
Coded Sparse Matrix Multiplication

Sinong Wang 1 Jiashang Liu 1 Ness Shroff 2

Abstract
In a large-scale and distributed matrix multiplica-
tion problem C = AᵀB, where C ∈ Rr×t, the
coded computation plays an important role to ef-
fectively deal with “stragglers” (distributed com-
putations that may get delayed due to few slow
or faulty processors). However, existing coded
schemes could destroy the significant sparsity that
exists in large-scale machine learning problems,
and could result in much higher computation over-
head, i.e., O(rt) decoding time. In this paper, we
develop a new coded computation strategy, we
call sparse code, which achieves near optimal re-
covery threshold, low computation overhead, and
linear decoding time O(nnz(C)). We implement
our scheme and demonstrate the advantage of the
approach over both uncoded and current fastest
coded strategies.

1. Introduction
In this paper, we consider a distributed matrix multiplica-
tion problem, where we aim to compute C = AᵀB from
input matrices A ∈ Rs×r and B ∈ Rs×t for some integers
r, s, t. This problem is the key building block in machine
learning and signal processing problems, and has been used
in a large variety of application areas including classifica-
tion, regression, clustering and feature selection problems.
Many such applications have large-scale datasets and mas-
sive computation tasks, which forces practitioners to adopt
distributed computing frameworks such as Hadoop (Dean
& Ghemawat, 2008) and Spark (Zaharia et al., 2010) to
increase the learning speed.

Classical approaches of distributed matrix multiplication
rely on dividing the input matrices equally among all avail-
able worker nodes. Each worker computes a partial result,

1Department of ECE, The Ohio State University, Colum-
bus, USA 2Departments of ECE and CSE, The Ohio State Uni-
versity, Columbus, USA. Correspondence to: Sinong Wang
<wang.7691@osu.edu>.

Proceedings of the 35 th International Conference on Machine
Learning, Stockholm, Sweden, PMLR 80, 2018. Copyright 2018
by the author(s).

and the master node has to collect the results from all work-
ers to output matrix C. As a result, a major performance
bottleneck is the latency in waiting for a few slow or faulty
processors – called “stragglers” to finish their tasks (Dean
& Barroso, 2013). To alleviate this problem, current frame-
works such as Hadoop deploy various straggler detection
techniques and usually replicate the straggling task on an-
other available node.

Recently, forward error correction or coding techniques pro-
vide a more effective way to deal with the “straggler” in
the distributed tasks (Dutta et al., 2016; Lee et al., 2017a;
Tandon et al., 2017; Yu et al., 2017; Li et al., 2018; Wang
et al., 2018). It creates and exploits coding redundancy in
local computation to enable the matrix C recoverable from
the results of partial finished workers, and can therefore alle-
viate some straggling workers. For example, consider a dis-
tributed system with 3 worker nodes, the coding scheme first
splits the matrix A into two submatrices, i.e., A = [A1, A2].
Then each worker computes Aᵀ

1B, Aᵀ
2B and (A1 +A2)ᵀB.

The master node can compute AᵀB as soon as any 2 out of
the 3 workers finish, and can overcome one straggler.

In a general setting with N workers, each input matrix A, B
is divided into m, n submatrices, respectively. The recovery
threshold is defined as the minimum number of workers that
the master needs to wait for in order to compute C. The
above MDS coded scheme is shown to achieve a recovery
threshold Θ(N). An improved scheme proposed in (Lee
et al., 2017c) referred to as the product code, can offer a
recovery threshold of Θ(mn) with high probability. More
recently, the work (Yu et al., 2017) designs a type of polyno-
mial code. It achieves the recovery threshold of mn, which
exactly matches the information theoretical lower bound.
However, many problems in machine learning exhibit both
extremely large-scale targeting data and a sparse structure,
i.e., nnz(A)� rs, nnz(B)� st and nnz(C)� rt. The
key question that arises in this scenario is: is coding really
an efficient way to mitigate the straggler in the distributed
sparse matrix multiplication problem?

1.1. Motivation: Coding Straggler

To answer the aforementioned question, we first briefly in-
troduce the current coded matrix multiplication schemes. In
these schemes, each local worker calculates a coded version

Coded Sparse Matrix Multiplication

0 2 4 6 8 10 12
Computation and communication time (s)

0

10

20

30

40

50

Fr
eq

ue
nc

y

uncoded scheme
polynomial code

1 2 3 4 5
density 10-3

0

5

10

15

20

25

30

ra
tio

 o
f r

ou
nd

 tr
ip

 ti
m

e

mn=9
mn=16
mn=25

(a) (b) density 1E-4

Figure 1. Measured local computation and communication time.
of submatrix multiplication. For example, kth worker of the
polynomial code (Yu et al., 2017) essentially calculates∑m

i=1
Aᵀ

i x
i
k︸ ︷︷ ︸

Ãᵀ
k

∑n

j=1
Bjx

jm
k︸ ︷︷ ︸

B̃k

, (1)

where Ai, Bj are the corresponding submatrics of the input
matrices A and B, respectively, and xk is a given integer.
One can observe that, if A and B are sparse, due to the ma-
trices additions, the density of the coded matrices Ãk and
B̃k will increase at mostm and n times, respectively. There-
fore, the time of matrix multiplication Ãᵀ

kB̃k will increase
roughly O(mn) times of the simple uncoded one Aᵀ

iBj .

In the Figure 1(a), we experiment large and sparse matrix
multiplication from two random Bernoulli square matrices
with dimension roughly equal to 1.5×105 and the number of
nonzero elements equal to 6× 105. We show measurements
on local computation and communication time required for
N = 16 workers to operate the polynomial code and un-
coded scheme. Our finding is that the final job completion
time of the polynomial code is significantly increased com-
pared to that of the uncoded scheme. The main reason is
that the increased density of input matrix leads to the in-
creased computation time, which further incurs the even
larger data transmission and higher I/O contention. In the
Figure 1(b), we generate two 105 random square Bernoulli
matrices with different densities p. We plot the ratio of
the average local computation time between the polynomial
code and the uncoded scheme versus the matrix density p.
It can be observed that the coded scheme requires 5 or more
computation time vs the uncoded scheme, and this ratio is
particularly large, i.e., O(mn), when the matrix is sparse.

In certain suboptimal coded computation schemes such as
MDS code, product code (Lee et al., 2017a;c) and short
dot (Dutta et al., 2016), the generator matrices are generally
dense, which also implies a heavy workload for each local
worker. Moreover, the decoding algorithm of polynomial
code and MDS type of codes is based on the fast polynomial
interpolation algorithm in the finite field. Although it leads
to nearly linear decoding time, i.e., O(rt ln2(mn ln(mn))),
it still incurs extremely high cost when dealing with current
large-scale and sparse data. Therefore, inspired by this phe-
nomenon, we are interested in the following key problem:

can we find a coded matrix multiplication scheme that has
small recovery threshold, low computation overhead and
decoding complexity only dependent on nnz(C)?

1.2. Main Contribution

In this paper, we answer this question positively by de-
signing a novel coded computation strategy, we call sparse
code. It achieves near optimal recovery threshold Θ(mn)
by exploiting the coding advantage in local computation.
Moreover, such a coding scheme can exploit the sparsity of
both input and output matrices, which leads to low compu-
tation load, i.e., O(ln(mn)) times of uncoded scheme and,
nearly linear decoding time O(nnz(C) ln(mn)).

The basic idea in sparse code is: each worker chooses a ran-
dom number of input submatrices based on a given degree
distribution P ; then computes a weighted linear combina-
tion

∑
ij wijA

ᵀ
iBj , where the weights wij are randomly

drawn from a finite set S. When the master node receives
a bunch of finished tasks such that the coefficient matrix
formed by weights wij is full rank, it starts to operate a
hybrid decoding algorithm between peeling decoding and
Gaussian elimination to recover the resultant matrix C.

We prove the optimality of the sparse code by carefully de-
signing the degree distribution P and the algebraic structure
of set S. The recovery threshold of the sparse code is mainly
determined by how many tasks are required such that the
coefficient matrix is full rank and the hybrid decoding al-
gorithm recovers all the results. We design a type of Wave
Soliton distribution (definition is given in Section 4), and
show that, under such a distribution, when Θ(mn) tasks are
finished, the hybrid decoding algorithm will successfully de-
code all the results with decoding time O(nnz(C) ln(mn)).

Moreover, we reduce the full rank analysis of the coefficient
matrix to the determinant analysis of a random matrix in
Rmn×mn. The state-of-the-art in this field is limited to the
Bernoulli case (Tao & Vu, 2007; Bourgain et al., 2010), in
which each element is identically and independently dis-
tributed random variable. However, in our proposed sparse
code, the matrix is generated from a degree distribution,
which leads to dependencies among the elements in the
same row. To overcome this difficulty, we find a differ-
ent technical path: we first utilize the Schwartz-Zeppel
Lemma (Schwartz, 1980) to reduce the determinant analysis
problem to the analysis of the probability that a random bi-
partite graph contains a perfect matching. Then we combine
the combinatoric graph theory and the probabilistic method
to show that when number of mn tasks are collected, the
coefficient matrix is full rank with high probability.

We further utilize the above analysis to formulate an opti-
mization problem to determine the optimal degree distribu-
tion P when mn is small. We finally implement and bench-

Coded Sparse Matrix Multiplication

mark the sparse code at Ohio Supercomputer Center (Center,
1987), and empirically demonstrate its performance gain
compared with the existing strategies.

2. Preliminary
We are interested in a matrix multiplication problem with
two input matrices A ∈ Rs×r, B ∈ Rs×t for some integers
r, s, t. Each input matrix A and B is evenly divided along
the column side into m and n submatrices, respectively.

A = [A1, A2, . . . , Am] and B = [B1, B2, . . . , Bn]. (2)

Then computing the matrix C is equivalent to comput-
ing mn blocks Cij = Aᵀ

iBj . Let the set W = {Cij =
Aᵀ

iBj |1 ≤ i ≤ m, 1 ≤ j ≤ n} denote these components.
Given this notation, the coded distributed matrix multiplica-
tion problem can be described as follows: define N coded
computation functions, denoted by

f = (f1, f2, . . . , fN).

Each local function fi is used by worker i to compute a
submatrix C̃i ∈ R r

m×
t
n = fi(W) and return it to the mas-

ter node. The master node waits only for the results of the
partial workers {C̃i|i ∈ I ⊆ {1, . . . , N}} to recover the
final output C using certain decoding functions. For any in-
teger k, the recovery threshold k(f) of a coded computation
strategy f is defined as the minimum integer k such that the
master node can recover matrix C from results of the any k
workers. The framework is illustrated in Figure 2.

worker 1

Master node

worker 2

worker N

A1 A2 Am

B1 B2 Bn

𝐴1𝑇𝐵1 𝐴1𝑇𝐵%

𝐴&𝑇𝐵1 𝐴&𝑇𝐵%

𝐴'𝑇𝐵1 𝐴'𝑇 𝐵%

decode

data assignment

…

…

…
…

…

… …

…

Figure 2. Framework of coded distributed matrix multiplication.

2.1. Main Results

The main result of this paper is the design of a new coded
computation scheme, we call the sparse code, that has the
following performance.

Theorem 1. The sparse code achieves a recovery threshold
Θ(mn) with high probability, while allowing nearly linear
decoding time O(nnz(C) ln(mn)) at the master node.

As shown in TABLE 1, compared to the state of the art,
the sparse code provides order-wise improvement in terms

Table 1. Comparison of Existing Coding Schemes

scheme recovery computation decoding
threshold overhead1 time

MDS Θ(N) Θ(mn) Õ(rt)2

sparse MDS Θ∗(mn)2 Θ(ln(mn)) Õ(mn · nnz(C))

product code Θ∗(mn) Θ(mn) Õ(rt)

LDPC code Θ∗(mn) Θ(ln(mn)) Õ(rt)

polynomial mn mn Õ(rt)

our scheme Θ∗(mn) Θ(ln(mn)) Õ(nnz(C))
1 Computation overhead is the time of local computation over uncoded scheme.
2 Õ(·) omits the logarithmic terms and O∗(·) refers the high probability result.

of the recovery threshold, computation overhead and de-
coding complexity. Specifically, the decoding time of
MDS code (Lee et al., 2017a), product code (Lee et al.,
2017c), LDPC code and polynomial code (Yu et al., 2017)
is O(rt ln2(mn ln(mn))), which is dependent on the di-
mension of the output matrix. Instead, the proposed sparse
code actually exhibits a decoding complexity that is nearly
linear time in number of nonzero elements of the output
matrix C, which is extremely less than the product of di-
mension. Although the decoding complexity of sparse MDS
code is linear to nnz(C), it is also dependent on themn. To
the best of our knowledge, this is the first coded distributed
matrix multiplication scheme with complexity independent
of the dimension.

Regarding the recovery threshold, the existing work (Yu
et al., 2017) has applied a cut-set type argument to show
that the minimum recovery threshold of any scheme is

K∗ = min
f
k(f) = mn. (3)

The proposed sparse code matches this lower bound with a
constant gap and high probability.

3. Sparse Codes
In this section, we first demonstrate the main idea of the
sparse code through a motivating example. We then formally
describe the construction of the general sparse code and its
decoding algorithm.

3.1. Motivating Example

Consider a distributed matrix multiplication task C = AᵀB
using N = 6 workers. Let m = 2 and n = 2 and each input
matrix A and B be evenly divided as

A = [A1, A2] and B = [B1, B2].

Then computing the matrix C is equivalent to computing
following 4 blocks.

C = AᵀB =

[
Aᵀ

1B1 Aᵀ
1B2

Aᵀ
2B1 Aᵀ

2B2

]
We design a coded computation strategy via the following
procedure: each worker i locally computes a weighted sum

Coded Sparse Matrix Multiplication

(a) (b)

Figure 3. Example of the hybrid peeling and Gaussian decoding process of sparse code.

of four components in matrix C.

C̃i = wi
1A

ᵀ
1B1 + wi

2A
ᵀ
1B2 + wi

3A
ᵀ
2B1 + wi

4A
ᵀ
2B2,

Each weight wi
j is independently and identically distributed

Bernoulli random variable with parameter p. For example,
Let p = 1/3, then on average, 2/3 of these weights are
equal to 0. We randomly generate the following N = 6
local computation tasks.

C̃1 = Aᵀ
1B1 +Aᵀ

1B2, C̃2 = Aᵀ
1B2 +Aᵀ

2B1

C̃3 = Aᵀ
1B1, C̃4 = Aᵀ

1B2 +Aᵀ
2B2

C̃5 = Aᵀ
2B1 +Aᵀ

2B2, C̃6 = Aᵀ
1B1 +Aᵀ

2B1

Suppose that both the 2rd and 6th workers are stragglers
and the master node has collected the results from nodes
{1, 3, 4, 5}. According to the designed computation strategy,
we have following group of linear systems.

C̃1

C̃3

C̃4

C̃5

 =


1 1 0 0
1 0 0 0
0 1 0 1
0 0 1 1

 ·

Aᵀ

1B1

Aᵀ
1B2

Aᵀ
2B1

Aᵀ
2B2


One can easily check that the above coefficient matrix is
full rank. Therefore, one straightforward way to recover
C is to solve rt/4 linear systems, which proves decodabil-
ity. However, the complexity of this decoding algorithm is
expensive, i.e., O(rt) in this case.

Interestingly, we can use a type of peeling algorithm to
recover the matrixC with only three sparse matrix additions:
first, we can straightforwardly recover the blockAᵀ

1B1 from
worker 3. Then we can use the result of worker 1 to recover
block Aᵀ

1B2 = C̃1 −Aᵀ
1B1. Further, we can use the results

of worker 4 to recover block Aᵀ
2B2 = C̃4 − Aᵀ

1B2 and
use the results of worker 5 to obtain block Aᵀ

2B1 = C̃5 −
Aᵀ

2B2. Actually, the above peeling decoding algorithm can
be viewed as an edge-removal process in a bipartite graph.
We construct a bipartite graph with one partition being the
original blocks W and the other partition being the finished
coded computation tasks {C̃i}. Two nodes are connected
if such computation task contains that block. As shown in
the Figure 3(a), in each iteration, we find a ripple (degree
one node) in the right that can be used to recover one node
of left. We remove the adjacent edges of that left node,
which might produce some new ripples in the right. Then
we iterate this process until we decode all blocks.

Based on the above graphical illustration, the key point of
successful decoding is the existence of the ripple during
the edge removal process. Clearly, this is not always true
from the design of our coding scheme and the uncertainty
in the cloud. For example, if both the 3rd and 4th workers
are stragglers and the master node has collected the results
from node {1, 2, 5, 6}, even though the coefficient matrix is
full rank, there exists no ripple in the graph. To avoid this
problem, we can randomly pick one block and recover it
through a linear combination of the collected results, then
use this block to continue the decoding process. This par-
ticular linear combination can be determined by solving a
linear system. Suppose that we choose to recover Aᵀ

1B2,
then we can recover it via the following linear combination.

Aᵀ
1B2 =

1

2
C̃1 +

1

2
C̃2 −

1

2
C̃6.

As illustrated in the Figure 3(b), we can recover the rest of
the blocks using the same peeling decoding process. The
above decoding algorithm only involves simple matrix addi-
tions and the total decoding time is O(nnz(C)).

3.2. General Sparse Code

Now we present the construction and decoding of the sparse
code in a general setting. We first evenly divide the input
matrices A and B along the column side into m and n
submatrices, as defined in (2). Then we define a set S
that contains m2n2 distinct elements except zero element.
One simplest example of S is [m2n2] , {1, 2, . . . ,m2n2}.
Under this setting, we define the following class of coded
computation strategies.

Definition 1. (Sparse Code) Given the parameter P ∈ Rmn

and set S, we define the (P, S)−sparse code as: for each
worker k ∈ [N], compute

C̃k = fk(W) =

m∑
i=1

n∑
j=1

wk
ijA

ᵀ
iBj . (4)

Here the parameter P = [p1, p2, . . . , pmn] is the degree
distribution, where the pl is the probability that there exists
number of l nonzero weights wk

ij in each worker k. The
value of each nonzero weight wk

ij is picked from set S inde-
pendently and uniformly at random.

Without loss of generality, suppose that the master node
collects results from the first K workers with K ≤ N .

Coded Sparse Matrix Multiplication

Given the above coding scheme, we have
C̃1

C̃2

...
C̃K

 =


w1

11 w1
12 · · · w1

mn

w2
11 w2

12 · · · w2
mn

...
...

. . .
...

wK
11 wK

12 · · · wK
mn

 ·

Aᵀ

1B1

Aᵀ
1B2

...
Aᵀ

mBn

 .
We use M ∈ RK×mn to represent the above coefficient
matrix. To guarantee decodability, the master node should
collect results from enough number of workers such that
the coefficient matrix M is of column full rank. Then the
master node goes through a peeling decoding process: it
first finds a ripple worker to recover one block. Then for
each collected results, it subtracts this block if the computa-
tion task contains this block. If there exists no ripple in our
peeling decoding process, we go to rooting step: randomly
pick a particular block Aᵀ

iBj . The following lemma shows
that we can recover this block via a linear combination of
the results {C̃k}Kk=1.
Lemma 1. (rooting step) If rank(M) = mn, for any k0 ∈
{1, 2, . . . ,mn}, we can recover a particular block Aᵀ

iBj

with column index k0 in matrix M via the following linear
combination.

Aᵀ
iBj =

∑K

k=1
ukC̃k. (5)

The vector u = [u1, . . . , uK] can be determined by solving
MTu = ek0 , where ek0 ∈ RK is a unit vector with unique
1 locating at the index k0.

The basic intuition is to find a linear combination of row
vectors of matrix M such that the row vectors eliminate all
other blocks except the particular block Aᵀ

iBj . The whole
procedure is listed in Algorithm 1.

Here we conduct some analysis of the complexity of Algo-
rithm 1. During each iteration, the complexity of operation
C̃k = C̃k −Mkk0

Aᵀ
iBj is O(nnz(Aᵀ

iBj)). Suppose that
the number of average nonzero elements in each row of co-
efficient matrixM is α. Then each blockAᵀ

iBj will be used
O(αK/mn) times in average. Further, suppose that there
exists number of c blocks requiring the rooting step (5) to re-
cover, the complexity in each step is O(

∑
k nnz(C̃k)). On

average, each coding block C̃k is equal to the sum of O(α)
original blocks. Therefore, the complexity of Algorithm 1
is

O

(
αK

mn

∑
i,j
nnz(Aᵀ

iBj)

)
+O

(
c
∑

k
nnz(C̃k)

)
=O ((c+ 1)αK/mn · nnz(C)) . (6)

We can observe that the decoding time is linear in the density
of matrix M , the recovery threshold K and the number of
rooting steps (5). In the next section, we will show that,
under a good choice of degree distribution P and set S, we
can achieve the result in Theorem 1.

Algorithm 1 Sparse code (master node’s protocol)
repeat

The master node assign the coded computation tasks
according to Definition 1.

until the master node collects results with rank(M)= mn
and K is larger than a given threshold.
repeat

Find a row Mk′ in matrix M with ‖Mk′‖0 = 1.
if such row does not exist then

Randomly pick a k0 ∈ {1, . . . ,mn} and recover
corresponding block Aᵀ

iBj by (5).
else

Recover the block Aᵀ
iBj from C̃k′ .

end if
Suppose that the column index of the recovered block
Aᵀ

iBj in matrix M is k0.
for each computation results C̃k do

if Mkk0
is nonzero then

C̃k = C̃k −Mkk0A
ᵀ
iBj and set Mkk0 = 0.

end if
end for

until every block of matrix C is recovered.

4. Theoretical Analysis
As discussed in the preceding section, to reduce the decod-
ing complexity, it is good to make the coefficient matrix M
as sparse as possible. However, the lower density will re-
quire that the master node collects a larger number of work-
ers to enable the full rank of matrix M . For example, in the
extreme case, if we randomly assign one nonzero element
in each row of M . The analysis of the classical balls and
bins process implies that, when K = O(mn ln(mn)), the
matrixM is full rank, which is far from the optimal recovery
threshold. On the other hand, the polynomial code (Yu et al.,
2017) achieves the optimal recovery threshold. Nonetheless,
it exhibits the densest matrix M , i.e., K ×mn nonzero ele-
ments, which significantly increases the local computation,
communication and final decoding time.

In this section, we will design the sparse code between
these two extremes. This code has near optimal recovery
threshold K = Θ(mn) and constant number of rooting
steps (5) with high probability and extremely sparse matrix
M with α = Θ(ln(mn)) nonzero elements in each row. The
main idea is to choose the following degree distribution.

Definition 2. (Wave Soliton distribution) The Wave Soliton
distribution Pw = [p1, p2, . . . , pmn] is defined as follows.

pk =


τ

mn
, k = 1;

τ

70
, k = 2

τ

k(k − 1)
, 3 ≤ k ≤ mn

. (7)

The parameter τ = 35/18 is the normalizing factor.

Coded Sparse Matrix Multiplication

The above degree distribution is modified from the Soliton
distribution (Luby, 2002). In particular, we cap the original
Soliton distribution at the maximum degreemn, and remove
a constant weight from degree 2 to other larger degrees.
It can be observed that the recovery threshold K of the
proposed sparse code depends on two factors: (i) the full
rank of coefficient matrix M ; (ii) the successful decoding
of peeling algorithm with constant number of rooting steps.

4.1. Full Rank Probability

Our first main result is to show that when K = mn, the
coefficient matrix M is full rank with high probability. Sup-
pose that K = mn, we can regard the formation of the
matrix M via the following random graph model.

Definition 3. (Random balanced bipartite graph) Let
G(V1, V2, P) be a random blanced bipartite graph, in which
|V1| = |V2| = mn. Each node v ∈ V2 independently and
randomly connects to l nodes in partition V1 with probabil-
ity pl.

Define an Edmonds matrix M(x) ∈ Rmn×mn of graph
G(V1, V2, P) with [M(x)]ij = xij if vertices vi ∈ V1,
vj ∈ V2 are connected, and [M(x)]ij = 0, otherwise. The
coefficient matrix M can be obtained by assigning each
xij a value from S independently and uniformly at random.
Then the probability that matrix M is full rank is equal to
the probability that the determinant of the Edmonds matrix
M(x) is nonzero at the assigning values xij . The following
technical lemma (Schwartz, 1980) provides a simple lower
bound of the such an event.

Lemma 2. (Schwartz-Zeppel Lemma) Let f(x1, . . . , xN)
be a nonzero polynomial with degree d. Let S be a finite set
in R with |S| = d2. If we assign each variable a value from
S independently and uniformly at random, then

P(f(x1, x2, . . . , xN) 6= 0) ≥ 1− d−1. (8)

A classic result in graph theory is that a balanced bipar-
tite graph contains a perfect matching if and only if the
determinant of Edmonds matrix, i.e., |M(x)|, is a nonzero
polynomial. Combining this result with Schwartz-Zeppel
Lemma, we can finally reduce the analysis of the full rank
probability of the coefficient matrix M to the probability
that the random graph G(V1, V2, Pw) contains a perfect
matching.

P(|M | 6= 0) =P(|M | 6= 0
∣∣|M(x)| 6≡ 0)︸ ︷︷ ︸

S-Z Lemma: ≥1−1/mn

·P(|M(x)| 6≡ 0)︸ ︷︷ ︸
perfect matching

Formally, we have the following result about the existence of
the perfect matching in the above defined random bipartite
graph.

Theorem 2. (Existence of perfect matching) If the graph
G(V1, V2, P) is generated under the Wave Soliton distribu-
tion (7), then there exists a constant c > 0 such that

P(G contains a perfect matching) > 1− c(mn)−0.94.

Proof. Here we sketch the proof. Details can be seen in
the supplementary material. The basic technique is to uti-
lize Hall’s theorem to show that such a probability is lower
bounded by the probability that G does not contain a struc-
ture S ⊂ V1 or S ⊂ V2 such that |S| > |N(S)|, where
N(S) is the neighboring set of S. We show that, if S ⊂ V1,
the probability that S exists is upper bounded by

∑
s=Θ(1)

1

(mn)0.94s
+

s=o(mn)∑
s=Ω(1)

(s

mn

)0.94s

+
∑

s=Θ(mn)

cmn
1 .

If S ⊂ V2, the probability that S exists is upper bounded by∑
s=Θ(1)

1

mn
+

∑
s=o(mn)

scs2
mn

+
∑

s=Θ(mn)

cmn
3 .

where the constants c1, c2, c3 are strictly less than 1. Com-
bining these results together, gives us Theorem 2.

Analyzing the existence of perfect matching in a random
bipartite graph has been developed since (Erdos & Renyi,
1964). However, existing analysis is limited to the indepen-
dent generation model. For example, the Erdos-Renyi model
assumes each edge exists independently with probability
p. The κ−out model (Walkup, 1980) assumes each vertex
v ∈ V1 independently and randomly chooses κ neighbors
in V2. The minimum degree model (Frieze & Pittel, 2004)
assumes each vertex has a minimum degree and edges are
uniformly distributed among all allowable classes. There
exists no work in analyzing such a probability in a random
bipartite graph generated by a given degree distribution. In
this case, one technical difficulty is that each node in the par-
tition V1 is dependent. All analysis should be carried from
the nodes of the right partition, which exhibits an intrinsic
complicated statistical model.

4.2. Optimality of Recovery Threshold

We now focus on quantitatively analyzing the impact of
the recovery threshold K on the peeling decoding process
and the number of rooting steps (5). Intuitively, a larger K
implies a larger number of ripples, which leads to higher
successful peeling decoding probability and therefore less
number of rooting steps. The key question is: how large
must K be such that all mn blocks are recovered with only
constant number of rooting steps. To answer this question,
we first define a distribution generation function of Pw as

Ωw(x) =
τ

mn
x+

τ

70
x2 + τ

mn∑
k=3

xk

k(k − 1)
. (9)

Coded Sparse Matrix Multiplication

The following technical lemma is useful in our analysis.

Lemma 3. If the degree distribution Ωw(x) and recovery
threshold K satisfy

[1− Ω′w(1− x)/mn]
K−1 ≤ x, for x ∈ [b/mn, 1], (10)

then the peeling decoding process in Algorithm 1 can re-
cover mn − b blocks with probability at least 1 − e−cmn,
where b, c are constants.

Lemma 3 is tailored from applying a martingale argument
to the peeling decoding process (Luby et al., 2001). This
result provides a quantitative recovery condition on the de-
gree generation function. It remains to be shown that the
proposed Wave Soliton distribution (9) satisfies the above
inequality with a specific choice of K.

Theorem 3. (Recovery threshold) Given the sparse code
with parameter(Pw, [m

2n2]), if K = Θ(mn), then there
exists a constant c such that with probability at least 1 −
e−cmn, Algorithm 1 is sufficient to recover all mn blocks
with Θ(1) blocks recovering from rooting step (5).

Combining the results of Theorem 2 and Theorem 3,
we conclude that the recovery threshold of sparse code
(Pw, [m

2n2]) is Θ(mn) with high probability. Moreover,
since the average degree of Wave Soliton Distribution is
O(ln(mn)), combining these results with (6), the complex-
ity of Algorithm 1 is therefore O(nnz(C) ln(mn)).

Remark 1. Although the recovery threshold of the proposed
scheme exhibits a constant gap to the information theoret-
ical lower bound, the practical performance is very close
to such a bound. This mainly comes from the pessimistic
estimation in Theorem 3. As illustrated in Figure 4, we
generate the sparse code under Robust Soliton distribution,
and plot the average recovery threshold versus the num-
ber of blocks mn. It can be observed that the overhead of
proposed sparse code is less than 15%.

Remark 2. Existing codes such as Tornado code (Luby,
1998) and LT code (Luby, 2002) also utilize the peeling
decoding algorithm and can provide a recovery threshold
Θ(mn). However, they exhibit a large constant, especially
when mn is less than 103. Figure 4 compares the practical
recovery threshold among these codes. We can see that
our proposed sparse code results in a much lower recovery
threshold. Moreover, the intrinsic cascading structure of
these codes will also destroy the sparsity of input matrices.

4.3. Optimal Design of Sparse Code

The proposed Wave Soliton distribution (7) is asymptotically
optimal, however, it is far from optimal in practice when
m,n is small. The analysis of the full rank probability and
the decoding process relies on an asymptotic argument to
enable upper bounds of error probability. Such bounds are

10 20 30 40 50

number of blocks (mn)

0

10

20

30

40

50

60

70

80

re
c
o

v
e

ry
 t

h
re

s
h

o
ld

sparse code

LT code

lower bound

average degree

Figure 4. Recovery threshold versus the number of blocks mn.

far from tight when m,n are small. In this subsection, we
focus on determining the optimal degree distribution based
on our analysis in Section 4.1 and 4.2. Formally, we can
formulate the following optimization problem.

min

mn∑
k=1

kpk (11)

s.t. P(M is full rank) > pc,[
1− Ω′w(x)

mn

]mn+c

≤ 1− x− c0
√

1−x
mn ,

x ∈ [0, 1− b/mn] , [pk] ∈ ∆mn,

The objective is to minimize the average degree, namely, to
minimize the computation and communication overhead at
each worker. The first constraint represents that the proba-
bility of full rank is at least pc. Since it is difficult to obtain
the exact form of such a probability, we can use the analy-
sis in Section 4.1 to replace this condition by requiring the
probability that the balanced bipartite graph G(V1, V2, P)
contains a perfect matching is larger than a given threshold,
which can be calculated exactly. The second inequality rep-
resents the decodability condition that whenK = mn+c+1
results are received,mn−b blocks are recovered through the
peeling decoding process and b blocks are recovered from
the rooting step (5). This condition is modified from (10) by
adding an additional term, which is useful in increasing the
expected ripple size (Shokrollahi, 2006). By discretizing the
interval [0, 1− b/mn] and requiring the above inequality to
hold on the discretization points, we obtain a set of linear
inequalities constraints. Details regarding the exact form of
the above optimization model and solutions are provided in
the supplementary material.

5. Experimental Results
In this section, we present experimental results at Ohio
Supercomputer Center (Center, 1987). We compare our
proposed coding scheme against the following schemes:
(i) uncoded scheme: the input matrices are divided uni-
formly across all workers and the master waits for all work-
ers to send their results; (ii) sparse MDS code (Lee et al.,
2017b): the generator matrix is a sparse random Bernoulli
matrix with average computation overhead Θ(ln(mn)),

Coded Sparse Matrix Multiplication

Table 2. Timing Results for Different Sparse Matrix Multiplications (in sec)
Data uncoded LT code sparse MDS code product code polynomial code sparse code

square 6.81 3.91 6.42 6.11 18.44 2.17
tall 7.03 2.69 6.25 5.50 18.51 2.04
fat 6.49 1.36 3.89 3.08 9.02 1.22

amazon-08 / web-google 15.35 17.59 46.26 38.61 161.6 11.01
cont1 / cont11 7.05 5.54 9.32 14.66 61.47 3.23

cit-patents / patents 22.10 29.15 69.86 56.59 1592 21.07
hugetrace-00 / -01 18.06 21.76 51.15 37.36 951.3 14.16

recovery threshold of Θ(mn) and decoding complexity
Õ(mn · nnz(C)). (iii) product code (Lee et al., 2017c):
two-layer MDS code that can achieves the probabilistic
recovery threshold of Θ(mn) and decoding complexity
Õ(rt). We use the above sparse MDS code to ensemble
the product code to reduce the computation overhead. (iv)
polynomial code (Yu et al., 2017): coded matrix multipli-
cation scheme with optimum recovery threshold; (v) LT
code (Luby, 2002): rateless code widely used in broadcast
communication. It has low decoding complexity due to the
peeling decoding algorithm. To simulate straggler effects in
large-scale system, we randomly pick number of s workers
that are running a background thread which increases the
computation time.

We implement all methods in python using MPI4py. To
simplify the simulation, we fix the number of workers N
and randomly generate a coefficient matrix M ∈ RN×mn

under given degree distribution offline such that it can resist
one straggler. Then, each worker loads a certain number of
partitions of input matrices according to the coefficient ma-
trix M . In the computation stage, each worker computes the
product of their assigned submatrices and returns the results
using Isend(). Then the master node actively listens to
the responses from each worker via Irecv(), and uses
Waitany() to keep polling for the earliest finished tasks.
Upon receiving enough results, the master stops listening
and starts decoding the results.

s=2 s=3
0

5

10

15

20

tim
e

(s
)

uncoded scheme
LT code
sparse MDS
product code
sparse code
polynomial code

s=2 s=3
0

2

4

6

8

10

12

tim
e

(s
)

uncoded scheme
LT code
sparse MDS
product code
sparse code
polynomial code

mn = 9 mn = 16

Figure 5. Job completion time for two 1.5E5 × 1.5E5 matrices
with 6E5 nonzero elements.

We first generate two random Bernoulli sparse matrices with
r = s = t = 150000 and 600000 nonzero elements. Fig-
ure. 5 reports the job completion time under m = n = 3,
m = n = 4 and number of stragglers s = 2, 3, based on
20 experimental runs. It can be observed that our proposed

sparse code requires the minimum time, and outperforms LT
code (in 20-30% the time), sparse MDS code and product
code (in 30-50% the time) and polynomial code (in 15-20%
the time). The uncoded scheme is faster than the polynomial
code. The main reason is that, due to the increased num-
ber of nonzero elements of coded matrices, the per-worker
computation time for these codes is increased. Moreover,
the data transmission time is also greatly increased, which
leads to additional I/O contention at the master node. We
further compare our proposed sparse code with the exist-
ing schemes from the point of view of the time required
to communicate inputs to each worker, compute the matrix
multiplication in parallel, fetch the required outputs, and
decode. Results can be seen in the supplementary material.

We finally compare our scheme with these schemes for other
type of matrices and larger matrices. The data statistics
can be seen in the supplementary material. The first three
data sets square, tall and fat are randomly generated
square, fat and tall matrices. We also consider 8 sparse
matrices from real data sets (Davis & Hu, 2011). We evenly
divide each input matrices into m = n = 4 submatrices and
number of stragglers is equal to 2. We match the column
dimension of A and row dimension of B using the smaller
one. The timing results are results averaged over 20 exper-
imental runs. Among all experiments, we can observe in
Table 2 that our proposed sparse code speeds up 1− 3× of
uncoded scheme and outperforms the existing codes, with
the effects being more pronounced for the real data sets.
The job completion of the LT code, random sparse, product
code is smaller than uncoded scheme in square, tall
and fat matrix and larger than uncoded scheme in those
real data sets.

6. Conclusion
In this paper, we proposed a new coded matrix multiplica-
tion scheme, which achieves near optimal recovery thresh-
old, low computation overhead, and decoding time linear
in the number of nonzero elements. Both theoretical and
simulation results exhibit order-wise improvement of the
proposed sparse code compared with the existing schemes.
In the future, we will extend this idea to the case of higher-
dimensional linear operations such as tensor operations.

Coded Sparse Matrix Multiplication

References
Bourgain, Jean, Vu, Van H, and Wood, Philip Matchett. On

the singularity probability of discrete random matrices.
Journal of Functional Analysis, 258(2):559–603, 2010.

Center, Ohio Supercomputer. Ohio supercomputer cen-
ter. http://osc.edu/ark:/19495/f5s1ph73,
1987.

Davis, Timothy A and Hu, Yifan. The university of florida
sparse matrix collection. ACM Transactions on Mathe-
matical Software (TOMS), 38(1):1, 2011.

Dean, Jeffrey and Barroso, Luiz André. The tail at scale.
Communications of the ACM, 56(2):74–80, 2013.

Dean, Jeffrey and Ghemawat, Sanjay. Mapreduce: simpli-
fied data processing on large clusters. Communications
of the ACM, 51(1):107–113, 2008.

Dutta, Sanghamitra, Cadambe, Viveck, and Grover, Pulkit.
Short-dot: Computing large linear transforms distribut-
edly using coded short dot products. In Advances In
Neural Information Processing Systems, pp. 2100–2108,
2016.

Erdos, Paul and Renyi, Alfred. On random matrices. Mag-
yar Tud. Akad. Mat. Kutató Int. Közl, 8(455-461):1964,
1964.

Frieze, Alan and Pittel, Boris. Perfect matchings in random
graphs with prescribed minimal degree. In Mathematics
and Computer Science III, pp. 95–132. Springer, 2004.

Lee, Kangwook, Lam, Maximilian, Pedarsani, Ramtin,
Papailiopoulos, Dimitris, and Ramchandran, Kannan.
Speeding up distributed machine learning using codes.
IEEE Transactions on Information Theory, 2017a.

Lee, Kangwook, Pedarsani, Ramtin, Papailiopoulos, Dim-
itris, and Ramchandran, Kannan. Coded computation
for multicore setups. In Information Theory (ISIT), 2017
IEEE International Symposium on, pp. 2413–2417. IEEE,
2017b.

Lee, Kangwook, Suh, Changho, and Ramchandran, Kan-
nan. High-dimensional coded matrix multiplication. In
Information Theory (ISIT), 2017 IEEE International Sym-
posium on, pp. 2418–2422. IEEE, 2017c.

Li, Songze, Maddah-Ali, Mohammad Ali, Yu, Qian, and
Avestimehr, A Salman. A fundamental tradeoff between
computation and communication in distributed comput-
ing. IEEE Transactions on Information Theory, 64(1):
109–128, 2018.

Luby, Michael. Tornado codes: Practical erasure codes
based on random irregular graphs. In International Work-
shop on Randomization and Approximation Techniques
in Computer Science, pp. 171–171. Springer, 1998.

Luby, Michael. Lt codes. In Foundations of Computer
Science, 2002. Proceedings. The 43rd Annual IEEE Sym-
posium on, pp. 271–280. IEEE, 2002.

Luby, Michael G, Mitzenmacher, Michael, Shokrollahi, Mo-
hammad Amin, and Spielman, Daniel A. Efficient erasure
correcting codes. IEEE Transactions on Information The-
ory, 47(2):569–584, 2001.

Schwartz, Jacob T. Fast probabilistic algorithms for ver-
ification of polynomial identities. Journal of the ACM
(JACM), 27(4):701–717, 1980.

Shokrollahi, Amin. Raptor codes. IEEE transactions on
information theory, 52(6):2551–2567, 2006.

Tandon, Rashish, Lei, Qi, Dimakis, Alexandros G, and
Karampatziakis, Nikos. Gradient coding: Avoiding strag-
glers in distributed learning. In International Conference
on Machine Learning, pp. 3368–3376, 2017.

Tao, Terence and Vu, Van. On the singularity probability
of random bernoulli matrices. Journal of the American
Mathematical Society, 20(3):603–628, 2007.

Walkup, David W. Matchings in random regular bipartite
digraphs. Discrete Mathematics, 31(1):59–64, 1980.

Wang, Sinong, Liu, Jiashang, Shroff, Ness, and Yang,
Pengyu. Fundamental limits of coded linear transform.
arXiv preprint arXiv:1804.09791, 2018.

Yu, Qian, Maddah-Ali, Mohammad, and Avestimehr,
Salman. Polynomial codes: an optimal design for high-
dimensional coded matrix multiplication. In Advances in
Neural Information Processing Systems, pp. 4406–4416,
2017.

Zaharia, Matei, Chowdhury, Mosharaf, Franklin, Michael J,
Shenker, Scott, and Stoica, Ion. Spark: Cluster computing
with working sets. HotCloud, 10(10-10):95, 2010.

http://osc.edu/ark:/19495/f5s1ph73

