
Competitive Multi-agent Inverse Reinforcement Learning
with Sub-optimal Demonstrations

Xingyu Wang 1 Diego Klabjan 1

Abstract
This paper considers the problem of inverse rein-
forcement learning in zero-sum stochastic games
when expert demonstrations are known to be sub-
optimal. Compared to previous works that decou-
ple agents in the game by assuming optimality
in expert policies, we introduce a new objective
function that directly pits experts against Nash
Equilibrium policies, and we design an algorithm
to solve for the reward function in the context
of inverse reinforcement learning with deep neu-
ral networks as model approximations. To find
Nash Equilibrium in large-scale games, we also
propose an adversarial training algorithm for zero-
sum stochastic games, and show the theoretical
appeal of non-existence of local optima in its ob-
jective function. In numerical experiments, we
demonstrate that our Nash Equilibrium and in-
verse reinforcement learning algorithms address
games that are not amenable to existing bench-
mark algorithms. Moreover, our algorithm suc-
cessfully recovers reward and policy functions
regardless of the quality of the sub-optimal expert
demonstration set.

1. Introduction
In the field of reinforcement learning, various algorithms
have been proposed that guide an agent to make decisions,
interact with the environment, and maximize the profit or
return. As of late, multi-agent reinforcement learning, a gen-
eralization of single-agent reinforcement learning tasks, has
been gaining momentum since it is aligned with the grow-
ing attention on multi-agent systems and the applications
thereof. Either for solving a single-agent task or a multi-
agent system, reinforcement learning entails the knowledge

1Department of Industrial Engineering and Management Sci-
ences, Northwestern University, Evanston, IL. Correspondence to:
Diego Klabjan <d-klabjan@northwestern.edu>.

Proceedings of the 35 th International Conference on Machine
Learning, Stockholm, Sweden, PMLR 80, 2018. Copyright 2018
by the author(s).

of the reward function, or at least observations of immediate
reward. Some learning tasks, however, provide little or no
knowledge of the reward function, but we do have access
to demonstrations performed by “experts” in the task. For
example, successful training of an auto-pilot system often
takes full advantage of human driving behavior datasets. On
the contrary, a naive, manually crafted artificial reward func-
tion may fail to capture the sophisticated balance between
safety, speed, and simplicity in maneuvering during driving.

As one of the widely used approaches to these tasks, im-
itation learning concentrates on recovering policies from
available demonstrations, which is justifiable as long as ex-
perts are known to be optimal (Ross et al., 2011). Another
approach, termed as inverse reinforcement learning (IRL),
formulates the task as an inverse problem of inferring the
reward function from demonstrations of experts (Abbeel
& Ng, 2004; Ziebart et al., 2008; Finn et al., 2016; Ho &
Ermon, 2016; Choi et al., 2016). In general, the former ap-
proach is perceived as simpler, while the latter compresses
task-related information into a succinct reward function that
is more transferable to further applications.

To the best of our knowledge, existing IRL works concern-
ing multi-agent competitive games make the same assump-
tion that expert demonstrations are optimal. (In a multi-
agent system, optimality is usually defined in the sense of
Nash Equilibria.) IRL can thus be decoupled into two sub-
problems in two-agent games. Reddy et al. (2012) base the
algorithm on the optimality assumption on experts’ policies,
and decouple the IRL task in general-sum games when up-
dating the reward function. By applying the Bayesian IRL
framework (Ramachandran & Amir, 2007) to multi-agent
zero-sum stochastic games, Lin et al. (2017) find reward
functions that maximize the probability of the Nash Equilib-
rium policies with prescribed prior distribution of rewards
and optimality constraints for both agent’s demonstrations.
Yet the more complicated the game is, the farther this opti-
mality assumption may diverge from the truth. For instance,
hardly would anyone believe that players in the Go game, as
well as team games including most sport and video games,
manage to find and employ a Nash Equilibrium policy.

To take sub-optimality in experts’ demonstrations into ac-
count, we propose a completely different approach to per-

Competitive Multi-agent Inverse Reinforcement Learning with Sub-optimal Demonstrations

form multi-agent IRL in zero-sum discounted stochastic
games. We assume experts should be performing decently
well but not necessarily optimally. Therefore, the margin
between experts’ performances and those of Nash Equilib-
ria should be minimized by the reward function we yield,
even though the performance gap is most likely above zero.
Specifically, we take a game-theoretical perspective on com-
petitive Markov Decision Processes (MDPs). The proposed
IRL algorithm alternates between two major steps. In the
policy step, we find a Nash Equilibrium policy for the game
given the current reward function, while in the reward step
we update the reward function so that the performance gap
between expert demonstrations and Nash Equilibrium is
minimized. Our framework significantly departs from previ-
ous works since the model and algorithm do not decouple
the agents.

Naturally, our IRL algorithm entails an efficient subroutine
of finding Nash Equilibrium in large-scale games before
we could compare them against expert demonstrations. We
use deep neural nets as model approximations for policies
and value functions. On solving for Nash Equilibrium in a
stochastic game, the past decade has seen novel algorithms
(Akchurina, 2009; H.L. et al., 2015; H.L. & Bhatnagar,
2015). Unfortunately, most of these methods do not suit
our case. For instance, the optimization-based ones rely on
enumeration of state-action pairs of the game, which is in-
feasible for large games, and the algorithm for general-sum
games (H.L. et al., 2015) provides a zero gradient for policy
models in zero-sum games. Therefore, we propose an adver-
sarial training algorithm for Nash Equilibrium in zero-sum
discounted stochastic games. The algorithm maintains a best
possible opponent model for the agent, and improves the
agent’s performance against its best opponent. We show the
theoretical appeal of guarantee on global convergence to an
optimal solution under this adversarial training formulation,
as well as its superior performance in a large-scale game
when using deep neural networks as model approximations
for policies and an actor-critic style Proximal Policy Op-
timization algorithm (Schulman et al., 2017) as the policy
gradient method.

Our major contributions are as follows. First, to the best of
our knowledge, our IRL algorithm is drastically different
from all previous competitive multi-agent IRL algorithms,
as it is able to yield the reward function in zero-sum dis-
counted stochastic games after abandoning the optimality
assumption of expert demonstrations and it does not decou-
ple the agents. Second, we propose an adversarial training
algorithm to find a Nash Equilibrium policy in zero-sum
stochastic games, and show the non-existence of local max-
ima in its objective function. Lastly, by utilizing deep neural
networks and stating the algorithm accordingly, our multi-
agent IRL approach addresses larger-scale games or tasks
that are not amenable to previous methods, which rely on

tabular representation and linear or quadratic programming.
Our numerical experiments show that, compared with ex-
isting competitive multi-agent IRL methodologies, our ap-
proach manages to solve a large-scale problem and recover
both the reward and policy functions robustly regardless of
variation in the quality of expert demonstrations.

2. Competitive Multi-agent Inverse
Reinforcement Learning with Sub-Optimal
Demonstrations

2.1. Inverse Reinforcement Learning Problem for
Zero-Sum Discounted Stochastic Games

From the field of competitive MDPs, we adopt the zero-sum
discounted stochastic game setting as the underlying frame-
work for the current study. Formally, a zero-sum stochastic
game is defined by a tuple 〈N ,S,Af ,Ag, R, P, γ〉, where
the quantities are defined as follows. Agents: N = {f, g}
denotes the two agents (players) in this game. States: S
is a finite set of NS = |S| distinct states (each being
a real vector) that can be visited in the game. Actions:
Ai = ×s∈SAi(s), i = f, g defines the action space for
each agent. For each state s ∈ S, Ai(s) is a finite, discrete
set containing all the available actions (each being a real vec-
tor) for agent i at state s. If the set of candidate actions is the
same at every state (which we assume for ease of exposition),
then we write Ai = {ai(1), ai(2), ..., ai(|Ai|)}, i = f, g to
refer to the fixed available action set for agent i. Reward:
R : S → R is reward function for the game. In accor-
dance with the zero-sum nature of the game, R(s) denotes
reward received by agent f while −R(s) for agent g. State
Transition Function: P : S × Af × Ag × S → R is the
state transition probability function of the game. If agents
f, g take actions af ∈ Af , ag ∈ Ag respectively at state
s ∈ S, then s′ ∈ S is the next visited state with proba-
bility P (s′|s, af , ag). Note that in an MDP, the transition
probability depends only on the current state and agents’
actions. Discount Factor: γ ∈ [0, 1) is the discount factor
on cumulative reward.

We slightly abuse the notation and also use f, g to denote the
policies the two agents used in the game. Note that the first
order Markovian Property holds for all the policies involved
in competitive MDPs mentioned in this study. Formally, f ∈
F = ×

s∈S
∆
(
Af (s)

)
, g ∈ G = ×

s∈S
∆
(
Ag(s)

)
where ∆(A)

denotes the set of all the possible probability distributions
on a non-empty set A. Given policies f and g, the state
value function (for f) at state s0 is the expected discounted
return

vf,g(s0;R) = E
aft∼f(af |st)
agt∼g(a

g|st)
st+1∼P (s′|st,aft ,a

g
t)

∞∑
t=0

γtR(st). (1)

Competitive Multi-agent Inverse Reinforcement Learning with Sub-optimal Demonstrations

For a zero-sum discounted stochastic game, there exists
at least one Nash Equilibrium (f∗(R), g∗(R)) such that,
for any s ∈ S and any policy pair (f, g) we have (Filar &
Vrieze, 2012)

vf
∗(R),g(s;R) ≥ vf∗(R),g∗(R)(s;R) ≥ vf,g∗(R)(s;R),

(2)

and the value vector of the game is v∗ = (v∗(s))s∈S where
v∗(s) = maxf ming v

f,g(s;R). Videlicet, in zero-sum dis-
counted stochastic games any Nash Equilibrium leads to the
same state value functions and (2) always holds.

The purpose of our work is to address inverse reinforce-
ment learning (IRL) problems in zero-sum stochastic
games. As defined by Russel (1998), an IRL algorithm
relies on the knowledge of (a) a model of the environment,
i.e., state transition function P (s′|s, af , ag); and (b) an ob-
servation set D = {(si, aE,fi , aE,gi) | i = 1, 2, 3,, ND}1

is available, and shows how experts performed in the task.
Here si is the visited state, and aE,fi , aE,gi stand for actions
taken by the two expert players where we use E to denote
“experts”. Note that rewards are not recorded in the demon-
stration set.

2.2. Objective Function

The formulation of an IRL problem hinges on the choice
of the objective function. As stressed before, we do not
assume the optimality of experts’ demonstrations, but we
still assume experts to have demonstrated performances that
are comparable with the best possible policies in this game.
More specifically, based on inequality (2) we have for all
s ∈ S,

vf
∗(R),gE |D (s;R) ≥ vf∗(R),g∗(R)(s;R) ≥ vfE |D,g∗(R)(s;R).

Here R is the reward function we aim to solve for, and
we stress that policies and value functions depend on it.
The policy fE |D is a function that concurs with experts
on the demonstration set D. More formally speaking,

fE |D(a|s) =
#{(s, a,)}
#{(s, ,)} when the denominator is larger

than 0, where # denotes the count of occurrence in D. For
states s with (s, ,) 6∈ D, we remain agnostic about fE |D.

We similarly define gE |D(a|s) =
#{(s, , a)}
#{(s, ,)} when the

denominator is positive. Meanwhile, we would like margins
defined below to be reasonably tight:

Es
[
vf
∗(R),gE |D (s;R)− vf∗(R),g∗(R)(s;R)

]
, (3)

Es
[
vf
∗(R),g∗(R)(s;R)− vfE |D,g∗(R)(s;R)

]
(4)

1In D, the next visited state is not required since we already
have access to state transition probabilities. Subscript i does not
necessarily stand for time, and each observation (si, a

E,f
i , aE,gi)

can be drawn from different rounds of games.

By summing up the two margins, we yield the optimization
problem for our IRL model

min
R

min
fE |D,gE |D

Es
[
vf
∗(R),gE |D (s;R)− vfE |D,g∗(R)(s;R)

]
(5)

where f∗(R) ∈ argmax
f∈F

min
g∈G

1

Ns

∑
s∈S

vf,g(s;R), (6)

and g∗(R) ∈ argmin
g∈G

max
f∈F

1

Ns

∑
s∈S

vf,g(s;R). (7)

Note that the minimization on fE |D, gE |D in (5) is required
since fE |D, gE |D are uniquely defined only on D. The
model encourages fE |D and gE |D outside of D to follow
the actions in f∗(R) and g∗(R).

2.3. Algorithm

We approach (5) by an iterative algorithm. In each itera-
tion, we update the Nash Equilibrium policies f∗(R), g∗(R)
given current reward function R, then R is updated based
on incumbent f∗(R), g∗(R), which requires the estimation
of (3) and (4).

As for solving Nash Equilibrium in zero-sum discounted
games, the proposed adversarial training algorithm is de-
tailed in Algorithm 2 in Section 3. Next we focus on the
update step of the reward function and the minimization
operation on fE |D, gE |D in (5).

Note that (fE |D, gE |D) poses inconveniences since the ex-
pert policy is unknown when a state s outside ofD is visited.
Our workaround is to let experts act only at the very first
step, and use (f∗, g∗) for the following states. Such a treat-
ment follows the logic that, by bounding the performance
gap at the first step (equivalent to bounding advantage of
actions), we also bound the gap of discounted cumulative
reward for the infinitely many steps.

Specifically, vf
E |D,g∗(R)(s;R) is estimated by sampling

trajectories (s
E,g∗(R)
1 , . . . , s

E,g∗(R)
T) of a fixed length T in

the following manner (note that E stands for experts):

(s
E,g∗(R)
0 , af0 ,) ∼ D,

agt ∼ g∗(R)(a|sE,g
∗(R)

t) for 0 ≤ t ≤ T,
aft ∼ f∗(R)(a|sE,g

∗(R)
t) for 1 ≤ t ≤ T,

and sE,g
∗(R)

t ∼ P (s′|sE,g
∗(R)

t−1 , aft−1, a
g
t−1) for 1 ≤ t ≤ T.

(8)

For the estimation of vf
∗(R),gE |D (s;R), trajectories

(s
f∗(R),E
1 , s

f∗(R),E
2 , . . . , s

f∗(R),E
T) are sampled in a sym-

metric fashion, where the initial state sf
∗(R),E

0 and initial
action for g ag0 is sampled from D, while the other actions
and states are generated by f∗(R), g∗(R).

Competitive Multi-agent Inverse Reinforcement Learning with Sub-optimal Demonstrations

Algorithm 1 Inverse Reinforcement Learning in Zero-Sum Discounted Stochastic Games

1: Require: Observed experts demonstrations D = {(si, afi , agi) | i = 1, 2, . . . , ND}; Positive integers KR, IR; Nash
Equilibrium threshold τ ; learning rate λ.

2: Initialize: Parameters θR for the reward function, θf , θg to parametrize fθf (a|s), gθg (a|s) for Nash Equilibrium policies
3: for i = 1, 2, 3, . . . do
4: Update θf to find Nash Equilibrium policy for f under current RθR , return also v̂f,g

best

5: Update θg to find Nash Equilibrium policy for g under current RθR , return also v̂f
best,g

6: if i % KR = 0 and v̂f
best,g − v̂f,gbest

< τ then
7: for j = 1, 2, 3, . . . , IR do
8: Sample one observation from D: (s, aE,f , aE,g)

9: Use (8) to get {sf
∗(RθR),E

1 , s
f∗(RθR),E

2 , . . . , s
f∗(RθR),E

T }, {sE,g
∗(RθR)

1 , s
E,g∗(RθR)

2 , . . . , s
E,g∗(RθR)

T }
10: v̂f (θ̄R)← Rθ̄R(s) +

∑T
t=1 γ

t−1Rθ̄R

(
s
f∗(RθR),E
t

)
11: v̂g(θ̄R)← Rθ̄R(s) +

∑T
t=1 γ

t−1Rθ̄R

(
s
E,g∗(RθR)
t

)
12: θR ← θR − λ∇θ̄R

(
v̂f (θ̄R)− v̂g(θ̄R) + φ(θ̄R)

)
|θ̄R=θR

The algorithm is shown in Algorithm 1. We use deep neu-
ral networks as model approximations for policies and re-
ward functions involved in the IRL task. To model the
reward function, a deep neural network RθR(s) is used
and parametrized by θR. Similarly, two deep neural nets
fθf (a|s), gθg (a|s) are maintained and updated in the algo-
rithm to approximate f∗(RθR), g∗(RθR). A regularization
term φ(θR) is added to prevent trivial solutions (R(s) ≡ 0
for instance) and normalize the scale of R(s).

As shown in Algorithm 1, in the policy step at steps 3 and
4, we update θf , θg under the current RθR and try to find
a Nash Equilibrium. Every KR iterations, we check the
performance of Nash Equilibrium policies in step 6. (The
estimation of v̂f

best,g
, v̂f,g

best
is detailed in Section 3.) To

ensure a good approximation of optimal policies under the
incumbent reward function, the policy step is performed
much more frequently than the reward step, and we up-
date θR only when we believe fθf and gθg approximate
f∗(RθR), g∗(RθR) well enough. When the current fθf , gθg
are accurate enough compared against a threshold τ , we
perform IR times a reward step that minimizes the perfor-
mance gap between f∗(R), gE |D and fE |D, g∗(R) with
regularization term φ(θR) based on trajectories generated
as described in (8). Note that the policy step is performed at
each iteration, and the only difference between each policy
step is that different trajectories are sampled and used to
update the Nash Equilibrium policy under current RθR .

3. Solving Nash Equilibrium in Zero-Sum
Discounted Stochastic Games

To find Nash Equilibrium in zero-sum stochastic games,
we adopt the framework of generative adversarial networks
in (Goodfellow et al., 2014) to propose an algorithm for

Algorithm 2 Adversarial Training Algorithm for Solving
f∗(R) in Zero-Sum Games (Sketch)

1: Require: Positive integers Kg,Kcycle.
2: Initialize: Parameters θf , θg for policy models
3: for i = 1, 2, 3, do
4: if i % Kcycle ≤ Kg then
5: Update θg to optimize return for g based on PPO.
6: else
7: Update θf to optimize return for f based on PPO.

the policy step in Algorithm 1 at steps 4 and 5. Note that
Algorithm 2 finds a Nash equilibrium policy for only one
agent. We present the algorithm for solving f∗(R), and
g∗(R) can be solved in a similar fashion. In the remainder
of this section, we omit the dependency onR, which is fixed
in the policy step.

The definition of Nash Equilibrium in (6) and (7) in zero-
sum discounted games naturally suggests adversarial train-
ing as a solution methodology. Informally speaking, we first
identify the best response g to current f , and then update
f marginally to compete against the best response g. We
repeat these two steps until f∗ has been reached. Two deep
neural networks fθf (s) and gθg (s) are used, parametrized
by θf and θg, respectively. Both networks take state vec-
tor s ∈ S as input, which is completely public to both
sides. Each network outputs a probability distribution over
the action space. The agents then sample actions from the
probability distribution and act accordingly.

We give only the sketch of the algorithm in Algorithm 2
since the detailed implementation relies on a policy gra-
dient method. In our experiments we choose the actor-
critic style Proximal Policy Optimization algorithm (PPO)
from (Schulman et al., 2017) because of its superior per-

Competitive Multi-agent Inverse Reinforcement Learning with Sub-optimal Demonstrations

0 1 2 3 4

0

1

2

3

4

f1

f2

g1

g2

−−−−− →↓
maxj mini di,j = 5

(a)

−6 −4 −2

Rchasing(s)

−0.8

−0.6

−0.4

−0.2

0.0

0.2

R
θ R
(s
)

ρ = .65

(b)

−40 −20 0

Discounted Cumulative Return

f ∗, g∗

fθf , g
∗

f early
θf

, g∗

f random, g∗

f ∗, gθg

f ∗, gearlyθg

f ∗, grandom(d)

0.0 0.5 1.0 1.5 2.0

KL Divergence

fθf‖‖f ∗

f early
θf

‖f ∗

f random‖f ∗

gθg‖g∗
gearlyθg

‖g∗
grandom‖g∗ (c)

Figure 1. IRL training and results. (a) The chasing game on a 5× 5 grid. In this example, the immediate reward, defined by the min-max
distance, is -5 for f and 5 for g at the current state. (b) The recovered reward function RθR(s) demonstrates a strong correlation to
Rchasing(s) (p < .001). (c) KL divergence between fθf (or gθg) and f∗(Rchasing)(or g∗(Rchasing)). “Early” denotes the models at the
20,000-th iteration, while “random” model follows a uniform distribution on all available actions. The final results of IRL training
are as expected most similar to Nash Equilibrium policies. Error bars indicate the standard errors estimated on a batch of 64 samples.
(d) Performance of policy models under Rchasing. The dashed reference line represents the performance of the Nash Equilibria models.
Policies recovered by IRL training play similarly well when compared with the Nash Equilibria policies, while “early” and “random”
models exhibit much more significant performance gaps. Error bars indicate the standard deviation estimated on a batch of 64 samples.

formances, and both policy and state-value models are
used during training. The full algorithm is in Section A2
of the Appendix. Lastly, as requested in step 6 in Algo-
rithm 1, periodically we need to estimate the performance
of fθf when competing against its best adversarial gθg

2.
Each time, we run policies f, g to sample a batch of 64
T -step trajectories T , and calculate the average of the dis-
counted cumulative return on these trajectories to yield
v̂f,g

best
= 1
|T |
∑

(s0,s1,...,sT)∈T
∑T
t=0 γ

tR(st).

For solving Nash Equilibrium in zero-sum discounted
stochastic games, we train an agent to always compete
against its best possible opponent. The process can be
thought of as performing gradient ascent for

F (f) = min
g∈G

1

Ns

∑
s∈S

vf,g(s).

Considering the case as if we use a tabular approach3 for
each agent’s policy instead of using model approximations,
we show that using this objective function to solve for f∗

(or g∗) is theoretically a sound choice, because there is no
local maximum in F (f). We formally state the claim as the
proposition below. For the details of the roof please refer to
Section A3 of the Appendix.

Proposition 1: Function F (f) has no local maxima.
Namely, if at a certain f̃ there exists no feasible strictly

2We reiterate that Algorithm 2 is meant for finding f∗(R). The
training for g∗ is conducted separately in a similar fashion, and we
estimate v̂f

best,g similarly.
3The tabular approach means that for any s and any af , ag ,

f(af |s) or g(ag|s) would be variables, and the only constraints
are standard probability requirements.

ascent direction for F (f̃), then F (f̃) = max
f∈F

F (f).

4. Experimental Study
In this section, we illustrate the proposed IRL and Nash
Equilibrium algorithms on a zero-sum stochastic game and
present their performances. First, we introduce the zero-sum
stochastic game used in our experiments and discuss its com-
plexity and scale. Next, we demonstrate the quality of the
reward functions and Nash Equilibrium policies solved by
our IRL algorithm given only expert demonstrations, after
which we show the performance of our Nash Equilibrium
algorithm when the reward function is available.

4.1. The Chasing Game on Gridworld

Games on a grid have been widely used in reinforcement
learning and IRL research works (Abbeel & Ng, 2004;
Reddy et al., 2012; Lin et al., 2017; H.L. et al., 2015). In
this type of games, each agent occupies one of the cells
and is allowed to move to one of the neighboring cells at
each step. The goal of each agent is to navigate itself to its
own advantageous states, and the optimal policy depends
on the relationship between the reward and location of all
the agents. In our “chasing game” we simply flip the sign
of the reward function in the stick-together game used by
Prasad et al. (2015) to translate the purely cooperative game
into its purely competitive counterpart, and extend the 1 vs
1 game to a 2 vs 2 version, which significantly increases the
complexity of the game.

As shown in Fig. 1(a), the chasing game is played on a
5 × 5 grid. One team of predators (agent f) and another

Competitive Multi-agent Inverse Reinforcement Learning with Sub-optimal Demonstrations

team of preys (agent g) participate in the game with two
players (denoted as f1, f2 and g1, g2 respectively) in each
team. For the remainder of the paper, we set the discount
factor γ as 0.9. At each state, each player is allowed to
move upward, downward, leftward, rightward, or stay, and
each action is deterministically executed. At the boundary
the player must stay put. When choosing the actions, the
agent f or g simultaneously controls the two predators or
preys on each team. Thus, the game is considered to have
Ns = 254 = 390, 625 states and about 2 · 107 state-action
pairs, which renders the existing nonlinear-optimization-
based or iterative multi-agent IRL algorithms (Abbeel &
Ng, 2004; Lin et al., 2017) inefficient.

As suggested by the name of the game, the immediate return
is dictated by the distances between the predators and the
preys, driving the predators to pursue the preys and the
preys to stay away from the predators. The distance between
any predator/prey pair (fi,gj with 1 ≤ i, j ≤ 2) is di,j =
|xfi − xgj | + |yfi − ygj |, namely the L1-norm distance
where state s = (xf1 , yf1 , xf2 , yf2 , xg1 , yg1 , xg2 , yg2) is the
coordinate vector of both agents. Based on this pairwise
distance, the immediate reward for the predators (f) is

Rchasing(s) = −D(s), (9)
D(s) = max

j=1,2
min
i=1,2

di,j , (10)

and for the preys it is −Rchasing(s) = D(s). In other words,
the immediate reward is determined by the prey that stays
the farthest from all predators. This reward function encour-
ages cooperation and accurate allocation of tasks within a
team and adds an extra layer of complexity to the game. For
example, two predators chasing the same prey would result
in a low return as the other prey could conveniently run
away, while the two preys hiding at the same corner make
themselves approachable simultaneously. Lastly, there is no
terminal state or “capture” action in the game. Therefore,
even if a predator and a prey encounter each other, neither
of them will be removed from the grid.

4.2. IRL Algorithm

In order to test our IRL algorithm using the chasing game
where the immediate reward is unknown, we generate the
sub-optimal demonstration set D as follows. First, un-
der Rchasing(s) we use Algorithm 2 to yield Nash Equi-
librium policies f∗(Rchasing), g∗(Rchasing) approximated by
deep neural nets. (Details of Nash Equilibrium training are
covered in Section 4.3.) Then the policies act in a “deflected”
ε-greedy fashion: we set ε = .1 by default so that for each of
the 4 players, there is 10% chance that it would (1) deflect
the action sampled from f∗(Rchasing), g∗(Rchasing) by 90◦ or
−90◦ if the action is not “stay,” or (2) randomly sample one
of the 4 remaining actions if the action is “stay”, while 90%
chance it would take the original action. We thus denote

this set of expert demonstrations as Dε=.1. The set consists
of 64 × 500 = 32, 000 trajectories with the length of 10
steps. Similarly, we generate sets Dε=.05,Dε=.2 to compare
the performance of the IRL algorithm under demonstration
sets of various quality. Note that when ε = .2, the chance
that none of the 4 players would take a deflected action at a
certain step is only (1− 0.2)4 = 0.4096.

Next we describe the specifications of our models and the
algorithm. For both policy models and state value function
models required in actor-critic style PPO in Algorithm 2,
we use deep neural nets with a 2-layer 256-neuron struc-
ture with rectified linear (Nair & Hinton, 2010) activation
functions, after which a softmax layer outputs a probabil-
ity distribution on the action space in policy models (or
a linear transformation layer outputs an estimated v̂(s) in
state value models). Moreover, with the natural state vector
s (coordinates of players) we augment another vector s′

which contains xfi − xgj and yfi − ygj for any pair (i, j)
with 1 ≤ i, j ≤ 2. Empirically, we find that with this tai-
lored input vector (s, s′) the models perform better without
significantly increasing network complexities. For RθR(s)
we use a 2-layer 256-neuron structure with rectified linear
activation functions, which is followed by a linear transfor-
mation layer that outputs a scalar as the immediate reward
for state s, and the augmented input is also used. In terms
of the training procedure, we set KR = 1000, IR = 20, and
τ = 3. The learning rate parameter for the reward function
is 2.5 · 10−5, T is set as 50, and Adam (Kingma & Ba,
2014) is used as optimizer. At each iteration4, a batch of
64 observations are sampled simultaneously from D, and
each of the observation provides a gradient calculated in
step 13 in Algorithm 1, after which the batch of gradients
are averaged to update θR.

For the regularization function φ we adapt to our task the
empirically useful concept of the “strong covariance prior”
from (Lin et al., 2017). We assume the prior knowledge
that rewards are related to distances between the predators
and the preys. However, without knowing the max-min
distance D(s) defined in (10), we simply assume a nega-
tive covariance between RθR(s) and the averaged distance
D̄(s) = 1

4

∑
i

∑
j di,j . Besides, we control the absolute

value and variance of R(s) to prevent the scale of rewards
from collapsing or explosion. These assumptions lead to

φ(θR) = c
(
Es∈Dcov(RθR(s), D̄(s))

+
∣∣Es∈DRθR(s)

∣∣+
∣∣Es∈Dvar[RθR(s)]− ρ

∣∣),
where we set c = 0.25 and ρ = 5 in our experiments. Dur-
ing training, φ(θR) is calculated on a batch of 64 demon-
strations. Though not shown in the figures, we mention that
before IRL training we also initialize the reward function by

4In this section, the word “iteration” refers to i in Algorithm 1.

Competitive Multi-agent Inverse Reinforcement Learning with Sub-optimal Demonstrations

0.0 0.5 1.0 1.5

KL Divergence

DKL(fθf‖f ∗), ǫ = .05

DKL(fθf‖f ∗), ǫ = .1

DKL(fθf‖f ∗), ǫ = .2

DKL(gθg‖g∗), ǫ = .05

DKL(gθg‖g∗), ǫ = .1

DKL(gθg‖g∗), ǫ = .2 (a)

−20 −10 0

Discounted Cumulative Return

f ∗, g∗

fθf , g
∗, ǫ = .05

fθf , g
∗, ǫ = .1

fθf , g
∗, ǫ = .2

f ∗, gθg , ǫ = .05

f ∗, gθg , ǫ = .1

f ∗, gθg , ǫ = .2(b)

−6 −4 −2

Rchasing(s)

−4

−3

−2

−1

0

R
θ R
(s
)

(c)

ǫ = .05

ǫ = .1

ǫ = .2

100 200 300 400 500
Number of Iterations (1000)

−35

−30

−25

−20

−15

D
is
co
u
n
te
d
C
u
m
u
la
ti
ve

R
et
u
rn

fo
r
P
re
d
at
or
s

(d)

f vs g

g vs best response

f vs best response

Figure 2. Comparison of IRL performances under Dε with different ε values. (a) KL divergence between the IRL and Nash Equilibrium
policies are similar under different Dε. Error bars indicate standard errors estimated on a batch of 64 samples. (b) Using different Dε we
recover policies that perform similarly under the original Rchasing(s). Performances are measured in the same way as for Fig. 1(c). Error
bars indicate standard deviations estimated on a batch of 64 rounds of games. (c) Range of the recovered RθR(s) under different Dε.
The larger the ε is, the smaller the range of RθR(s). For readability of the figure a jitter is added to the x-coordinate of each point. (d)
Performance of the proposed Nash Equilibrium algorithm in the chasing game.

trainingRθR(s) for 5,000 iterations using only φ(θR) above
as the loss function.5

Performances of the algorithm using Dε=.1 are shown in
Fig. 1. First of all, regarding the quality of the obtained
reward function, Fig. 1(b) reveals a strong correlation
(ρ = 0.65, p < .001) between Rchasing(s) and the RθR(s)
we recovered after 500,000 iterations of training, indicating
that the model learns that the reward of each state should
be highly dependent on D(s) and behaves similarly as
Rchasing(s). As for quality of the recovered policies, we
compare the divergence between the IRL and Nash Equi-
librium policies. As shown in Fig. 1(c), when compared
against a model that acts randomly or the “early” policy
models obtained after 20,000 iterations, the IRL policies
demonstrate behaviors that are most similar to those of the
Nash Equilibrium policies.

A more direct measurement is to plug IRL policies back
into the chasing game and evaluate their performances when
competing against the Nash Equilibrium policies. In Fig.
1(d) we depict the performances of the IRL and Nash Equi-
librium polices estimated in 64 rounds of games. The poli-
cies fθf , gθg obtained after 500,000 iterations of IRL train-
ing demonstrate performances that are relatively close to
those of Nash Equilibrium policies. For demonstrations of
the policies please refer to Section A4 in the Appendix.

A comparison of model performances when using Dε=.05,
Dε=.1, and Dε=.2 illustrates the robustness of our algorithm

5Under the initialized R, we observe that the “early” policy
models obtained after 20,000 iterations aim to minimize/maximize
the averaged distance D̄(s) and act significantly differently from
the final models, thus refuting the concern that prior knowledge in
φ is too strong or the initializedR(s) is close enough toRchasing(s).
Section A4 in the Appendix provides details.

Table 1. Correlations between recovered R(s) and Rchasing(s)

IRL Algorithm ε = .05 ε = .1 ε = .2
Algorithm 1 0.65 0.68 0.66
BIRL 0.28 -0.02 0.12
DIRL -0.31 -0.15 0.11

despite the variation in sub-optimality of expert demonstra-
tions. Fig. 2(a) and (b) show that IRL policies produced
under different Dε behave similarly when compared against
Nash Equilibrium policies, and demonstrate nearly the same
performances in the original game. Interestingly, a similarly
strong correlation (r ≈ .65) is produced for each Dε, while
Fig. 2(c) shows that the scale of RθR(s) decreases when ε
increases. Intuitively, the error rate ε would not necessarily
affect the order of preferences in states or actions, but could
directly control the confidence in the absolute gap between
different actions or states. This also explains why different
policy functions perform similarly in Fig. 2(a) and (b), since
by simply rescaling the reward function the optimal policies
remain largely unchanged. This is ideal as the success of
IRL training should not be critically influenced by the qual-
ity of the available demonstration set, and from sub-optimal
demonstrations of distinct qualities the algorithm should
always recover policies that perform very well.

To further illustrate the superior performance of our algo-
rithm in large-scale games, we select the Bayesian-IRL
(Lin et al., 2017) (BIRL) algorithm and Decentralized-IRL
(Reddy et al., 2012) (DIRL) as benchmark IRL algorithms
since to the best of our knowledge they are the only ones
that solve competitive multi-agent IRL tasks. For the sake of
a fair comparison, both algorithms need modifications since
deep neural nets should be used as model approximations
and the IRL training should proceed efficiently for large-

Competitive Multi-agent Inverse Reinforcement Learning with Sub-optimal Demonstrations

Table 2. Performance deterioration of recovered policies under
Rchasing (A:Algorithm 1; B:BIRL; D:DIRL)
Dε fA fB fD gA gB gD

.05 11.8% 24.1% 197.0% 4.4% 33.5% 38.9%

.1 10.3% 44.3% 100.0% 6.9% 33.5% 41.9%

.2 13.3% 68.5% 200.1% 9.3% 33.0% 40.9%

scale games that cannot be solved by tabular approaches
with enumeration of states or actions. For details of their
implementation and training specifications please refer to
Section A5 in the Appendix. From Tables 1 and 2 we see
that benchmark algorithms fail to find a reward function that
bears reasonably high correlation withRchasing(s) or recover
well-performing policies especially for worse demonstration
sets.6 In conclusion, by dropping the optimality assump-
tion in expert demonstrations and tailoring the subroutine
Nash Equilibrium algorithm for large-scale games, our IRL
algorithm outperforms benchmark algorithms significantly
when they are implemented and utilized in the same setting.

4.3. Nash Equilibrium Algorithm

The Nash Equilibrium algorithm assumes that the reward
function is available. We herein showcase the algorithm’s
performance under Rchasing(s). As noted before, Algorithm
2 is meant for finding f∗(R), and a separate training proce-
dure is carried out to solve for g∗(R). We only discuss in
detail training of f∗(R) because the same hyper-parameters
and model structures are used for training g∗(R).

The following hyper parameters are used in Algorithm 2 for
the experiments in this section together with those already
presented in Section 4.2. For the PPO style training, we set
horizon length T as 10, and refresh frequency Krefresh as 10.
Parameter λ for eligibility traces is set as 0.9. Regarding the
adversarial training, we set Kcycle as 100 and Kg as 90. The
learning rate parameter for best response models is set as
3 · 10−4, while for the Nash Equilibrium policies fθf , gθg it
is 10−4. Adam is used as optimizer. For each iteration7, a
batch of 64 trajectories is generated and used together for
the stochastic gradient descent steps in the g or f step in
Algorithm 2. For the first 5,000 iterations of every 50,000
iterations we perform the g step only. This is to ensure the
quality of gθg , which is expected to be the best possible
response to current fθf during training.

Fig. 2(d) shows the evolution of the policy models. The plot
depicts vfθf ,gθg (s0;Rchasing), ming v

fθf ,g(s0;Rchasing), and
maxf v

f,gθg (s0;Rchasing). Recall that if fθf and gθg man-
age to reach the Nash Equilibrium, the three series should

6Performance deterioration is measured by the change in dis-
counted cumulative return when replacing f∗(or g∗) with the pol-
icy f(or g) recovered by IRL algorithms.

7In this section, the word “iteration” refers to i in Algorithm 2.

Table 3. Performances of solved Nash Equilibrium policies
(A:Algorithm 2; B:Benchmark; R:Random)

Grid Size fA, gA fB, gA fR, gA fA, gB fA, gR

5× 5 -20.3 -21.2 -41.1 -20.0 -14.9
10× 10 -44.7 -87.4 -94.2 -42.2 -31.8

converge perfectly. As the figure shows, the adversarial
training on fθf and gθg succeed in decreasing the gap to a
pretty marginal level, suggesting that fθf and gθg are close
enough to the Nash Equilibrium policies and there is little
room to further improve their performances. The reader
should check Section A6 in the Appendix for demonstra-
tions of the solved Nash Equilibria policies.

To further demonstrate the superiority of the proposed Nash
Equilibrium algorithm particularly for large games, we re-
formulate the quadratic programming problem proposed
on page 125 in (Filar & Vrieze, 2012), which inspires the
gradient descent algorithm to solve for Nash Equilibrium
proposed in (H.L. & Bhatnagar, 2015). Section A7 in the
Appendix provides details of algorithm implementation and
training specification. In Table 3 we summarize their per-
formances in the chasing game on both the original 5 × 5
grid and a 10 × 10 one. The values are the average of a
batch of 64 trajectories with randomly initialized starting
states. Performances under random policies are used as
references. For the game on the 5 × 5 grid, we see that
our algorithm yields a better policy for predators, while
preys of both algorithms perform similarly. For the game
on the 10 × 10 grid, the benchmark algorithm learned a
much worse policy for predators (the improvement of our
algorithm is −87.4−(−44.7)

−87.4 = 48.6% from the benchmark
algorithm), and the policies for preys learned by our al-
gorithm are −44.7−(−42.2)

−42.2 = 5.9% better than that of the
benchmark algorithm. Overall, our adversarial training al-
gorithm for Nash Equilibria in zero-sum stochastic games
shows a significantly improved performance against the
benchmark algorithm, especially for larger cases.

References
Abbeel, P. and Ng, A. Y. Apprenticeship learning via inverse

reinforcement learning. In International Conference on
Machine Learning, pp. 1–8. ACM, 2004.

Akchurina, N. Multiagent reinforcement learning: algo-
rithm converging to nash equilibrium in general-sum dis-
counted stochastic games. In Proceedings of The 8th In-
ternational Conference on Autonomous Agents and Mul-
tiagent Systems-Volume 2, pp. 725–732, 2009.

Choi, S., Lee, K., Park, A., and Oh, S. Density matching
reward learning. arXiv preprint arXiv:1608.03694, 2016.

Competitive Multi-agent Inverse Reinforcement Learning with Sub-optimal Demonstrations

Filar, J. and Vrieze, K. Competitive Markov decision pro-
cesses. Springer Science & Business Media, 2012.

Finn, C., Levine, S., and Abbeel, P. Guided cost learning:
Deep inverse optimal control via policy optimization. In
International Conference on Machine Learning, pp. 49–
58, 2016.

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B.,
Warde-Farley, D., Ozair, S., Courville, A., and Bengio,
Y. Generative adversarial nets. In Advances in Neural
Information Processing Systems, pp. 2672–2680, 2014.

H.L., P. and Bhatnagar, S. A study of gradient descent
schemes for general-sum stochastic games. arXiv preprint
arXiv:1507.00093, 2015.

H.L., P., L.A., P., and Bhatnagar, S. Two-timescale algo-
rithms for learning nash equilibria in general-sum stochas-
tic games. In Proceedings of the 2015 International Con-
ference on Autonomous Agents and Multiagent Systems,
pp. 1371–1379, 2015.

Ho, J. and Ermon, S. Generative adversarial imitation learn-
ing. In Advances in Neural Information Processing Sys-
tems, pp. 4565–4573, 2016.

Kingma, D. and Ba, J. Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980, 2014.

Lin, X., Beling, P. A., and Cogill, R. Multi-agent inverse
reinforcement learning for two-person zero-sum games.
IEEE Transactions on Computational Intelligence and AI
in Games, 2017.

Nair, V. and Hinton, G. E. Rectified linear units improve re-
stricted boltzmann machines. In International Conference
on Machine Learning, pp. 807–814, 2010.

Ramachandran, D. and Amir, E. Bayesian inverse rein-
forcement learning. International Joint Conference on
Artificial Intelligence, pp. 2586–2591, 2007.

Reddy, T., Gopikrishna, V., Zaruba, G., and Huber, M.
Inverse reinforcement learning for decentralized non-
cooperative multiagent systems. In Systems, Man, and
Cybernetics, pp. 1930–1935, 2012.

Ross, S., Gordon, G. J., and Bagnell, D. A reduction of
imitation learning and structured prediction to no-regret
online learning. In International Conference on Artificial
Intelligence and Statistics, pp. 627–635, 2011.

Russell, S. Learning agents for uncertain environments.
In Proceedings of the Eleventh Annual Conference on
Computational Learning Theory, pp. 101–103, 1998.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and
Klimov, O. Proximal policy optimization algorithms.
arXiv preprint arXiv:1707.06347, 2017.

Ziebart, B. D., Maas, A. L., Bagnell, A., and Dey, A. K.
Maximum entropy inverse reinforcement learning. In
AAAI, volume 8, pp. 1433–1438. Chicago, IL, USA, 2008.

