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A. Proofs from Section 3
A.1. Proofs for Constant k

Proof. (Of Theorem 3.1) To show convergence in prob-
ability, we need to show that for all �, δ > 0, there ex-
ists an n(�, δ) such that Pr(ρ(Ak(Sn, ·), x) ≥ �) ≤ δ for
n ≥ n0(�, δ).

The proof will again proceed in two stages. First, we show
in Lemma A.1 that if the conditions in the statement of
Theorem 3.1 hold, then there exists some n(�, δ) such that
for n ≥ n(�, δ), with probability at least 1− δ, there exists
two points x+ and x− in B(x, �) such that (a) all k nearest
neighbors of x+ have label 1, (b) all k nearest neighbors of
x− have label 0, and (c) x+ �= x−.

Next we show that if the event stated above happens, then
ρ(Ak(Sn, ·), x) ≤ �. This is because Ak(Sn, x+) = 1 and
Ak(Sn, x−) = 0. No matter what Ak(Sn, x) is, we can
always find a point x� that lies in {x+, x−} ⊂ B(x, �) such
that the prediction at x� is different from Ak(Sn, x).

Lemma A.1. If the conditions in the statement of Theo-
rem 3.1 hold, then there exists some n(�, δ) such that for
n ≥ n(�, δ), with probability at least 1 − δ, there are two
points x+ and x− in B(x, �) such that (a) all k nearest
neighbors of x+ have label 1, (b) all k nearest neighbors of
x− have label 0, and (c) x+ �= x−.

Proof. (Of Lemma A.1) The proof consists of two major
components. First, for large enough n, with high probability
there are many disjoint balls in the neighborhood of x such
that each ball contains at least k points in Sn. Second, with
high probability among these balls, there exists a ball such
that the k neareast neighbors of its center all have label 1.
Similarly, there exists a ball such that the k nearest neighbor
of its center all have label 0.

Since µ is absolutely continuous with respect to Lebesgue
measure in the neighborbood of x and η is continuous,
then for any m ∈ Z+, we can always find m balls
B(x1, r1), · · · , B(xm, rm) such that (a) all m balls are dis-
joint, and (b) for all i ∈ {1, · · · ,m}, we have xi ∈ B(x, �),
µ(B(xi, ri)) > 0 and η(x) ∈ (0, 1) for x ∈ B(xi, ri).
For simplicity, we use Bi to denote B(xi, ri) and ci(n)
to denote the number of points in Bi

�
Sn. Also, let

µmin = mini∈{1,··· ,m} µ(Bi). Then by Hoeffding’s in-
equality, for each ball Bi and for any n > k+1

µmin
,

Pr[ci(n) < k] ≤ exp(−2nµ2
min/(k + 1)2),

where the randomness comes from drawing sample Sn.
Then taking the union bound over all m balls, we have

Pr[∃i ∈ {1, · · · ,m} such that ci(n) < k]

≤ m exp(−2nµ2
min/(k + 1)2),

(2)

which implies that when n >

max
�

k+1
µmin

, [logm−log(δ/3)](k+1)2

µ2
min

�
, with probability

at least 1 − δ/3, each of B1, · · · , Bm contains at least k
points in Sn.

An important consequence of the above result is that with
probability at least 1− δ/3, the set of k nearest neighbors
of each center xi of Bi is completely different from another
center xj’s, so the labels of xi’s k nearest neighbors are
independent of the labels of xj’s k nearest neighbors.

Now let ηmin,+ = minx∈B1

�···�Bm
η(x) and ηmin,− =

minx∈B1
�···�Bm

(1 − η(x)). Both ηmin,+ and ηmin,−
are greater than 0 by the construction requirements of
B1, · · · , Bm. For any xi,

Pr[xi’s k nearest neighbors all have label 1] ≥ ηkmin,+

Then,

Pr[∃i ∈ {1, · · · ,m}
s.t. xi’s k nearest neighbor all have label 1]

≥ 1− (1− ηkmin,+)
m,

(3)

which implies when m ≥ log δ/3

log(1−ηk
min,+)

, with probability at

least 1− δ/3, there exists an xi s.t. its k nearest neighbors
all have label 1. This xi is our x+.

Similarly,

Pr[∃i ∈ {1, · · · ,m}
s.t. xi’s k nearest neighbor all have label 0]

≥ 1− (1− ηkmin,−)
m,

(4)

and when m ≥ log δ/3

log(1−ηk
min,−)

, with probability at least 1−
δ/3, there exists an xi s.t. its k nearest neighbors all have
label 0. This xi is our x−.

Combining the results above, we show that for

n > max

�
k + 1

µmin
,
[logm− log(δ/3)](k + 1)2

µ2
min

�
,

m ≥ max

�
log δ/3

log(1− ηkmin,+)
,

log δ/3

log(1− ηkmin,−)

�
,

with probability at least 1− δ, the statement in Lemma A.1
is satisfied.

A.2. Theorem and proof for k-nn robustness lower
bound.

Theorem 3.1 shows that k-NN is inherently non-robust in
the low k regime if η(x) ∈ (0, 1). On the contrary, k-NN
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can be robust at x if η(x) ∈ {0, 1}. We define the r-robust
(p,Δ)-interior as follows:

X̂+
r,Δ,p = {x ∈ supp(µ)|∀x� ∈ Bo(x, r),

∀x�� ∈ B(x�, rp(x
�)), η(x��) ≥ 1/2 +Δ}

X̂−
r,Δ,p = {x ∈ supp(µ)|∀x� ∈ Bo(x, r),

∀x�� ∈ B(x�, rp(x
�)), η(x��) ≤ 1/2−Δ}

The definition is similar to the strict r-robust (p,Δ)-interior
in Section 4, except replacing < and > with ≤ and ≥. Theo-
rem A.2 show that k-NN is robust at radius r in the r-robust
(1/2, p)-interior with high high probability. Corollary A.3
shows the finite sample rate of the robustness lowerbound.

Theorem A.2. Let x ∈ X ∩ supp(µ) such that (a) µ is
absolutely continuous with respect to the Lebesgue measure
(b) η(x) ∈ {0, 1}. Then, for fixed k, there exists an n0 such
that for n ≥ n0,

Pr[ρ(Ak(Sn, ·), x) ≥ r] ≥ 1− δ

for all x in X̂+
r,1/2,p

� X̂−
r,1/2,p for all p > 0, δ > 0.

In addition, with probability at least 1− δ, the astuteness of
the k-NN classifier is at least:

E(1(X ∈ X̂+
r,1/2,p

�
X̂−

r,1/2,p))

Proof. The k-NN classifier Ak(Sn, ·) is robust at radius r
at x if for every x� ∈ Bo(x, r), a) there are k training points
in B(x�, rp(x�)), and b) more than �k/2� of them have the
same label as Ak(Sn, x). Without loss of generality, we look
at a point x ∈ X̂+

r,1/2,p. The second condition is satisfied
since η(x) = 1 for all training points in B(x�, rp(x�)) by
the definition of X̂+

r,1/2,p.

It remains to check the first condition. Let B be a ball
in Rd and n(B) be the number of training points in B.
Lemma 16 of (Chaudhuri and Dasgupta, 2010) suggests that
with probability at least 1− δ, for all B in Rd,

µ(B)

≥k

n
+

Co

n

�
d log n+ log

1

δ
+

�
k

�
d log n+ log

1

δ

��

(5)

implies n(B) ≥ k, where Co is a constant term. Let B =
B(x�, rp(x�)). By the definition of rp, µ(B) ≥ p > 0.
Then as n → ∞, Inequality 5 will eventually be satisfied,
which implies B contains at least k training points. The first
condition is then met.

The astuteness result follows because Ak(Sn, x) = y =
1 in X̂+

r,1/2,p and Ak(Sn, x) = y = 0 in X̂−
r,1/2,p with

probability 1.

Corollary A.3. For n ≥ max(104, c4d,k,δ/[(k + 1)2p2])
where

cd,k,δ = 4(d+ 1) +
�
16(d+ 1)2 + 8(ln(8/δ) + k + 1)

, with probability at least 1− 2δ, ρ(Ak(Sn, x)) ≥ r for all
x in X̂+

r,1/2,p

� X̂−
r,1/2,p and for all p > 0, δ > 0.

In addition, with probability at least 1− 2δ, the astuteness
of the k-NN classifier is at least:

E(1(X ∈ X̂+
r,1/2,p

�
X̂−

r,1/2,p))

Proof. Without loss of generality, we look at a point x ∈
X̂+

r,1/2,p. Let B = B(x�, rp(x�)), J(B) = E(Y · 1(X ∈
B)) and Ĵ(B) be the empirical estimation of J(B). No-
tice that Ĵ(B)n is the number of training points in B, be-
cause η(x) = 1 for all x ∈ B by the definition of r-robust
(1/2, p)-interior. It remains to find a threshold n such that
for all n� > n,

Ĵ(B) ≥ (k + 1)/n� (6)

By Lemma A.5, with probability 1− 2δ,

Ĵ(B) ≥ p− 2βn
√
p− 2β2

n (7)

for all B ∈ Rd.

Therefore it suffices to find a threshold n that satisfies

p− 2βn
√
p− 2β2

n ≥ (k + 1)/n, (8)

where βn =
�

(4/n)((d+ 1) ln 2n+ ln(8/δ)).

Solving this quadratic inequality yields

βn ≤ −√
p+

�
3p+ (k + 1)/n

2
, (9)

which can be re-written as

(8/
√
n)[(d+1) ln(2n)+ln(8/δ)+(k+1)/8] ≤

�
(k + 1)p

(10)
by substituting the expression for βn. This inequality does
not admit an analytic solution. Nevertheless, we observe
that n1/4 ≥ ln(2n) for all n ≥ 104. Therefore it suffices to
find an n ≥ 104 such that

(8/
√
n)[(d+1)n1/4+ln(8/δ)+(k+1)/8] ≤

�
(k + 1)p.

(11)
Let m = n1/4. Inequality 11 can be re-written as
�
(k + 1)pm2 − 8(d+ 1)m− (8 ln(8/δ) + (k + 1)) ≥ 0.

(12)

Solving this quadratic inequality with respct to m gives

m ≥ 4(d+ 1) +
�
16(d+ 1)2 + 8(ln(8/δ) + k + 1)�

(k + 1)p
.

(13)
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Letting

cd,k,δ = 4(d+ 1) +
�
16(d+ 1)2 + 8(ln(8/δ) + k + 1)

, we find a desired threshold

n = max(104,m4) ≥ max(104, c4d,k,δ/[(k + 1)2p2]).
(14)

The astuteness result follows in a similar way to Theo-
rem A.2.

A.3. Proofs for High k

A.3.1. ROBUSTNESS OF THE BAYES OPTIMAL
CLASSIFIER

Proof. (Of Theorem 3.2) Suppose x ∈ X+
r,0,0. Then,

g(x) = 1. Consider any x� ∈ Bo(x, r); by definition,
η(x�) > 1/2, which implies that g(x�) = 1 as well. Thus,
ρ(g, x) ≥ r. The other case (x ∈ X−

r,0,0) is symmetric.

Consider an x ∈ X+
r,0,0 (the other case is symmetric). We

just showed that g has robustness radius ≥ r at x. Moreover,
p(y = 1 = g(x)|x) = η(x); therefore, g predicts the correct
label at x with probability η(x). The theorem follows by
integrating over all x in X+

r,0,0 ∪ X−
r,0,0.

A.3.2. ROBUSTNESS OF k-NEAREST NEIGHBOR

We begin by stating and proving a more technical version
of Theorem 3.3.
Theorem A.4. For any n and data dimension d, define:

an =
C0

n
(d log n+ log(1/δ))

bn = C0

�
d log n+ log(1/δ)

n

βn =
�
(4/n)((d+ 1) ln 2n+ ln(8/δ))

where C0 is the constant in Theorem 15 of (Chaudhuri and
Dasgupta, 2010). Now, pick kn and Δn so that Δn → 0
and the following condition is satisfied:

kn
n

≥ 2βn + bn +
�
(2βn + bn)2 + 2Δn(2β2

n + an)

Δn

and set

pn =
kn
n

+
C0

n

�
d log n+ log(1/δ)

+
�
kn(d log n+ log(1/δ)

�

Then, with probability ≥ 1 − 3δ, kn-NN has robustness
radius r at all x ∈ X+

r,Δn,pn
∪ X−

r,Δn,pn
. In addition, with

probability ≥ 1− δ, the astuteness of kn-NN is at least:

E[η(X)·1(X ∈ X+
r,Δn,pn

)]+E(1−η(X))·1(X ∈ X−
r,Δn,pn

)]

Before we prove Theorem A.4, we need some definitions
and lemmas.

For any Euclidean ball B in Rd, define J(B) = E[Y ·1(X ∈
B)] and Ĵ(B) as the corresponding empirical quantity.

Lemma A.5. With probability ≥ 1− 2δ, for all balls B in
Rd, we have:

|J(B)− Ĵ(B)| ≤ 2β2
n + 2βn min(

�
J(B),

�
Ĵ(B)),

where βn =
�

(4/n)((d+ 1) ln 2n+ ln(8/δ)).

Proof. (Of Lemma A.5) Consider the two functions:
h+
B(x, y) = 1(y = 1, x ∈ B) and h−

B(x, y) = 1(y =
−1, x ∈ B). From Lemma A.6, both h+

B and h−
B are 0/1

functions with VC dimension at most d+ 1. Additionally,
J(B) = E[h+

B ]− E[h−
B ]. Applying Theorem 15 of (Chaud-

huri and Dasgupta, 2010), along with an union bound gives
the lemma.

Lemma A.6. For an Euclidean ball B in Rd, define the
function h+

B : Rd × {−1,+1} → {0, 1} as:

h+
B(x, y) = 1(y = 1, x ∈ B)

and let HB = {h+
B} be the class of all such functions. Then

the VC-dimension of HB is at most d+ 1.

Proof. (Of Lemma A.6) Let U be a set of d + 2 points in
Rd; as the VC dimension of balls in Rd is d+ 1, U cannot
be shattered by balls in Rd. Let UL = {(x, y)|x ∈ U} be
a labeling of U that cannot be achieved by any ball (with
pluses inside and minuses outside); the corresponding d+1-
dimensional points cannot be labeled accordingly by h+

B .
Since U is an arbitrary set of d+ 2 points, this implies that
any set of d+2 points in Rd×{−1,+1} cannot be shattered
by HB . The lemma follows.

Lemma A.7. Let δp =
C0

n

�
d log n+ log(1/δ) +

�
k(d log n+ log(1/δ)

�
. Then,

with probability ≥ 1 − δ, for all x, �x − X(k+1)(x)� ≤
rk/n+δp(x), and µ(B(x, �x−X(k+1)(x)�)) ≥ k

n − δp.

Proof. (Of Lemma A.7) Observe that by definition for any
x, rp is the smallest r such that µ(B(x, rp(x)) ≥ p. The
rest of the proof follows from Lemma 16 of (Chaudhuri and
Dasgupta, 2010).

Proof. (Of Theorem A.4)

From Lemma A.7, by uniform convergence of µ̂, with prob-
ability ≥ 1− δ, for all x�, �x� −X(kn)(x�)� ≤ rpn

(x�) and
µ(B(x, �x − X(kn)(x)�)) ≥ kn

n − δp. If x� ∈ X+
r,Δn,pn

,
this implies that for all x̃ ∈ B(x�, X(kn)(x�)), η(x̃) ≥
1/2+Δ. Therefore, for such an x�, J(B(x�, X(kn)(x�))) ≥
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( 12 + Δn)µ(B(x�, X(kn)(x�))) ≥ ( 12 + Δn)(kn/n − δp).
Since for B(x�, X(kn)(x�)), µ̂(B(x�, X(kn)(x�))) = kn

n ,
min(Ĵ , J) ≤ k

n . Thus we can apply Lemma A.5 to con-
clude that

Ĵ(B) > J(B)− 2β2
n − 2βn

�
kn/n >

kn
2n

,

which implies that Ŷ (B) = 1
kn

�kn

i=1 Y
(i)(x) =

n
kn

Ĵ(B) > 1
2 . The first part of the theorem follows.

For the second part, observe that for an x ∈ X+
r,Δn,pn

, the
label Y is equal to +1 with probability η(x) and for an
x ∈ X−

r,Δn,pn
, the label Y is equal to −1 with probability

1− η(x). Combining this with the first part completes the
proof.

B. Proofs from Section 4
We begin with a statement of Chernoff Bounds that we use
in our calculations.

Theorem B.1. (Mitzenmacher and Upfal, 2005) Let Xi be
a 0/1 random variable and let X =

�m
i=1 Xi. Then,

Pr(|X − E[X]| ≥ δ) ≤ e−mδ2/2 + e−mδ2/3 ≤ 2e−mδ2/3

Lemma B.2. Suppose we run Algorithm 1 with parameter
r. Then, the points marked as red by the algorithm form an
r-separated subset of the training set.

Proof. Let f(xi) denote the output of Algorithm 2 on xi.
If (xi, 1) is a Red point, then f(xi) = 1 = f(xj) for all
xj ∈ B(x, r); therefore, (xj ,−1) cannot be marked as Red
by the algorithm as f(xj) �= yj . The other case, where
(xi,−1) is a Red point is similar.

Lemma B.3. Let x ∈ X such that Algorithm 1 finds a
Red xi within Bo(x, τ). Then, Algorithm 1 has robustness
radius at least r − 2τ at x.

Proof. For all x� ∈ B(x, τ), we have:

�x� − xi� ≤ �x− xi�+ �x− x�� < 2τ

Since xi is a Red point, from Lemma B.2, any xj in training
set output by Algorithm 1 with yj �= yi must have the
property that �xi − xj� > r. Therefore,

�x� − xj� ≥ �xi − xj� − �x� − xi� > r − 2τ

Therefore, Algorithm 1 will assign x� the label yi. The
lemma follows.

Lemma B.4. Let B be a ball such that: (a) for all x ∈ B,
η(x) > 1

2 + Δ and (b) µ(B) ≥ 2C0

n (d log n + log(1/δ)).
Then, with probability ≥ 1− δ, all such balls have at least
one xi such that xi ∈ |B ∩Xn| and yi = 1.

Proof. Observe that J(B) ≥ C0

n (d log n+ log(1/δ)). Ap-
plying Theorem 16 of (Chaudhuri and Dasgupta, 2010), this
implies that Ĵ(B) > 0, which gives the theorem.

Lemma B.5. Fix Δ and δ, and let kn = 3 log(2n/δ)
Δ2 . Addi-

tionally, let

pn =
kn
n
+
C0

n
(d log n+log(1/δ)+

�
kn(d log n+ log(1/δ)),

where C0 is the constant in Theorem 15 of (Chaudhuri and
Dasgupta, 2010). Define:

SRED = {(xi, yi) ∈ Sn|xi ∈ X+
r,Δ,pn

∪ X−
r,Δ,p,

yi =
1

2
sgn

�
η(xi)−

1

2

�
+

1

2
}

Then, with probability ≥ 1 − δ, all (xi, yi) ∈ SRED are
marked as Red by Algorithm 1 run with parameters r, Δ
and δ.

Proof. Consider a (xi, yi) ∈ SRED such that xi ∈
Xn ∩ X+

r,Δ,pn
, and consider any (xj , yj) ∈ Sn such

that xj ∈ B(xi, r). From Lemma A.7, for all such xj ,
�xj−X(kn)(xj)� ≤ rpn

(xj); this means that all kn-nearest
neighbors x�� of such an xj have η(x��) > 1

2 +Δ.

Therefore, E[
�kn

l=1 Y
(l)(xj)] ≥ kn(1/2 + Δ); by

Theorem B.1, this means that for a specific xj ,
Pr(

�kn

l=1 Y
(l)(xj) < 1/2) ≤ 2e−knΔ

2/3, which is ≤ δ/n
from our choice of kn. By an union bound over all such xj ,
with probability ≥ 1− δ, we see that Algorithm 2 reports
the label g(xi) on all such xi, which is the same as yi by the
definition of interiors; xi therefore gets marked as Red.

Finally, we are ready to prove the main theorem of this
section, which is a slightly more technical form of Theo-
rem 4.2.

Theorem B.6. Fix a Δn, and pick kn and pn as in
Lemma B.5. Suppose we run Algorithm 1 with parameters
r, Δn and δ. Consider the set:

XR =

�
x
���x ∈ X+

r+τ,Δn,pn
∪ X−

r+τ,Δn,pn
,

µ(B(x, τ)) ≥ 2C0

n
(d log n+ log(1/δ))

�
,

where C0 is the constant in Theorem 15 of (Chaudhuri and
Dasgupta, 2010). Then, with probability ≥ 1− 2δ over the
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Figure 3. Visualization of the halfmoon dataset. 1) Training sample of size n = 2000, 2) subset selected by Robust_1NN with defense
radius r = 0.1, 3) subset selected by Robust_1NN with defense radius r = 0.2.

Figure 4. Adversarial examples of MNIST digit 1 images created by different attack methods. Top row: clean digit 1 test images. Bottom
row from left to right: 1) direct attack, 2) white-box kernel attack, 3) black-box kernel attack, 4) black-box neural net substitute attack.

training set, Algorithm 1 has robustness radius ≥ r− 2τ on
XR. Additionally, its astuteness at radius r − 2τ is at least
E[η(X) · 1(X ∈ X+

r+τ,Δn,pn
)] + E[(1 − η(X)) · 1(X ∈

X−
r+τ,Δn,pn

)].

Proof. Due to the condition on µ(B(x, τ)), from
Lemma B.4, with probability ≥ 1 − δ, all x ∈ XR have
the property that there exists a (xi, yi) in Sn such that yi =
g(xi) and xi ∈ B(x, τ). Without loss of generality, suppose
that x ∈ X+

r+τ,Δn,pn
, so that η(x) > 1/2+Δn. Then, from

the properties of r-robust interiors, this xi ∈ X+
r,Δn,pn

.

From Lemma B.5, with probability ≥ 1 − δ, this (xi, yi)
is marked Red by Algorithm 1 run with parameters r, Δn

and δ. The theorem now follows from an union bound and
Lemma B.3.

C. Experiment Visualization and Validation
First, we show adversarial examples created by different
attacks on the MNIST dataset in order to illustrate char-

acteristics of each attack. Next, we show the subset of
training points selected by Algorithm 1 on the halfmoon
dataset. The visualization illustrates the intuition behind
Algorithm 1 and also validates its implementation. Finally,
we validate how effective the black-box subsitute classifiers
emulate the target classifier.

C.1. Adversarial Examples Created by Different
Attacks

Figure 4 shows adversarial examples created on MNIST
digit 1 images with attack radius r = 3. First, we observe
that the perturbations added by direct attack, white-box ker-
nel attack and black-box kernel attack are clearly targeted:
either a faint horizontal stroke or a shadow of digit 7 are
added to the original image. The perturbation budget is used
on "key" pixels that distinguish digit 1 and digit 7, therefore
the attack is effective. On the contrary, black-box attacks
with neural nets substitute adds perturbation to a large num-
ber of pixels. While such perturbation often fools a neural
net classifier, it is not effective against nearest neighbors.
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Table 1. An evaluation of the black-box substitute classifier. Each black-box substitute is evaluated by: 1) its accuracy on the its training
set, 2) its accuracy on the test set, and 3) the percentage of predictions agreeing with the target classifier on the test set. A combination of
high test accuracy and consistency with the original classifier indicates the black-box model emulates the target classifier well.

Abalone
target f % training % test % testf

accuracy accuracy same as f

Kernel

StandardNN 100% 61.3% 72.6%
RobustNN 100% 62.5% 90.9%

ATNN 100% 61.4% 73.7%
ATNN-All 100% 63.5% 73.5%

Neural
Nets

StandardNN 69.1% 68.9% 68.6%
RobustNN 87.2% 64.1% 86.9%

ATNN 68.8% 68.4% 68.4%
ATNN-All 66.5% 65.0% 66.6%

Halfmoon
target f % training % test % test

accuracy accuracy same as f

Kernel

StandardNN 95.9% 95.6% 95.5%
RobustNN 97.7% 94.9% 97.6%

ATNN 96.4% 95.1% 96.0%
ATNN-All 97.6% 96.8% 97.3%

Neural
Nets

StandardNN 94.5% 94.0% 94.4%
RobustNN 94.2% 90.5% 94.1%

ATNN 95.3% 94.2% 95.2%
ATNN-All 96.9% 96.2% 96.5%

MNIST 1v7
target f % training % test % test

accuracy accuracy same as f

Kernel

StandardNN 100% 98.9% 99.3%
RobustNN 100% 95.4% 97.6%

ATNN 100% 98.9% 99.3%
ATNN-All 100% 98.7% 99.3%

Neural
Nets

StandardNN 99.9% 98.9% 99.1%
RobustNN 99.8% 94.8% 98.7%

ATNN 100% 98.8% 99.2%
ATNN-All 99.7% 98.9% 99.3%

Consider a pixel that is dark in most digit 1 and digit 7
training images; adding brightness to this pixel increases
the distance between the test image to training images from
both classes, therefore may not change the nearest neighbor
to the test image.

Figure 4 also illustrates the break-down attack radius of vi-
sual similarity. At r = 3, the true class of adversarial exam-
ples created by effective attacks becomes ambiguous even
to humans. Our defense is successful as the Robust_1NN
classifiers still have non-trivial classification accuracy at
such attack radius. Meanwhile, we should not expect robust-
ness against even larger attack radius since the adversarial
examples at r = 3 are already close to the boundary of
human perception.

C.2. Training Subset Selected by Robust_1NN

Figure 3 shows the training set selected by Robust_1NN on
a halfmoon training set of size 2000. On the original train-
ing set, we see a noisy region between the two halfmoons
where both red and blue points appear. Robust_1NN cleans
training points in this region so as to create a gap between
the red and blue halfmoons, and the gap width increases
with defense radius r.

C.3. Performance of Black-box Attack Substitutes

We validate the black-box substitute training process by
checking the substitute’s accuracy on its training set, the

clean test set and the percentage of predictions agreeing
with the target classifier on the clean test set. The results
are shown in Table 1. For the halfmoon and MNIST dataset,
the substitute classifiers both achieve high accuracy on both
the training and test sets, and are also consistent with the
target classifier on the test set. The subsitutute classifiers
do not emulate the target classifier on the Abalone dataset
as close as on the other two datasets due to the high noise
level in the Abalone dataset. Nonetheless, the substitute
classifier still achieve test time accuracy comparable to the
target classifier.


