
Clustering Semi-Random Mixtures of Gaussians

Pranjal Awasthi 1 Aravindan Vijayaraghavan 2

Abstract
Gaussian mixture models (GMM) are the most
widely used statistical model for the k-means clus-
tering problem and form a popular framework for
clustering in machine learning and data analysis.
In this paper, we propose a natural robust model
for k-means clustering that generalizes the Gaus-
sian mixture model, and that we believe will be
useful in identifying robust algorithms. Our first
contribution is a polynomial time algorithm that
provably recovers the ground-truth up to small
classification error w.h.p., assuming certain sepa-
ration between the components. Perhaps surpris-
ingly, the algorithm we analyze is the popular
Lloyd’s algorithm for k-means clustering that is
the method-of-choice in practice. Our second
result complements the upper bound by giving
a nearly matching lower bound on the number
of misclassified points incurred by any k-means
clustering algorithm on the semi-random model.

1. Introduction
Clustering is a ubiquitous task in machine learning and data
mining for partitioning a data set into groups of similar
points. The k-means clustering problem is arguably the
most well-studied problem in machine learning. However,
designing provably optimal k-means clustering algorithms
is a challenging task as the k-means clustering objective is
NP-hard to optimize (Williamson & Shmoys, 2011) (in fact,
it is also NP-hard to find near-optimal solutions (Awasthi
et al., 2015; Lee et al., 2017)). A popular approach to cope
with this intractability is to study average-case models for
the k-means problem. The most widely used such statistical
model for clustering is the Gaussian Mixture Model (GMM),
that has a long and rich history (Teicher, 1961; Pearson,
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1894; Dasgupta, 1999; Arora & Kannan, 2001; Vempala &
Wang, 2004; Dasgupta & Schulman, 2007).

In this model there are k clusters, and the points from clus-
ter i are generated from a Gaussian in d dimensions with
mean µi ∈ Rd, and covariance matrix Σi ∈ Rd×d with
spectral norm ‖Σi‖ ≤ σ2. Each of the N points in the
instance is now generated independently at random, and is
drawn from the ith component with probability wi ∈ [0, 1]
(w1, w2, . . . , wk are also called mixing weights). If the
means of the underlying Gaussians are separated enough,
the ground truth clustering is well defined1. The algorithmic
task is to recover the ground truth clustering for any data set
generated from such a model (note that the parameters of
the Gaussians, mixing weights and the cluster memberships
of the points are unknown).

Starting from the seminal work of Dasgupta (Dasgupta,
1999), there have been a variety of algorithms to provably
cluster data from a GMM model. Algorithms based on
PCA and distance-based clustering (Arora & Kannan, 2001;
Vempala & Wang, 2004; Achlioptas & McSherry, 2005;
Kannan et al., 2008) provably recover the clustering when
there is adequate separation between every pair of compo-
nents (parameters)2. Other algorithmic approaches include
the method-of-moments (Moitra & Valiant, 2010; Belkin
& Sinha, 2010), and algebraic methods based on tensor de-
compositions (Hsu & Kakade, 2012).(Please see Section 1
in Supplementary material for a more detailed comparison
of related work like (Tang & Monteleoni, 2016; Dutta et al.,
2017) and guarantees).

On the other hand, the method-of-choice in practice are
iterative algorithms like the Lloyd’s algorithm (also called
k-means algorithm) (Lloyd, 1982) and the k-means++ al-
gorithm (Lloyd’s algorithm initialized with centers from
distance-basedD2-sampling). D2-sampling based initializa-
tion schemes were first theoretically analyzed in (Ostrovsky
et al., 2006; Arthur & Vassilvitskii, 2007). In the absence of
good worst-case guarantees, a compelling direction is to use

1A separation of ‖µi − µj‖2 ≥ Ω(σ
√

log(Nk)) for i 6= j ∈
[k] suffices w.h.p.

2The best known guarantees along these lines for non-spherical
Gaussians (Kumar & Kannan, 2010; Awasthi & Sheffet, 2012)
requires a separation of order σ

√
k logN between any pair of

means, where σ is the maximum variance among all clusters along
any direction.



clustering semi-random gmms

beyond-worst-case paradigms like average-case analysis to
provide provable guarantees. Polynomial time guarantees
for recovering k-means optimal clustering by the Lloyd’s
algorithm and k-means++ are known when the points are
drawn from a GMM model under sufficient separation condi-
tions (Ostrovsky et al., 2006; Dasgupta & Schulman, 2007;
Kumar & Kannan, 2010; Awasthi & Sheffet, 2012).

Although the study of Gaussian mixture models has been
very fruitful in designing a variety of efficient algorithms,
real world data rarely satisfies such strong distributional
assumptions. Hence, our choice of algorithm should be
informed not only by its computational efficiency but also
by its robustness to errors and model misspecification. As
a first step, we need theoretical frameworks that can distin-
guish between algorithms that are tailored towards a specific
probabilistic model and algorithms robust to modeling as-
sumptions. In this paper we initiate such a study in the
context of clustering, by studying a natural robust general-
ization of the GMM model that we call semi-random model.

Semi-random models involve a set of adversarial choices in
addition to the random choices of the probabilistic model,
while generating the instance. These models have been suc-
cessfully applied to study the design of robust algorithms
for various optimization problems (Blum & Spencer, 1995;
Feige & Kilian, 1998; Makarychev et al., 2012) (see Section
1 of Supplementary material). In a typical semi-random
model, there is a “planted” or “ground-truth” solution, and
an instance is first generated according to a simple proba-
bilistic model. An adversary is then allowed to make “mono-
tone” or helpful changes to the instance that only make the
planted solution more pronounced. For instance, in the
semi-random model of Feige and Kilian (1998) for graph
partitioning, the adversary is allowed to arbitrarily add extra
edges within each cluster or delete edges between differ-
ent clusters of the planted partitioning. These adversarial
choices only make the planted partition more prominent;
however, the choices can be dependent and thwart algo-
rithms that rely on the excessive independence or strong but
unrealistic structural properties of these instances.

The study of semi-random models helps us understand and
identify robust algorithms. Our motivation for studying
semi-random models for clustering is two-fold: a) design
algorithms that are robust to strong distributional data as-
sumptions, and b) explain the empirical success of simple
heuristics like Lloyd’s algorithm.

Semi-random mixtures of Gaussians In an ideal clus-
tering instance, each point x in the ith cluster is signifi-
cantly closer to the mean µi than to any other mean µj
for j 6= i (for a general instance, in the optimal solution,
‖x− µi‖2 −‖x− µj‖2 ≤ 0 ∀j 6= i). Moving each point in
Ci toward its own mean µi only increases this gap between

the distance to its mean and to any other mean. Hence, this
perturbation corresponds to a monotone perturbation that
only make this planted clustering even better. In our semi-
random model, the points are first drawn from a mixture
of Gaussians (this is the planted clustering). The adversary
is then allowed to move each point in the ith cluster closer
to its mean µi. This allows the points to be even better
clustered around their respective means, however these per-
turbations are allowed to have arbitrary dependencies. We
now formally define the model.
Definition 1.1 (Semi-random GMM model). Given parame-
ters µ1, µ2, . . . , µk ∈ Rd and σ ∈ R+, a clustering instance
X on N points is generated as follows.

1. Adversary chooses an arbitrary partition C =
(C1, . . . , Ck) of { 1, . . . , N }, let Ni = |Ci| ∀i ∈ [k].

2. For each i ∈ [k] and each t ∈ Ci, y(t) ∈ Rd is gener-
ated independently at random according to a Gaussian
with mean µi and covariance Σi with ‖Σ‖ ≤ σ i.e.,
variance at most σ2 in each direction.

3. The adversary then moves each point y(t) towards the
mean of its component by an arbitrary amount i.e., for
each i ∈ [k], t ∈ Ci, the adversary picks x(t) arbitrarily
in {µi + λ(y(t) − µi) : λ ∈ [0, 1] } (these choices can
be correlated arbitrarily).

The instance is X = {x(t) : t ∈ [N ] } and is parameterized
by (µ1, . . . , µk, σ) with the planted clustering C1, . . . , Ck.
We will denote by wmin = mini∈[k]Ni/N .

It is necessary that each point is moved closer to its mean
along the direction of the mean – otherwise, one can move
points closer to its own mean, but in other directions in such
a way that the optimal k-means clustering of the perturbed
instance is very different from the planted clustering. This
is especially true in the separation range of interest (when
k � d), where the inter-mean distance is smaller than the
average radius of the clusters (see Supplementary material
for details).

Data generated by mixtures of high-dimensional Gaussians
have certain properties that are often not exhibited by real-
world instances. High-dimensional Gaussians have strong
concentration properties; for example, all the points gener-
ated from a high-dimensional Gaussian are concentrated at a
reasonably far distance from the mean (they are ≈

√
dσ far

away w.h.p.). In many real-world datasets on the other hand,
clusters in the ground-truth often contain dense “cores” that
are close to the mean. Our semi-random model admits such
instances by allowing points in a cluster to move arbitrarily
close to the mean.

Our Results. Our first result studies the Lloyd’s algorithm
on the semi-random GMM model and gives an upper bound
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on the clustering error achieved by the Lloyd’s algorithm
with the initialization procedure used in (Kumar & Kannan,
2010).

Informal Theorem 1.2. Consider any semi-random in-
stance X with N points generated by the semi-random
GMM model (Def. 1.1) with planted clustering C1, . . . , Ck
and parameters µ1, . . . , µk, σ

2 satisfying ∀i 6= j ∈ [k],
‖µi − µj‖2 > ∆σ where ∆ ≥ c0

√
min { k, d } logN and

N ≥ k2d2/w2
min. There is polynomial time algorithm based

on the Lloyd’s iterative algorithm that recovers the cluster
memberships of all but Õ(kd/∆4) points.

The Õ in the above statement hides a log(logN/∆4) and
log(d/∆2) factor. Please see Theorem 3.1 for a formal state-
ment. Furthermore, the initialization procedure of Kumar
and Kannan (2010) can be replaced by a simpler procedure
based on the popular k-means++ algorithm (Ostrovsky et al.,
2006; Arthur & Vassilvitskii, 2007). On the other hand, cer-
tain other algorithmic techniques like moment-based meth-
ods, distance-based clustering and tensor decompositions
seem less robust to semi-random perturbations (please see
related work in Section 1 of supplementary material for
more details). The most closely related to our work is that
of (Kumar & Kannan, 2010) and (Awasthi & Sheffet, 2012)
who provided deterministic data conditions under which
the Lloyd’s algorithm converges to the optimal clustering.
Along these lines, our work provides further theoretical justi-
fication for the enormous empirical success that the Lloyd’s
algorithm enjoys.

It is also worth noting that in spite of being robust to
semi-random perturbations, the separation requirement of
σ
√
k logN in our upper bound matches the separation re-

quirement in the best guarantees (Awasthi & Sheffet, 2012)
for Lloyd’s algorithm even in the absence of any semi-
random errors or perturbations 3. We also remark that while
the algorithm recovers a clustering of the given data that is
very close to the planted clustering, this does not necessarily
estimate the means of the original Gaussian components
up to inverse polynomial accuracy (in fact the centers of
the planted clustering after the semi-random perturbation
may be Ω(σ) far from the original means). This differs
from the recent body of work on parameter estimation in
the presence of some adversarial noise (please see Section 1
of supplementary material for a comparison).

While the monotone changes allowed in the semi-random
model should only make the clustering task easier, our next
result shows that the error achieved by the Lloyd’s algorithm
is in fact near optimal. More specifically, we provide a lower

3We note that for clustering GMMs, the work of Brubaker and
Vempala (2008) give a qualitatively different separation condition
that does not depend on the maximum variance. However this
separation condition is incomparable to (Awasthi & Sheffet, 2012),
because of the potentially worse dependence on k.

bound on the number of points that will be misclassified by
any k-means optimal solution for the instance.

Informal Theorem 1.3. Given any N (that is sufficiently
large polynomial in d, k) and ∆ such that

√
logN ≤

∆ ≤ d/(4 log d), there exists an instance X on N points
in d dimensions generated from the semi-random GMM
model 1.1 with parameters µ1, . . . , µk, σ

2, and planted clus-
tering C1, . . . , Ck having separation ∀i 6= j ∈ [k], ‖µi −
µj‖2 ≥ ∆σ s.t. any optimal k-means clustering solution
C ′1, C

′
2, . . . , C

′
k ofX misclassifies at least Ω(kd/∆4) points

with high probability.

The above lower bound also holds when the semi-random
perturbations are applied to points generated from a mixture
of k spherical Gaussians each with covariance σ2I and
weight 1/k. Further, the lower bound holds not just for the
optimal k-means solution, but also for any “locally optimal”
clustering solution. See Theorem 4.1 for a formal statement.
These two results together show that the Lloyd’s algorithm
essentially recovers the planted clustering up to the optimal
error possible for any k-means clustering based algorithm.

Unlike algorithmic results for other semi-random models,
an appealing aspect of our algorithmic result is that it gives
provable robust guarantees in the semi-random model for a
simple, popular algorithm that is used in practice (Lloyd’s
algorithm). Further, other approaches for clustering like
distance-based clustering, method-of-moments and tensor
decompositions seem inherently non-robust to these semi-
random perturbations (see Section 1 of Supplementary ma-
terial for details). This robustness of the Lloyd’s algorithm
suggests an explanation for its widely documented empirical
success across different application domains.

Challenges and Overview of Techniques. Lloyd’s algo-
rithm has been analyzed in the context of clustering mix-
tures of Gaussians (Kumar & Kannan, 2010; Awasthi &
Sheffet, 2012). Any variant of the Lloyd’s algorithm con-
sists of two steps — an initialization stage where a set
of k initial centers are computed, and the iterative algo-
rithm which successively improves the clustering in each
step. Kumar and Kannan (2010) considered a variant of
the Lloyd’s method where the initialization is given by us-
ing PCA along with a O(1) factor approximation to the
k-means optimization problem. The improved analysis of
this algorithm in (Awasthi & Sheffet, 2012) leads to state of
the art results that perfectly recovers all the clusters under a
separation of order

√
k logNσ.

We analyze the variant of Lloyd’s algorithm that was in-
troduced by Kumar and Kannan (2010); further, our analy-
sis also extends to a simpler initialization procedure based
on the popular k-means++ algorithm. However, there are
several challenges in extending the analysis of (Awasthi
& Sheffet, 2012) to the semi-random setting. While the
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semi-random perturbations in the model only move points
in a cluster Ci closer to the mean µi, these perturbations
can be co-ordinated in a way that can move the empirical
mean of the cluster significantly. For instance, Lemma 4.3
gives a simple semi-random perturbation to the points in
Ci that moves the empirical mean of the points in Ci to µ̃i
s.t. µ̃i ≈ µi + Ω(σ)ê, for any desired direction ê. This
shift in the empirical means may now cause some of the
points in cluster Ci to become closer to µ̃j (in particular
points that have a relatively large projection onto ê) and
vice-versa. In fact, the lower bound instance in Theorem 4.1
is constructed by applying such a semi-random perturba-
tion given by Lemma 4.3 to the points in a cluster, along a
carefully picked direction so that m = Ω(d/∆4) points are
misclassified per cluster.

The empirical success of Lloyd’s algorithm on real-world
data is widely documented. The main contribution of the
paper is a robust theoretical analysis of the Lloyd’s iterative
algorithm when the points come from the semi-random
GMM model. The key is to understand the number of
points that can be misclassified in an intermediate step of
the Lloyd’s iteration. We show in Lemma 3.3 that if in
the current iteration of the Lloyd’s algorithm, each of the
current estimates of the means µ′i is within τσ from µi, then
the number of misclassified points by the current iteration
of Lloyd’s iteration is at most Õ(kdτ2/∆4). To analyze
this, we need to understand the projection of points onto the
direction of the line joining the centers. While the average
projection is small i.e. Õ(1), there are certain directions
where it is as large as Ω(

√
d)! However, we can still prove

an upper bound (in Lemma 3.5) on the number of points x
in a cluster Ci s.t. s.t. (x − µi) has a large inner product
along any (potentially bad) direction ê. The effect of these
bad points has to be carefully accounted for when analyzing
both stages of the algorithm – the initialization phase, and
the iterative algorithm (in Proposition 3.2 and Lemma 3.4).

Some Related Work. There has been a long line of algo-
rithmic results on Gaussian mixture models starting from
(Teicher, 1961; 1967; Pearson, 1894). Considering the vast
and rich literature on mixtures of Gaussians, we defer much
of the comparison to the related work section in the supple-
mentary material (Section 1). Here we mention and compare
to some recent related work on robust parameter estimation
for Gaussians and related models. A recent exciting line of
work concerns designing robust high-dimensional estima-
tors of the mean and covariance of Gaussians (and models)
when a small ε fraction of the points are adversarially cor-
rupted (Brubaker, 2009; Diakonikolas et al., 2016; Lai et al.,
2016; Charikar et al., 2017). However, this model and re-
sults are incomparable to our semi-random model — for
example, they typically assume that only a o(1/k) fraction
of the points are corrupted, while potentially all the points

could be perturbed in our semi-random model, while on
the other hand, our work does not handle arbitrary outliers.
Please see Section 1 of the supplementary material for addi-
tional related work.

2. Preliminaries
Clustering data from a mixture of Gaussians is a natural
average-case model for the k-means clustering problem.
Specifically, if the means of a Gaussian mixture model are
well separated, then with high probability, the ground truth
clustering of an instance sampled from the model corre-
sponds to the k-means optimal clustering.

Definition 2.1. (k-means clustering). Given an instance
X = {x(1), . . . , x(N) } of N points in Rd, the k-means
problems is to find k points µ1, . . . , µk such as to minimize∑
t∈[N ] mini∈[k] ‖x(t) − µi‖2.

The optimal means or centers µ1, . . . , µk naturally define a
clustering of the data where each point is assigned to its clos-
est cluster. A key property of the k-means objective is that
the optimal solution induces a locally optimal clustering.

Definition 2.2. (Locally Optimal Clustering). A clustering
C1, . . . , Ck of N data points in Rd is locally optimal if for
each i ∈ [k], x(t) ∈ Ci, and j 6= i we have that ‖x(t) −
µ(Ci)‖ ≤ ‖x(t)−µ(Cj)‖. Here µ(Ci) is the average of the
points in Ci.

Hence, given the optimal k-means clustering, the optimal
centers can be recovered by simply computing the average
of each cluster. This is the underlying principle behind the
popular Lloyd’s algorithm (Lloyd, 1982) for k-means clus-
tering. The algorithm starts with a choice of initial centers.
It then repeatedly computes new centers to be the average
of the clusters induced by the current centers. Hence the al-
gorithm converges to a locally optimal clustering. Although
popular in practice, the worst case performance of Lloyd’s
algorithm can be arbitrarily bad (Arthur & Vassilvitskii,
2005). The choice of initial centers is very important in the
success of the Lloyd’s algorithm. We show that our theo-
retical guarantees hold when the initialization is done via
the popular k-means++ algorithm (Arthur & Vassilvitskii,
2007). There also exist more sophisticated constant factor
approximation algorithms for the k-means problem (Ka-
nungo et al., 2002; Ahmadian et al., 2016) that can be used
for seeding in our framework.

We now state several properties of semi-random mixtures
that will be used throughout the analysis in the subsequent
sections (please see supplementary material for proofs). We
first start with a few simple properties that follow directly
from the corresponding properties about high dimensional
Gaussians.

Lemma 2.3. Consider any semi-random instance X =
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{x(1), . . . , x(N) } with parameters µ1, . . . , µk, σ
2 and clus-

ters C1, . . . , Ck. Then w.h.p. ∀i ∈ [k],

∀` ∈ Ci, ‖x(t) − µi‖2 ≤ σ(
√
d+ 2

√
logN). (1)

Further, for a fixed unit vector u ∈ Rd, with probability at
least (1− 1/(N3))

∀i ∈ [k], t ∈ Ci, |〈x(`) − µi, u〉| < 3σ
√

logN. (2)

Finally, we have w.h.p. ∀i ∈ [k],

∀t ∈ Ci,
∣∣∣〈x(`) − µi,

µi − µj
‖µi − µj‖2

〉∣∣∣ < 3σ
√

logN. (3)

We observe that (3) immediately follows from (2) after a
union bound over the k2 < N2 directions given by the unit
vectors along (µi−µj) directions. The proofs of these state-
ments are given in Section 2 of the Supplementary material.
The next lemma gives an upper bound on how far the mean
and variance of the points in a component of a semi-random
GMM can move away from the true parameters.

Lemma 2.4. Consider any semi-random instanceX withN
points generated with parameters µ1, . . . , µk, C1, . . . , Ck
such that Ni ≥ 4(d + log(kδ )) for all i ∈ [k]. Then with
probability at least 1− δ,

∀i ∈ [k],
∥∥∥ 1

|Ci|
∑
x∈Ci

x− µi
∥∥∥

2
≤ 2σ. (4)

∀i ∈ [k], max
v:‖v‖=1

1

|Ci|
∑
x∈Ci

|〈x− µi, v〉|2 ≤ 4σ2. (5)

3. Upper Bounds for Semi-random GMMs
In this section we prove the following theorem that provides
algorithmic guarantees for the Lloyd’s algorithm with ap-
propriate initialization, under the semi-random model for
mixtures of Gaussians in Definition 1.1.

Theorem 3.1. There exists a universal constant c0, c1 > 0
such that the following holds. There exists a polynomial
time algorithm that for any semi-random instance X on
N points with planted clustering C1, . . . , Ck generated by
the semi-random GMM model (Def. 1.1) with parameters
µ1, . . . , µk, σ

2 s.t.

∀i 6= j ∈ [k], ‖µi − µj‖2 > ∆σ, where (6)

∆ > c0
√

min { k, d } logN and N ≥ k2d2/w2
min, finds

w.h.p. a clustering C ′1, . . . , C
′
k such that

min
π

k∑
i=1

∣∣Cπ(i)4C ′i
∣∣ ≤ c1kd

∆4
max

{
1, log

( 6(
√
d+log

1
2 N)

∆2

)}

Algorithm 1 Lloyd’s Algorithm
Input: A be the N × d data matrix with rows Ai for
i ∈ [N ].
Use A to compute initial centers µ(1)

0 , µ
(2)
0 , . . . µ

(k)
0 as

detailed in Proposition 3.2.
Use these k-centers to seed a series of Lloyd-type itera-
tions i.e.,
for r = 1, 2, . . .: do

Set Zi be the set of points for which the closest center
among µ(1)

r−1, µ
(2)
r−1, . . . , µ

(k)
r−1 is µ(i)

r−1.
Set µ(i)

r ← 1
|Zi|

∑
Aj∈Zi

Aj .
end for

In Section 4 we show that the above error bound is close
to the information theoretically optimal bound (up to the
logarithmic factor). The Lloyd’s algorithm as described in
Figure 1 consists of two stages, the initialization stage and
an iterative improvement stage.

The initialization follows the same scheme as proposed by
Kumar and Kannan in (2010). The initialization algorithm
first performs a k-SVD of the data matrix followed by run-
ning the k-means++ algorithm that uses D2-sampling to
compute seed centers (Arthur & Vassilvitskii, 2007). One
can also use any constant factor approximation algorithm
for k-means clustering in the projected space to obtain the
initial centers (Kanungo et al., 2002; Ahmadian et al., 2016).
This approach works for clusters that are nearly balanced
in size. However, when the cluster sizes are arbitrary, an
appropriate transformation of the data is performed first that
amplifies the separation between the centers. Following this
transformation, the (k-SVD + k-means++) is used to get
the initial centers. The formal guarantee of the initializa-
tion procedure is encapsulated in the following proposition,
whose proof is given in Section 3.2.

The main algorithmic contribution of this paper is an anal-
ysis of the Lloyd’s algorithm when the points come from
the semi-random GMM model. For the rest of the analy-
sis we will assume that the instance X generated from the
semi-random GMM model satisfies (1) to (7). These equa-
tions are shown to hold w.h.p. in Section 2 for instances
generated from the model. Our analysis will in fact hold for
any deterministic data set satisfying these equations. This
helps to gracefully argue about performing many iterations
of Lloyd’s on the same data set without the need to draw
fresh samples at each step.

Proposition 3.2. In the above notation for any δ > 0, sup-
pose we are given an instance X on N points satisfying
(1)-(7) such that |Ci| ≥ Ω(d + log(kδ )) and assume that
∆ ≥ 125

√
min { k, d } logN . Then after the initialization

step, for every µi there exists µ′i such that ‖µi − µ′i‖ ≤ τσ,
where τ < ∆/24.
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The analysis of the Lloyd’s iterations crucially relies on the
following lemma that upper bounds the number of misclas-
sified points when the current Lloyd’s iterative is relatively
close to the true means.

Lemma 3.3 (Projection condition). In the above notation,
consider an instance X satisfying (1)-(7) and (6) and sup-
pose we are given µ′1, . . . , µ

′
k satisfying ∀j ∈ [k], ‖µ′j −

µj‖2 ≤ τσ and τ < ∆/24. Then there exists a set Z ⊂ X
such that for any i ∈ [k] we have

∀x ∈ Ci ∩ (X \ Z), ‖x− µ′i‖22 ≤ min
j 6=i
‖x− µ′j‖22 where

|Z| = O
(dτ2

∆4
·max

{
1, log

( 3τ(
√
d+2
√

logN)
∆2

)})
.

The following lemma quantifies the improvement in each
step of Lloyd’s algorithm. The proof uses Lemma 3.3 along
with properties of semi-random Gaussians.

Lemma 3.4. In the above notation, suppose we are given
an instance X on N points with wiN ≥ d

√
d

4 log(d) for all
i satisfying (1)-(7). Furthermore, suppose we are given
centers µ′1, . . . , µ

′
k such that ‖µ′i − µi‖ ≤ τσ, ∀i ∈ [k]

where τ < ∆/24. Then the centers µ′′1 , . . . , µ
′′
k obtained

after one Lloyd’s update satisfy ‖µ′′i − µi‖ ≤ max((6 +
τ
4 )σ, τ2σ)) for all i ∈ [k].

We now present the proof of Theorem 3.1.

Proof of Theorem 3.1. Firstly, the eight deterministic con-
ditions (1)-(7) are shown to hold for instance X w.h.p. in
Section 2. The proof follows in a straightforward manner
by combining Proposition 3.2, Lemma 3.4 and Lemma 3.3.
Proposition 3.2 shows that ‖µ(0)

i − µi‖2 ≤ ∆/(24) for
all i ∈ [k]. Applying Lemma 3.4, we have that after
T = O(log ∆) iterations we get ‖µ(T )

i − µi‖2 ≤ 8σ for all
i ∈ [k] w.h.p. Finally using Lemma 3.3 with τ = 1, the
theorem follows.

3.1. Analyzing Lloyd’s Algorithm

The following lemma is crucial in analyzing the perfor-
mance of the Lloyd’s algorithm. We would like to upper
bound the inner product |〈x(`) − µi, ê〉| < λσ for every
direction ê and sample ` ∈ [N ], but this is impossible since
ê can be aligned along x(`) − µi. The following lemma
however upper bounds the total number of points in the
dataset that can have a large projection of λ (or above) onto
any direction ê by at most Õ(d/λ2). This involves a union
bound over a net of all possible directions ê.

Lemma 3.5 (Points in Bad Directions). Consider any semi-
random instance X = {x(1), . . . , x(N) } with N points
having parameters µ1, . . . , µk, σ

2 and planted clustering
C1, . . . , Ck, and denote by x̄(`) = x(`)−µi ∀i ∈ [k], ` ∈ Ci.

Then ∃c > 0 (universal constant) s.t. ∀λ > 100
√

logN ,
w.p. at least 1− 2−d

∀ê : ‖ê‖2 = 1,
∣∣∣{ ` ∈ [N ] : |〈x̄(`), ê〉| > λσ }

∣∣∣
≤ cd

λ2
·max

{
1, log

( 3(
√
d+log

1
2 N)

λ

)}
(7)

Proof. Set η := min {λ/(2
√
d+ 2

√
logN), 1

2 } and
m := 512d log(3/η)/λ2. Consider an η-net N ⊂
{u : ‖u‖2 = 1 } over unit vectors in Rd. Hence

∀u ∈ Rd : ‖u‖2 = 1, ∃v ∈ N s.t. ‖u− v‖2 ≤ η

and |N | ≤
(2 + η

η

)d
≤ exp

(
d log(3/η)

)
.

Further, since |〈x̄, ê〉| > λ and N is an η-net, there exists
some unit vector u = u(ê) ∈ N

|〈x̄, u〉| > |〈x̄, ê〉+ 〈x̄, ê− u〉| ≥ σλ− ‖x̄‖2‖ê− u‖2

≥ σ
(
λ− η(

√
d+ 2

√
logN)

)
≥ λ

2
, (8)

for our choice of η. Consider a fixed x ∈ {x(1), . . . , x(N) }
and a fixed direction u ∈ N . Since the variance of y is at
most σ2 we have

P
[
|〈x̄, u〉| > λσ/2

]
≤ P

[
|〈ȳ, u〉| > λσ/2

]
≤ exp

(
−λ2/8

)
.

The probability that m points in {x(1), . . . , x(N) } satisfy
(8) for a fixed direction u is at most

(
N
m

)
· exp(−mγ2/2).

Let E represent the bad event that there exists a direction in
N such that more that m points satisfy the bad event given
by (8).

P[E] ≤ |N | ·
(
N

m

)
exp(−mλ2/8)

≤ exp
(
d log(3/η) +m logN − mλ2

8

)
≤ ηd,

since λ2 > 32 logN , and mλ2 ≥ 32d log(3/η).

Lemma 3.3 and Lemma 3.4 use the above lemma to analyze
each iteration of the Lloyd’s algorithm and show that we
make progress in each step by misclassifying fewer points
with successive iterations.

3.2. Initialization

In this section we describe how to obtain the initial centers
satisfying the condition in Lemma 3.4. The final initial-
ization procedure relies on the following subroutine that
provides a good initializer if the mean separation is much
larger than that in Theorem 3.1. Let A denote the N ×d ma-
trix of data points and M∗ be the N × d matrix where each
row of C is equal to one of the means µis of the component
to which the corresponding row of A belongs to.
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Lemma 3.6. In the above notation, for any δ > 0 suppose
we are given an instanceX onN points satisfying satisfying
(1)-(7), with components C1, . . . Ck such that |Ci| ≥ Ω(d+
log(kδ )). Let A be the N × d matrix of data points and Â
be the matrix obtained by projecting points onto the best
k-dimensional subspace obtained by SVD of A. Let µ′i
be the centers obtained by running an α factor k-means
approximation algorithm on Â. Then for every µi there
exists µ′i such that ‖µi − µ′i‖ ≤ 20

√
kα ‖A−M

∗‖√
Nwmin

.

The above proof already provides a good initializer provided

∆ is larger than
√
k logN
wmin

and one uses a constant factor ap-
proximation algorithm for k-means (Ahmadian et al., 2016).

Furthermore, if ∆ is larger than
√
k log k logN

wmin
, then one

can instead use the simpler and faster k-means++ approxi-
mation algorithm (Arthur & Vassilvitskii, 2007). The above
lemma has a bad dependence on wmin. However, using the
Boosting technique of (Kumar & Kannan, 2010) we can re-
duce the dependence to ∆ > 25

√
k logN and hence prove

Proposition 3.2. We provide a proof of this in the Appendix.

4. Lower Bounds for Semi-random GMMs
We prove the following theorem.
Theorem 4.1. For any d, k ∈ Z+, there exists N0 =
poly(d, k) and a universal constant c1 > 0 such that
the following holds for all N ≥ N0 and ∆ such that√

logN ≤ ∆ ≤ d/(64 log d). There exists an instance
X on N points in d dimensions with planted cluster-
ing C1, . . . , Ck generated by applying semi-random per-
turbations to points generated from a mixture of spheri-
cal Gaussians with means µ1, µ2, . . . , µk, covariance σ2I
and weights being 1/k each, with separation ∀i 6= j ∈
[k], ‖µi − µj‖2 ≥ ∆σ, such that any locally optimal k-
means clustering solution C ′1, C

′
2, . . . , C

′
k of X satisfies

w.h.p. minπ∈Permk

∑k
i=1 |C ′π(i)4Ci| ≥

c1kd
∆4 . It suffices

to set N0(d, k) := c0k
2d3/2 log2(kd), where c0 > 0 is a

sufficiently large universal constant.
Remark 4.2. Note that the lower bound also applies in par-
ticular to the more general semi-random model in Defini-
tion 1.1; in this instance, the points are drawn i.i.d. from
the mixture of spherical Gaussians, before applying semi-
random perturbations. Further, this lower bound holds for
any locally optimal solution, and not just the optimal solu-
tion.

The lower bound construction will pick an arbitrary
Ω(d/∆4) points from k/2 clusters, and carefully choose
a semi-random perturbation to all the points so that these
Ω(kd/∆4) points are misclassified. We start with a simple
lemma that shows that an appropriate semi-random pertur-
bation can move the mean of a cluster by an amount O(σ)
along any fixed direction.

Lemma 4.3. Consider a spherical Gaussian in d dimen-
sions with mean µ and covariance σ2I , and let ê be a fixed
unit vector. Consider the semi-random perturbation given
by

∀y ∈ Rd, h(y) =

{
µ if 〈y − µ, ê〉 < 0

y otherwise
.

Then we have E[h(y)] = µ+ 1√
2π
σê.

Construction. Set m := c1d/∆
4 for some appropri-

ately small constant c1 ∈ (0, 1). We assume with-
out loss of generality that k is even (the following con-
struction also works for odd k by leaving the last clus-
ter unchanged). We pair up the clusters into k/2 pairs
{ (C1, C2), (C3, C4), . . . , (Ck−1, Ck) }, and we will ensure
that m points are misclassified in each of the k/2 clus-
ters C1, C3, . . . , Ck−1. The parameters of the mixture of
spherical Gaussians G are set up as follows. For each
i ∈ 1, 3, 5, . . . , k − 1, ‖µi − µi+1‖2 = ∆σ, and all the
other inter-mean distances (across different pairs) are at
least Mσ which is arbitrarily large (M 7→ ∞).

Let for any i ∈ { 1, 3, . . . , k − 1 }, Zi ⊂ Ci be the
first m points in cluster Ci respectively among the sam-
ples y(1), . . . , y(N) drawn from G (these m points inside
the clusters can be chosen arbitrarily). Set Zi = ∅ for
i ∈ { 2, 4, . . . , k }. Then, for each i ∈ { 1, 3, . . . , k − 1 },
set êi to be the unit vector along ui = 1

σ
√
md

∑
y∈Zi

(y−µi).
Finally, for each i ∈ { 1, 3, . . . , k − 1 } apply the following
semi-random perturbation given by Lemma 4.3 to points in
cluster Ci+1 along êi,

x(t) = h(y(t)) =

{
µi+1 if 〈y(t) − µi+1, êi〉 < 0

y(t) otherwise
.

Note that the semi-random perturbations are only made to
points in the even clusters (based on a few points in its re-
spective odd cluster). The lower bound proof proceeds in
two parts. Lemma 4.4 (using Lemma 4.3) and Lemma 4.5
shows that in any k-means optimal clustering the means
of each even cluster Ci moves by roughly Ω(σ) · êi−1.
Lemma 4.6 then shows that these means will classify all the
m points in Zi−1 incorrectly w.h.p. In this proof w.h.p. will
refer to a probability of at least 1 − o(1) unless specified
otherwise (this can be made 1− 1/poly(m, k)).

Let µ̃1, . . . , µ̃k be the (empirical) means of the clusters
in the planted clustering C1, C2, . . . , Ck after the semi-
random perturbations. The following lemma shows that
‖µ̃i − µi‖2 ≤ σ.

Lemma 4.4. There exists a constant c3 > 0 s.t. for the
semi-random instance X described above, we have w.h.p.
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for some zi with ‖zi‖2 ≤ c3σ
√
dk/N

∀i ∈ [k], µ̃i =

{
µi + 1√

2π
σêi−1 + zi if i is even

µi + zi if i is odd
.

The following lemma shows that if Ci, C ′i are close, then
the empirical means are also close.

Lemma 4.5. Consider any cluster Ci of the instance X ,
and let C ′i satisfy |C ′i4Ci| ≤ m′. Suppose µ̃i, µ′i are the
means of clusters Ci and C ′i respectively, then

‖µ′i − µ̃i‖2 ≤ 4σ · m
′

|Ci|
(
√
d+ 2

√
logN + ∆).

The following lemma shows that the Voronoi partition about
µ̃1, . . . , µ̃k (or points close to it) incorrectly classifies all
points in Zi for each i ∈ [k].

Lemma 4.6. Let µ′1, µ
′
2, . . . , µ

′
k satisfy ‖µ′i − µ̃i‖2 ≤

σ/(16
√
m(1 + 2

√
logN
d )), where µ̃i is the empirical mean

of the points in Ci. Then, we have w.h.p. that for each
i ∈ { 1, 3, . . . , k − 1 }, ‖x − µ′i‖22 > ‖x − µ′i+1‖22, i.e.,
every point x ∈ Zi is misclassified.

Proof of Theorem 4.1. Let C ′1, . . . , C
′
k be a locally optimal

k-means clustering of X , and suppose
∑
i |C ′i4Ci| <

mk/2 (for sake of contradiction). For each i ∈ [k], let
µ̃i be the empirical mean of Ci and µ′i be the empirical
mean of C ′i. Since C ′1, . . . , C

′
k is a locally optimal cluster-

ing, the Voronoi partition given by µ′1, . . . , µ
′
k classifies all

the points in agreement with C ′1, . . . , C
′
k.

We will now contradict the local optimality of the clustering
C ′1, . . . , C

′
k. Every cluster Ci has at least N/(2k) points

w.h.p. Hence, for each i ∈ [k], from Lemma 4.5 we have

‖µ′i − µ̃i‖2 ≤ σ(
√
d+ 2

√
logN + ∆) · 4|Ci4C ′i|

N/2k

≤ σ

16
√
m(1 +

√
(logN)/d)

.

However, from Lemma 4.6, every point in ∪i∈[k]Zi
is misclassified by µ′1, µ

′
2, . . . , µ

′
k, i.e., the clustering

given the Voronoi partition around µ′1, . . . , µ
′
k differs

from C1, . . . , Ck on at least mk/2 points in total. But∑
i∈[k] |C ′i4Ci| < mk/2. Hence, this contradicts the local

optimality of the clustering C ′1, . . . , C
′
k.

5. Conclusion
In this work we initiated the study of clustering data from
a semi-random mixture of Gaussians. We proved that the
popular Lloyd’s algorithm achieves near optimal error. The
robustness of the Lloyd’s algorithm for the semi-random

model suggests a theoretical justification for its widely doc-
umented success in practice. A concrete open question
left from our work is to extend our lower bound for lo-
cally optimal clusterings to a more general statistical lower
bound – this would also imply a separation between recov-
ery guarantees for the semi-random model and the pure
GMM model. Robust analysis under semi-random adver-
saries for related heuristics such as the EM algorithm and
studying semi-random variants for other popular statistical
models in machine learning will further improve the gap be-
tween our theoretical understanding and observed practical
performance of algorithms for such models.
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