (Kumar & Kannan, 2010).
The initialization algorithm first performs a k-SVD of
the data matrix followed by running the k-means++
algorithm (Arthur & Vassilvitskii, 2007) that uses D2-
sampling to compute seed centers. One can also use
any constant factor approximation algorithm for k-
means clustering in the projected space to obtain the
initial centers (Kanungo et al., 2002; Ahmadian et al.,
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2016). This approach works for clusters that are nearly
balanced in size. However, when the cluster sizes are
arbitrary, an appropriate transformation of the data is
performed first that amplifies the separation between
the centers. Following this transformation, the (k-
SVD + k-means++) is used to get the initial centers.
The formal guarantee of the initialization procedure is
encapsulated in the following proposition, whose proof
is given in Section 8.2.

The main algorithmic contribution of this paper is an
analysis of the Lloyd’s algorithm when the points come
from the semi-random GMM model. For the rest of the
analysis we will assume that the instance X generated
from the semi-random GMM model satisfies (9) to
(17). These eight equations are shown to hold w.h.p.
in Section 7.1 for instances generated from the model.
Our analysis will in fact hold for any deterministic data
set satisfying these equations. This helps to gracefully
argue about performing many iterations of Lloyd’s
on the same data set without the need to draw fresh
samples at each step.
Proposition 8.2. In the above notation for any δ >
0, suppose we are given an instance X on N points
satisfying (9)-(17) such that |Ci| ≥ Ω(d+ log(kδ )) and
assume that ∆ ≥ 125

√
min { k, d } logN . Then after

the initialization step, for every µi there exists µ′i such
that ‖µi − µ′i‖ ≤ τσ, where τ < ∆/24.

The analysis of the Lloyd’s iterations crucially relies on
the following lemma that upper bounds the number of
misclassified points when the current Lloyd’s iterative
is relatively close to the true means.
Lemma 8.3 (Projection condition). In the above no-
tation, consider an instance X satisfying (9)-(17) and
(16) and suppose we are given µ′1, . . . , µ

′
k satisfying

∀j ∈ [k], ‖µ′j − µj‖2 ≤ τσ and τ < ∆/24. Then there
exists a set Z ⊂ X such that for any i ∈ [k] we have

∀x ∈ Ci ∩ (X \ Z), ‖x− µ′i‖22 ≤ min
j 6=i
‖x− µ′j‖22 , where

|Z| = O
(dτ2

∆4 ·max
{

1, log
( 3τ(

√
d+2
√

logN)
∆2

)})
.

The following lemma quantifies the improvement in
each step of the Lloyd’s algorithm. The proof uses
Lemma 8.3 along with properties of semi-random Gaus-
sians.
Lemma 8.4. In the above notation, suppose we are
given an instance X on N points with wiN ≥ d

√
d

4 log(d)
for all i satisfying (9)-(17). Furthermore, suppose we
are given centers µ′1, . . . , µ′k such that ‖µ′i − µi‖ ≤
τσ, ∀i ∈ [k] where τ < ∆/24. Then the centers
µ′′1 , . . . , µ

′′
k obtained after one Lloyd’s update satisfy

‖µ′′i − µi‖ ≤ max((6 + τ
4 )σ, τ2σ)) for all i ∈ [k].

We now present the proof of Theorem 8.1.

Proof of Theorem 8.1. Firstly, the eight deterministic
conditions (9)-(17) are shown to hold for instance
X w.h.p. in Section 7.1. The proof follows in a
straightforward manner by combining Proposition 8.2,
Lemma 8.4 and Lemma 8.3. Proposition 8.2 shows
that ‖µ(0)

i − µi‖2 ≤ ∆/(24) for all i ∈ [k]. Applying
Lemma 8.4, we have that after T = O(log ∆) iterations
we get ‖µ(T )

i − µi‖2 ≤ 8σ for all i ∈ [k] w.h.p. Finally
using Lemma 8.3 with τ = 1, the theorem follows.

8.1. Analyzing Lloyd’s Algorithm

The following lemma is crucial in analyzing the per-
formance of the Lloyd’s algorithm. We would like to
upper bound the inner product |〈x(`) − µi, ê〉| < λσ
for every direction ê and sample ` ∈ [N ], but this
is impossible since ê can be aligned along x(`) − µi.
The following lemma however upper bounds the total
number of points in the dataset that can have a large
projection of λ (or above) onto any direction ê by at
most Õ(d/λ2). This involves a union bound over a net
of all possible directions ê.
Lemma 8.5 (Points in Bad Directions). Consider any
semi-random instance X = {x(1), . . . , x(N) } with N
points having parameters µ1, . . . , µk, σ

2 and planted
clustering C1, . . . , Ck, and suppose ∀i ∈ [k], ` ∈
Ci, x̄

(`) = x` − µi. Then there exists a universal con-
stant c > 0 s.t. for any λ > 100

√
logN , with probability

at least 1− 2−d, we have that ∀ê ∈ Rd s.t. ‖ê‖2 = 1,∣∣∣{ ` ∈ [N ] : |〈x̄(`), ê〉| > λσ }
∣∣∣ ≤ cd

λ2 ·max
{

1, log
( 3(
√
d+2
√

logN)
λ

)}
.

(17)

Proof. Set η := min {λ/(2
√
d+ 2

√
logN), 1

2 } and
m := 512d log(3/η)/λ2. Consider an η-net N ⊂
{u : ‖u‖2 = 1 } over unit vectors in Rd. Hence

∀u ∈ Rd : ‖u‖2 = 1, ∃v ∈ N s.t. ‖u− v‖2 ≤ η and

|N | ≤
(2 + η

η

)d
≤ exp

(
d log(3/η)

)
.

Further, since |〈x̄, ê〉| > λ and N is an η-net, there
exists some unit vector u = u(ê) ∈ N

|〈x̄, u〉| > |〈x̄, ê〉+ 〈x̄, ê− u〉| ≥ σλ− ‖x̄‖2‖ê− u‖2
(18)

≥ σ
(
λ− η(

√
d+ 2

√
logN)

)
≥ λ

2 , (19)

Consider a fixed x ∈ {x(1), . . . , x(N) } and a fixed di-
rection u ∈ N . Since the variance of y is at most σ2
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we have

P
[
|〈x̄, u〉| > λσ/2

]
≤ P

[
|〈ȳ, u〉| > λσ/2

]
≤ exp

(
−λ2/8

)
.

The probability that m points in {x(1), . . . , x(N) }
satisfy (19) for a fixed direction u is at most

(
N
m

)
·

exp(−mγ2/2). Let E represent the bad event that
there exists a direction in N such that more that m
points satisfy the bad event given by (19). The proba-
bility of E is at most

P[E] ≤ |N | ·
(
N

m

)
exp(−mλ2/8)

≤ exp
(
d log(3/η) +m logN − mλ2

8

)
≤ exp

(
−d log(1/η)

)
≤ ηd,

since for our choice of parameters λ2 > 32 logN , and
mλ2 ≥ 32d log(3/η).

We now analyze each iteration of the Lloyd’s algorithm
and show that we make progress in each step by mis-
classifying fewer points with successive iterations. As
a first step we begin with the proof of Lemma 8.3.

Proof of Lemma 8.3. Set m := 512d log(3/η)τ2/∆4

where η = min {∆2/(τ(2
√
d+ 2

√
logN)), 1

2 }.

Fix a sample x ∈ {x(1), . . . , x(N) } and suppose x ∈ Ci
and let y := y(x) be the corresponding point before
the semi-random perturbation, and let x̄ = x − µi,
ȳ = y − µi. For each i ∈ [k], let êi be the unit vector
along (µi − µ′i).

We first observe that by projecting the Gaussians
around µi, µj onto the direction along êij = (µi −
µj)/‖µi − µj‖2, we have that

‖x− µj‖22 − ‖x− µi‖22 ≥ 〈x− µj , êij〉2 − 〈x− µi, êij〉2

≥ (|〈x− µj , êij〉| − |〈x− µi, êij〉|)2

≥ (|〈µi − µj , êij〉| − 2|〈x− µi, êij〉|)2

≥ (∆σ − 2|〈x− µi, êij〉|)2

≥ (∆σ − 6σ
√

logN)2 ≥ 1
4∆2σ2,
(20)

where the first inequality follows from (11), and the
second inequality uses ∆ > 12

√
logN .

Suppose x ∈ Ci is misclassified i.e., ‖x− µ′i‖2 ≥ ‖x−
µ′j‖2 for some j ∈ [k] \ { i }. Then applying triangle

inequality and rearranging we get,∣∣∣〈x̄, µi − µ′i
‖µi − µ′i‖2

〉∣∣∣+
∣∣∣〈x̄, µj − µ′j

‖µj − µ′j‖2

〉∣∣∣
≥
(∆2

8 −
τ2

2 − τ∆
)
σ2

τσ

≥ ∆2

16τ σ,

since τ < ∆/(24). Hence, we have that if x ∈ Ci is
misclassified by µ′1, . . . , µ′k then

|〈x̄, ê〉| > σ∆2/(32τ) for some unit vector ê ∈ Rd.
(21)

From (17) with λ = ∆2/(32τ), we get from (17) that
at most m points in Ci can satisfy (21). Hence the
lemma follows.

Next we prove Lemma 8.4, which quantifies the im-
provement in every iteration of the Lloyd’s algorithm.

Proof of Lemma 8.4. Let C1, C2, . . . , Ck be the par-
titioning of the indices according to the ground
truth clustering of the semi-random instance X and
S1, S2, . . . , Sk be the indices of the clustering obtained
by using the centers µ′i. Then µ′′i = 1

|Si|
∑
t∈Si x

(t).
Partition Si into two sets Gi and Bi where Gi =
Si ∩ Ci and Bi = Si \ Gi. Let µ(Gi) and µ(Bi)
be the means of the two partitions respectively.
Let γ = O(dτ

2

∆4 max { 1, log( 3τ(
√
d+2
√

logN)
∆2 ) }). From

Lemma 8.3 we know that |Gi| ≥ |Ci|−γ and |Bi| ≤ kγ.
Then we have that µ′′i = |Gi|

|Si| µ(Gi) + |Bi||Si|µ(Bi). Hence,
‖µ′′i − µi‖ ≤

|Gi|
|Si| ‖µ(Gi)− µi‖+ |Bi|

|Si| ‖µ(Bi)− µi‖.

We have |Gi||Ci| ≥ 1− γ
|Ci| ≥ 1− τ

64
√
k
√
d
using the bound

on ∆ and |Ci| = wiN ≥ d
√
d

4 log(d) . Using (14) we get
that

|Gi|
|Si|
‖µ(Gi)− µi‖ ≤

(
4 + 2√

1− τ
64
√
k
√
d

)
σ

≤
(

6 + τ

128
√
k
√
d

)
σ

≤ 6σ + τ

8σ.

To bound the second term we first show that for each
point x(t) ∈ Bi, ‖x(t) − µi‖ ≤ (

√
d+ 2

√
logN + 2τ)σ.

Let Cj be the cluster that point x(t) belongs to. Then

‖x(t) − µi‖ ≤ ‖x(t) − µ′i‖+ τσ ≤ ‖x(t) − µ′j‖+ τσ

≤ ‖x(t) − µj‖+ 2τσ

≤ (
√
d+ 2

√
logN + 2τ)σ,
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using (9). Hence,

|Bi|
|Si|
‖µ(Bi)− µi‖ ≤

|Bi|
|Si|

(σ
√
d+ σ

√
logN + 2τσ)

≤ 2kγ
|Ci|

(σ
√
d+ σ

√
logN + 2τσ)

<
τ

8σ.

Combining, we get that ‖µ′′i − µi‖ ≤ (6 + τ
4 )σ ≤

max(6σ + τ
4 ,

τ
2σ).

8.2. Initialization

In this section we describe how to obtain the initial
centers satisfying the condition in Lemma 8.4. The
final initialization procedure relies on the following
subroutine that provides a good initializer if the mean
separation is much larger than that in Theorem 8.1.
Let A denote the N × d matrix of data points and M∗
be the N × d matrix where each row of C is equal to
one of the means µis of the component to which the
corresponding row of A belongs to.
Lemma 8.6. In the above notation, for any δ > 0
suppose we are given an instance X on N points sat-
isfying satisfying (9)-(17), with components C1, . . . Ck
such that |Ci| ≥ Ω(d + log(kδ )). Let A be the N × d
matrix of data points and Â be the matrix obtained by
projecting points onto the best k-dimensional subspace
obtained by SVD of A. Let µ′i be the centers obtained
by running an α factor k-means approximation algo-
rithm on Â. Then for every µi there exists µ′i such that
‖µi − µ′i‖ ≤ 20

√
kα ‖A−M

∗‖√
Nwmin

.

Proof. Let Â denote the matrix obtained by projecting
A onto the span of its top k right singular vectors.
Furthermore, let ν1, . . . νk be the centers obtained by
running a 9-approximation algorithm for k-means on
the instance Â. We know that the optimal k-means
solution for Â is at most ‖Â −M∗‖2F . Since both Â

andM∗ are rank k matrices, we get that ‖Â−M∗‖2F ≤
2k‖Â−M∗‖22 ≤ 2k(‖Â−A‖22 + ‖A−M∗‖22). Since Â
is the best rank k approximation to A we also have
that ‖Â − A‖22 ≤ ‖A −M∗‖22. Hence, ‖Â −M∗‖2F ≤
4k‖A −M∗‖22. Hence, the cost of the solution using
centers νis must be at most 36kσ2N (using 15).

Next, suppose that there exists µi such that for all j,
‖µi − νj‖ > 20

√
kα ‖A−M

∗‖√
Nwmin

. let’s compute the cost
paid by the points in component Ci in the cluster-
ing obtained via the approximation algorithm. For
any x ∈ Ci let νx be the center that it is closest
to. Then the cost is at least

∑
x∈Ci ‖x − νx‖2 ≥∑

x∈Ci
1
2‖µi−νx‖

2−‖x−µi‖2. The first summation is

at least 1
2 |Nwmin|(400αk ‖A−M

∗‖2

Nwmin
) > 200kα‖A−M∗‖2.

The second summation is at most
∑
x∈Ci ‖x− µi‖

2 ≤∑
i

∑
x∈Ci ‖x − µi‖

2 = ‖Â −M∗‖2F ≤ 4k‖A −M∗‖2.
Hence, we reach a contradiction to the fact that the
solution obtained via νis is an α-approximation to the
optimal cost.

The proof of the above theorem already provides a
good initializer provided ∆ is larger than

√
k logN
wmin

and
one uses a constant factor approximation algorithm
for k-means (Ahmadian et al., 2016). Furthermore, if
∆ is larger than

√
k log k logN

wmin
, then one can instead

use the simpler and faster k-means++ approximation
algorithm (Arthur & Vassilvitskii, 2007). The above
lemma has a bad dependence on wmin. However, using
the Boosting technique of (Kumar & Kannan, 2010)
we can reduce the dependence to ∆ > 25

√
k logN and

hence prove Proposition 8.2. We provide a proof of
this in the Appendix.

9. Lower Bounds for Semi-random
GMMs

We prove the following theorem.
Theorem 9.1. For any d, k ∈ Z+, there exists N0 =
poly(d, k) and a universal constant c1 > 0 such that
the following holds for all N ≥ N0 and ∆ such that√

logN ≤ ∆ ≤ d/(64 log d). There exists an instance
X on N points in d dimensions with planted clus-
tering C1, . . . , Ck generated by applying semi-random
perturbations to points generated from a mixture of
spherical Gaussians with means µ1, µ2, . . . , µk, covari-
ance σ2I and weights being 1/k each, with separation
∀i 6= j ∈ [k], ‖µi − µj‖2 ≥ ∆σ, such that any locally
optimal k-means clustering solution C ′1, C ′2, . . . , C ′k of
X satisfies w.h.p.

min
π∈Permk

k∑
i=1
|C ′π(i)4Ci| ≥

c1kd

∆4 .

It suffices to set N0(d, k) := c0k
2d3/2 log2(kd), where

c0 > 0 is a sufficiently large universal constant.
Remark 9.2. Note that the lower bound also applies in
particular to the more general semi-random model in
Definition 1.1; in this instance, the points are drawn
i.i.d. from the mixture of spherical Gaussians, before
applying semi-random perturbations. Further, this
lower bound holds for any locally optimal solution, and
not just the optimal solution.

The lower bound construction will pick an arbitrary
Ω(d/∆4) points from k/2 clusters, and carefully choose
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a semi-random perturbation to all the points so that
these Ω(kd/∆4) points are misclassified. We start with
a simple lemma that shows that an appropriate semi-
random perturbation can move the mean of a cluster
by an amount O(σ) along any fixed direction.
Lemma 9.3. Consider a spherical Gaussian in d di-
mensions with mean µ and covariance σ2I, and let
ê be a fixed unit vector. Consider the semi-random
perturbation given by

∀y ∈ Rd, h(y) =
{
µ if 〈y − µ, ê〉 < 0
y otherwise

.

Then we have E[h(y)] = µ+ 1√
2πσê.

Proof. We assume without loss of generality that
µ = 0, σ = 1 (by shifting and scaling) and ê =
(1, 0, 0, . . . , 0) ∈ Rd (by the rotational symmetry of a
spherical Gaussian). Let γ be the p.d.f. of the standard
Gaussian in d dimensions with mean 0, and γ′(y) be
the distribution on y conditioned on the event [y(1) =
〈y, ê〉 > 0]. First, we observe that E[h(y)|y1 < 0] = 0
from construction, and E[h(y)|y1 > 0] = Ey∼γ′(y)[y].
Further, since the (d− 1) co-ordinates of y orthogonal
to ê are independent of y1,

E[h(y)] = P[y1 < 0]E[h(y)|y1 < 0]
+ P[y1 > 0]E[h(y)|y1 > 0]

= 1
2 E[y1|y1 > 0]ê

E[h(y)]− µ =
( 1

2
√

2π

∫ ∞
−∞
|y1| exp(−y2

1/2) dy1

)
ê

= σ√
2π
ê.

Construction. Set m := c1d/∆4 for some appropri-
ately small constant c1 ∈ (0, 1). We assume without
loss of generality that k is even (the following construc-
tion also works for odd k by leaving the last cluster
unchanged). We pair up the clusters into k/2 pairs
{ (C1, C2), (C3, C4), . . . , (Ck−1, Ck) }, and we will en-
sure that m points are misclassified in each of the k/2
clusters C1, C3, . . . , Ck−1. The parameters of the mix-
ture of spherical Gaussians G are set up as follows. For
each i ∈ 1, 3, 5, . . . , k − 1, ‖µi − µi+1‖2 = ∆σ, and all
the other inter-mean distances (across different pairs)
are at least Mσ which is arbitrarily large (think of
M 7→ ∞).

• Let for any i ∈ { 1, 3, . . . , k − 1 }, Zi ⊂ Ci be the
first m points in cluster Ci respectively among

the samples y(1), . . . , y(N) drawn from G (these m
points inside the clusters can be chosen arbitrarily).
Set Zi = ∅ for i ∈ { 2, 4, . . . , k }.

• For each i ∈ { 1, 3, . . . , k − 1 }, set êi to be the unit
vector along ui = 1

σ
√
md

∑
y∈Zi(y − µi).

• For each i ∈ { 1, 3, . . . , k − 1 } apply the following
semi-random perturbation given by Lemma 9.3
to points in cluster Ci+1 along êi, i.e., each point
y(t) ∈ Ci+1

x(t) = h(y(t)) =
{
µi+1 if 〈y(t) − µi+1, êi〉 < 0
y(t) otherwise

.

Note that the semi-random perturbations are only
made to points in the even clusters (based on a
few points in its respective odd cluster). The lower
bound proof proceeds in two parts. Lemma 9.4 (using
Lemma 9.3) and Lemma 9.5 shows that in any k-means
optimal clustering the means of each even cluster Ci
moves by roughly Ω(σ) · êi−1. Lemma 9.6 then shows
that these means will classify all the m points in Zi−1
incorrectly w.h.p. In this proof w.h.p. will refer to a
probability of at least 1−o(1) unless specified otherwise
(this can be made 1−1/poly(m, k) by choosing suitable
constants).

We start with two simple concentration statements
about the points in Zi (from Lemma A.2 and
Lemma 7.6). We have with probability at least
1− 1/(mk), ∀i ∈ { 1, 3, k − 1 } , ∀t ∈ Zi,

‖x(t) − µi‖2 ≤ σ(
√
d+ 2

√
log(mk)) (22)

|〈x(t) − µi, µi − µi+1〉| ≤ 2
√

log(mk)∆σ2 (23)

Let µ̃1, . . . , µ̃k be the (empirical) means of the clusters
in the planted clustering C1, C2, . . . , Ck after the semi-
random perturbations. The following lemma shows
that ‖µ̃i − µi‖2 ≤ σ.
Lemma 9.4. There exists a universal constant c3 > 0
s.t. for the semi-random instance X described above,
we have that w.h.p.

∀i ∈ [k], µ̃i =
{
µi + 1√

2πσêi−1 + zi if i is even
µi + zi if i is odd

,

where ‖zi‖2 ≤ c3σ
√

dk
N .

The following lemma shows that if Ci, C ′i are close,
then the empirical means are also close.
Lemma 9.5. Consider any cluster Ci of the instance
X , and let C ′i satisfy |C ′i4Ci| ≤ m′. Suppose µ̃i and
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µ′i are the means of clusters Ci and C ′i respectively,
then

‖µ′i − µ̃i‖2 ≤ 4σ · m
′

|Ci|
(
√
d+ 2

√
logN + ∆).

The following lemma shows that the Voronoi parti-
tion about µ̃1, . . . , µ̃k (or points close to it) incorrectly
classify all points in Zi for each i ∈ [k].
Lemma 9.6. Let µ′1, µ′2, . . . , µ′k satisfy ‖µ′i − µ̃i‖2 ≤
σ/(16

√
m(1 + 2

√
logN
d )), where µ̃i is the empirical

mean of the points in Ci. Then, we have w.h.p. that
for each i ∈ { 1, 3, . . . , k − 1 }, ‖x−µ′i‖22 > ‖x−µ′i+1‖22,
i.e., every point x ∈ Zi is misclassified.

Proof of Theorem 9.1. Let C ′1, . . . , C
′
k be a locally

optimal k-means clustering of X , and suppose∑
i |C ′i4Ci| < mk/2 (for sake of contradiction). For

each i ∈ [k], let µ̃i be the empirical mean of Ci and
µ′i be the empirical mean of C ′i. Since C ′1, . . . , C ′k is a
locally optimal clustering, the Voronoi partition given
by µ′1, . . . , µ′k classifies all the points in agreement with
C ′1, . . . , C

′
k.

We will now contradict the local optimality of the
clustering C ′1, . . . , C ′k. Every cluster Ci has at least
N/(2k) points w.h.p. Hence, for each i ∈ [k], from
Lemma 9.5 we have

‖µ′i − µ̃i‖2 ≤ σ(
√
d+ 2

√
logN + ∆) · 4|Ci4C ′i|

N
2k

≤ σ · 8k2m(
√
d+ 2

√
logN + ∆)

N

≤ σ

16
√
m(1 +

√
(logN)/d)

.

However, from Lemma 9.6, every point in ∪i∈[k]Zi
is misclassified by µ′1, µ

′
2, . . . , µ

′
k, i.e., the clustering

given the Voronoi partition around µ′1, . . . , µ′k differs
from C1, . . . , Ck on at least mk/2 points in total. But∑
i∈[k] |C ′i4Ci| < mk/2. Hence, this contradicts the

local optimality of the clustering C ′1, . . . , C ′k.

Before we prove Lemma 9.5 and Lemma 9.6, we start
with a couple of simple claims about the unit vectors
ê1, ê3, . . . , êk−1.
Lemma 9.7. In the above construction, for every
i ∈ { 1, 3, . . . , k − 1 } we have w.h.p. ‖êi − ui‖22 ≤
6
√
m log(mk)/d. Further, for each x ∈ Zi, we have

〈x− µi, êi〉 ≥ 1
2σ
√
d/m.

Proof. Let us fix an i ∈ { 1, 3, . . . , k − 1 }. Let
y(1), y(2), . . . , y(m) ∈ Zi and ȳ(t) = y(t) − µi.

From (22), we know that w.h.p., ‖ȳ(t)‖2 ≤ σ(
√
d +

2
√

logm) ∀t ∈ [m]. Fix t ∈ [m], and let Q(t) =∑
t′∈[m]\{ t }〈ȳ(t), ȳ(t′)〉. For t′ 6= t, due to indepen-

dence and spherical symmetry, 1
‖ȳ(t)‖2

〈ȳ(t), ȳ(t′)〉 is dis-
tributed as a normal r.v. with mean 0 and variance
σ2. Further, Q(t)/‖y(t)‖2 is distributed as a normal
r.v. with mean 0 and variance σ2m. Hence,

Q(t) = ‖y(t)‖2 ·
∑

t′∈[m]\{ t }

〈
ȳ(t′),

ȳ(t)

‖ȳ(t)‖2
〉

≤ σ2(
√
d+

√
log(mk)) · 2

√
m log(mk),

(24)

with probability at least 1 − 1/(mk)2. Hence, w.h.p.
Q(t) ≤ 4σ2

√
dm log(mk) for all t ∈ [m].

For the first part, we see that

‖ui‖22 = 1
σ2md

(∑
t∈[m]

‖ȳ(t)‖22 + 2
∑

t6=t′∈[m]

〈ȳ(t), ȳ(t′)〉
)

= 1
σ2md

(∑
t∈[m]

‖ȳ(t)‖22 + 2
∑
t∈[m]

Q(t)
)
.

Along with (22), the bound on Q(t) and E[‖y(t)‖22] =
dσ2, this implies

|‖ui‖22 − 1| ≤ 1
md

(4m
√
d log(mk) + 4m log(mk) + 4m

√
dm log(mk))

w.p. at least 1− 1/(mk)

|‖ui‖22 − 1| ≤ 6
√
m log(mk)

d
with probability at least 1− 1/(mk).

Since êi is the unit vector along ui, and performing a
union bound over all i we have that w.h.p., ‖êi−ui‖22 ≤
6
√
m log(mk)/d.

For the furthermore part, suppose x = y(t) for some
t ∈ [m] then

〈x̄, êi〉 = 1
‖ui‖2

√
md

∑
t′∈[m]

〈y(t), y(t′)〉

≥ 1
‖ui‖2

√
md

(
‖ȳ(t)‖22 −

∑
t′ 6=t
|〈ȳ(t), ȳ(t′)〉|

)
≥ σ2

‖ui‖2
√
md

(
(d−

√
d log(mk))−Q(t)

)
≥ σ2

‖ui‖2
√
md

(
d− 4

√
dm log(mk)

)
≥ σ2

4
√
dm,

since 64m logm ≤ d and ‖ui‖2 ≤ 2 w.h.p.

Proof of Lemma 9.4. The lemma follows in a straight-
forward way from Lemma 9.3 and by standard concen-
tration bounds. Firstly, the clusters Ci for odd i are
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unaffected by the perturbation. Hence, Ex∈Ci [x] = µi
and from Lemma A.4, the empirical mean of the
points in Ci (there are at least N/(2k) of them w.h.p.)
gives the above lemma. Consider any even i. From
Lemma 9.3, the semi-random perturbation applied to
the points in Ci along the direction êi−1 ensures that
Ex∈Ci [x] = µi+ σ√

2π êi−1. Again by Lemma A.4 applied
to the points from Ci, the lemma follows.

Proof of Lemma 9.5. Let i be even (an even cluster).
First, we note that from our construction, all the points
in C ′i \ Ci ∈ Ci−1 w.h.p., since the distance between
the means ‖µi − µj‖2 ≥ Mσ when j /∈ { i− 1, i }, for
M that is chosen to be appropriately large enough.
Further, ‖µi − µi−1‖2 = ∆σ. Let x̄ = x− µi if i ∈ Ci
and x̄ = x− µj if x ∈ Cj . Hence w.h.p.,

∀x ∈ C ′i∪Ci, ‖x−µi‖2 ≤ ∆σ+‖x̄‖2 ≤ ∆σ+(
√
d+2

√
logN)σ.

Further, µ̃i is the empirical mean of all the points in
Ci. Let δ = m′/|Ci|.

µ′i − µi =
∑
x∈Ci(x− µi)
|C ′i|

−
∑
x∈Ci\C′i

(x− µi)
|C ′i|

+
∑
x∈C′

i
\Ci(x− µi)
|C ′i|

µ′i − µ̃i = (µ′i − µi)− (µ̃i − µi)

= (µ′i − µi) +
∑
x∈Ci(x− µi)
|Ci|

Hence, µ′i − µ̃i =
( |Ci|
|C′
i
| − 1

)
(µ̃i − µi)

− 1
|C ′i|

∑
x∈Ci\C′i

(x− µi)

+ 1
|C ′i|

∑
x∈C′

i
\Ci

(x− µi)

‖µ′i − µ̃i‖2 ≤
( δ

1− δ
)
‖µ̃i − µi‖2

+
( 2δ

1− δ
)

max
x∈Ci∪C′i

‖x− µi‖

≤
( 2δσ

1− δ
)
(1 + ∆ +

√
d+ 2

√
logN)

≤ 4δσ(∆ +
√
d+ 2

√
logN),

where ‖µi − µ̃i‖2 is bounded because of Lemma 9.4. A
similar argument follows when i is odd.

Proof of Lemma 9.6. Let i be odd, and consider a

point x in Zi, and let x̄ = x− µi.

‖x− µ′i‖22 − ‖x− µ′i+1‖22 = ‖(x− µi) + µi − µ′i‖22
− ‖(x− µi+1) + (µi+1 − µ′i+1)‖22
= ‖x− µi‖22 − ‖x− µi + (µi − µi+1)‖22
+ 2〈x− µi, µi − µ′i〉
− 2〈x− µi+1, µi+1 − µ′i+1〉
+ ‖µi − µ′i‖22 − ‖µi+1 − µ′i+1‖22
≥ 2〈x̄, µi − µ′i〉+ 2〈x̄, µ′i+1 − µi+1〉
+ 2〈x̄, µi+1 − µi〉 −∆2σ2

− 2〈µi − µi+1, µi+1 − µ′i+1〉 − σ2

≥ 2〈x̄, µi − µ′i〉+ 2〈x̄, µ′i+1 − µi+1〉

− 4∆
√

log(mk)σ2 −∆2σ2 − 2∆σ2 − σ2,

where the last inequality follows from (23). From
Lemma 9.4, we have

µ′i+1 − µi+1 = (µ̃i+1 − µi+1) + (µ′i+1 − µ̃i+1) = 1√
2πσêi + z′i+1,

where ‖z′i+1‖2 ≤ ‖zi+1‖2 + ‖µ′i+1 − µ̃i+1‖2

≤ σ · 1
(12
√
m(1 + 2

√
logN/d)

,

since N/
√

logN ≥ Cd3/2km for some appropriately
large constant C > 0. Similarly µ′i − µi = z′i, where
‖z′i‖2 ≤ σ/(12

√
m(1 +

√
logN/d)). Hence, simplifying

and applying Lemma 9.7 we get

‖x− µ′i‖22 − ‖x− µ′i+1‖22 ≥ 2√
2π 〈x̄, ê〉σ − 2|〈x̄, z′i〉| − 2|〈x̄, z′i+1〉|

− 4∆
√

log(mk)σ2 −∆2σ2 − σ2

≥
√

d

2πm · σ
2 − 2‖x‖2(‖z′i‖2 + ‖z′i+1‖2)

− 4∆2σ2

≥ σ2
√

d

2πm − σ
2
√

d

9m − 4σ2∆2 > 0,

since m ≤ cd/∆4 for some appropriate constant c (say
c = 16π).

10. Conclusion
In this work we initiated the study of clustering data
from a semi-random mixture of Gaussians. We proved
that the popular Lloyd’s algorithm achieves near op-
timal error. The robustness of the Lloyd’s algorithm
for the semi-random model suggests a theoretical justi-
fication for its widely documented success in practice.
A concrete open question left from our work is to ex-
tend our lower bound for locally optimal clusterings
to a more general statistical lower bound – this would
also imply a separation between recovery guarantees
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for the semi-random model and the pure GMM model.
Robust analysis under semi-random adversaries for re-
lated heuristics such as the EM algorithm and studying
semi-random variants for other popular statistical mod-
els in machine learning will further improve the gap
between our theoretical understanding and observed
practical performance of algorithms for such models.

A. Standard Properties of Gaussians
Lemma A.1. Suppose x ∈ R be generated according
to N(0, σ2), let Φ(t) represent the probability that x > t,
and let Φ−1y represent the quantile t at which Φ(t) ≤ y.
Then

t
σ

( t2σ2 + 1)
e−

t2
2σ2 ≤ Φ(t) ≤ σ

t
e−

t2
2σ2 . (25)

Further, there exists a universal constant c ∈ (1, 4) such
that

1
c

√
log(1/y) ≤ t

σ
≤ c
√

log(1/y). (26)

Let γd be the Gaussian measure associated with a stan-
dard Gaussian with mean 0 and variance 1 in each
direction. We start with a simple fact about the prob-
ability mass of high-dimensional spherical Gaussians
being concentrated at around

√
dσ.

Using concentration bounds for the χ2 random vari-
ables, we have the following bounds for the lengths of
vectors picked according to a standard Gaussian in d
dimensions (see (4.3) in (Laurent & Massart, 2000)).
Lemma A.2. For a standard Gaussian in d dimen-
sions (mean 0 and variance σ2 in each direction), and
any t > 0

P
x∼γd

[
‖x‖2 ≥ σ2(d+ 2

√
dt+ 2t)

]
≤ e−t.

P
x∼γd

[
‖x‖2 ≤ σ2(d− 2

√
dt)
]
≤ e−t.

The following lemma follows from Lemma A.2 and a
simple coupling to a spherical Gaussian with variance
σ2I.
Lemma A.3. Consider any points y(1), . . . , y(N)

drawn from a Gaussian with mean 0 and variance at
most σ2 in each direction. Then with high probability
we have

∀` ∈ [N ], ‖y(`)‖2 ≤ σ(
√
d+ 2

√
logN).

Proof. Consider a random vector z ∈ Rd generated
from a Gaussian with mean 0 and variance σ2 in each

direction. From Lemma A.2,

Pr[‖z‖2 ≥ σ(
√
d+ 2

√
logN)]

= Pr[‖z‖22 ≥ σ2(d+ 4
√
d logN + 4 logN)]

≤ exp(−2 logN) < N−2.

Fix ` ∈ [N ]. By a simple coupling to the spherical
Gaussian random variable z we have

Pr[‖y(`)‖2 ≥ σ(
√
d+ 2

√
logN)] ≤ Pr[‖z‖ ≥ σ(

√
d+ 2

√
logN)]

< N−2.

By a union bound over all ` ∈ [N ], the lemma follows.

Lemma A.4 ((Vershynin, 2010), Proposition 5.10).
Let Yi ∼ N(µ, σ2Id×d) for i = 1, 2, . . . N where N =
Ω(d+log( 1

δ )
ε2 ). Then, with probability at least 1 − δ we

have that

‖ 1
N

N∑
i=1

Yi − µ‖2 ≤ σε.

Lemma A.5 ((Vershynin, 2010), Corollary 5.50). Let
Yi ∼ N(µ, σ2Id×d) for i = 1, 2, . . . N where N =
Ω(d+log( 1

δ )
ε2 ). Then, with probability at least 1 − δ we

have that

‖ 1
N

N∑
i=1

(Yi − µ)(Yi − µ)T − σ2I‖ ≤ σε.

B. Proof of Proposition 8.2
The proof will follow the outline in (Kumar & Kannan,
2010). Given N points from a semi random mixture
X , we first randomly partition them into two sets S1
and S2 of equal size. Let T1, . . . , Tk be the partition
induced by the true clustering over S1 and T ′1, . . . , T ′k
be the partition induced over S2. Furthermore, let A
be the N

2 × d matrix consisting of points in S1 as rows
and C be the N

2 × d matrix of the corresponding true
centers. It is easy to see that with probability at least
1− δ, we will have that

∀r ∈ [k],min(|Tr|, |T ′r|) ≥
|Cr|

4 . (27)

Assuming that equations (9) to (17) hold with high
probability, we next prove that the following conditions
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will also hold with high probability

max
v:‖v‖=1

1
|Tr|

∑
x∈Tr

[(x− µr) · v]2 ≤ 4σ2,∀r ∈ [k] (28)

max
v:‖v‖=1

1
|T ′r|

∑
x∈T ′r

[(x− µr) · v]2 ≤ 4σ2,∀r ∈ [k] (29)

‖ 1
|Tr|

∑
x∈Tr

x− µi‖ ≤ 8σ, ∀r ∈ [k] (30)

‖A− C‖2 ≤ 4σ2N (31)

To prove (28) notice that 1
|Tr|

∑
x∈Tr [(x − µr) ·

v]2 ≤ 4
|Cr|

∑
x∈Cr [(x − µr) · v]2 ≤ 16σ2 (using

13). Similarly, (29) follows. The proof of (30)
follows directly from (14). Finally notice that
‖A − C‖2 = maxv:‖v‖=1

∑
r

∑
x∈Tr [(x − µr) · v]2 ≤

maxv:‖v‖=1
∑
r

∑
x∈Cr [(x − µr) · v]2 ≤ 4σ2N (using

(15)).

In the analysis below we will assume that the above
equations are satisfied by the random partition. Define
a graph G = (A ∪ B,E) where the edge set consists
of any pair of points that have a distance of at most
γ = 4σ(

√
d+
√

logN). Notice that from the definition
of γ, any two points from the same true cluster Cr will
be connected by an edge in G (using 9). Next we map
the points in A to a new N

2 dimensional space as follows.
For any row Ai of A define A′i,j = (Ai − µ) · (Bj − µ)
if Ai and Bj are in the same connected component
of G. Otherwise, define A′i,j = L where L is a large
quantity. Here µ denotes the mean of the points in the
component in G to which Ai belongs to. Let θr denote
the mean of the points in Tr in the new space. We
will show that the new mapping amplifies the mean
separation.
Lemma B.1. For all r 6= s, ‖θr − θs‖ ≥
Ω(
√
|Nwmin|k logN)σ2.

Proof. We can assume that points in Tr, T ′r and Ts, T ′s
belong to the same connected component in G. Other-
wise, ‖θr− θS‖ > L. Let Q be the component to which
Tr and Ts belong with µ being the mean of the points
in Q. Then, ‖θr− θs‖2 ≥

∑
Bj∈Q[(µr−µs) · (Bj −µ)]2.

Notice that (µr−µs) · (µr−µs) = (µr−µ) · (µr−µs)−
(µs − µ) · (µr − µs). Hence, one of the two terms is at
least 1

2‖µr −µs‖
2 in magnitude. Without loss of gener-

ality assume that |(µr−µ) · (µr−µs)| ≥ 1
2‖µr−µs‖

2 ≥
1252

2 k logN .

Now, ‖θr − θs‖2 ≥
∑
Bj∈T ′r

[(µr − µs) · (Bj − µ)]2 =∑
Bj∈T ′r

[(µr −µs) · (µr −µ)− (µr −µs) · (µr −Bj)]2 ≥
1
2 |Bj |[(µr−µs)·(µr−µ)]2−

∑
Bj∈T ′r

[(µr−µs)·(µr−Bj)]2.
The first term is at least |T

′
r|

8 ‖µr−µs‖
4 and the second

term (in magnitude) is at most 4|T ′r|‖µr−µs‖2σ2 (using
29). Substituting the bound on ‖µr−µs‖ and using 27,
we get that ‖θr − θs‖ = Ω(

√
|Nwmin|)(k logN)σ2.

Let A′ be the matrix of points in the new space and C ′
be the matrix of the corresponding centers. We next
bound ‖A′ − C ′‖.
Lemma B.2. ‖A′−C ′‖ ≤ 24σ2k(

√
d+ 2

√
logN)

√
N .

Proof. Let Y = A′ − C ′. Then we have that ‖Y ‖2 ≤
‖Y TY ‖ = maxv:‖v‖=1

∑
r

∑
x∈Tr [(x − θr) · v]2. Let

Qr be the connected component in G that the points
in Tr belong to. Then we can write ‖Y TY ‖ =
maxv:‖v‖=1

∑
r

∑
x∈Tr

∑
Bj∈Qr v

2
j [(x−µr)·(Bj−µ)]2 ≤∑

r

∑
Bj∈Qr v

2
j

∑
x∈Tr [(x− µr) · (Bj − µ)]2. Using 28,

we can bound the inner term as
∑
x∈Tr [(x−µr) · (Bj −

µ)]2 ≤ 4|Tr|‖Bj − µ‖2σ2.

Next notice that because of the way G is constructed,
points within the same connected component have
distance at most kγ. Hence, ‖Bj − µ‖ ≤ kγ. Hence,
‖Y TY ‖ ≤

∑
r

∑
Bj∈Qr v

2
j 4|Tr|(k2γ2)σ2 ≤ 4Nk2γ2σ2.

This gives the desired bound on ‖Y ‖ = ‖A′ −C ′‖.

Combining the previous two lemmas we get that
‖θr − θs‖ ≥ Ω(

√
|Nwmin|

d )‖A
′−C′‖√
N

. We next run the
initialization procedure from Section 8.2 by projecting
A′ onto the top k subspace and running a k-means
approximation algorithm. Let φ1, . . . φk be the means
obtained. Using Lemma 8.6 with M∗ = C ′, we get
that for all r, ‖φr − θr‖ ≤ 20

√
kα ‖A

′−C′‖√
|Nwmin|

, where α is
the approximation guarantee of the k-means approxi-
mation used. If ∆ > c0

√
min{k, d} logN , then we use

a constant factor approximation algorithm (Ahmadian
et al., 2016). If ∆ > c0

√
min{k, d} log k logN , then we

can use the simpler k-means++ algorithm (Arthur &
Vassilvitskii, 2007)

Proof of Proposition 8.2. Assuming N = Ω( k
2d2

w2
min

) we

get that for all r 6= s, ‖φr − φs‖ ≥ 10
√
kd‖A

′−C′‖√
Nwmin

. Let
P1, . . . Pk be the clustering of points in A′ obtained
by using centers φ1, . . . φk. Then we have that for
each r, |Tr4Pr| ≤ Nwmin

10
√
d]
, since otherwise the total

cost paid by the misclassified points will be more than
4k‖A′ − C ′‖2. Next we use the clustering P1, . . . Pk to
compute means for the original set of points in A. Let
ν1, . . . νk be the obtained means. We will show that for
all r, ‖νr − µr‖ ≤ τσ, where τ < ∆

4 .

Consider a particular partition Pr that is uniquely
identified with Tr. Let nr,r be the number of points
that belong to both Pr and Tr and µr,r be the mean of
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those points. Similarly, let nr,s be the number of points
that belong to Ts originally but belong to Pr in the
current clustering, and let µr,s be their mean. Then,
‖µr−νr‖ ≤ nr,r

|Pr|‖µr,r−µr‖+
∑
s6=r

nr,s
|Pr|‖µr,s−µr‖. We

can bound ‖µr,r−µr‖ by O(σ) using 14 and ‖µr,s−µs‖
by O(k(

√
d+2

√
logN) using 9 and the fact that points

in r and s must belong to the same component in G.
Combining we get the claim.
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