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S:1 More about Method

Notations: X
(i)
ni×p is the data matrix for the i-th task, which

includes ni data samples being described by p different

feature variables. Then ntot =
K∑
i=1

ni is the total number

of data samples. We use notation Ω(i) for the precision
matrices and Σ̂(i) for the estimated covariance matrices.
Given a p-dimensional vector x = (x1, x2, . . . , xp)

T ∈ Rp,
we denote the l1-norm of x as ||x||1 =

∑
i

|xi|. ||x||∞ =

max
i
|xi| is the l∞-norm of x. Similarly, for a matrix X ,

let ||X||1 =
∑
i,j

|Xi,j | be the `1-norm of X and ||X||∞ =

max
i,j
|Xi,j | be the `∞-norm of X . ||X||F =

√∑
i

∑
j

X2
i,j

S:1.1 More about Solving JEEK

In Eq. (3.8), let ai = a+
i − a−i and b = b+ − b−. If

ai ≥ 0, then a+
i = ai and a−i = 0. If ai < 0, then a+

i = 0
and a−i = −ai. The b+ and b− have the similar definition.
Then Eq. (3.8) can be solved by the following small linear
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programming problem.

argmin
ai,b

∑
i

(wia
+
i + wia

−
i ) +Kwsb

+ +Kwsb
−

Subject to: a+
i − a

−
i + b+ − b− ≤ ci +

λn
min(wi, ws)

,

a+
i − a

−
i + b+ − b− ≥ ci −

λn
min(wi, ws)

,

a+
i , a

−
i , b

+, b− ≥ 0

i = 1, . . . ,K

S:1.2 JEEK is Group entry-wise and parallelizing
optimizable

JEEK can be easily paralleled. Essentially we just need to
revise the “For loop” of step 6 and step 7 in Algorithm 1 into,
for instance, “entry per machine” “entry per core”. Now
We prove that JEEK is group entry-wise and parallelizing
optimizable. We prove that our estimator can be optimized
asynchronously in a group entry-wise manner.

Theorem S:1.1. (JEEK is Group entry-wise optimizable)
Suppose we use JEEK to infer multiple inverse of covari-
ance matrices summarized as Ω̂tot. {[Ω̂(i)

I ]j,k, [Ω̂S ]j,k|i =
1, . . . ,K}. describes a group of K + 1 entries at (j, k)
position. Varying j ∈ {1, 2, . . . , p} and k ∈ {1, 2, . . . , p},
we have a total of p × p groups. If these groups are inde-
pendently estimated by JEEK, then we have,

p⋃
j=1

p⋃
k=1

{([Ω̂(i)
I ]j,k + [Ω̂S ]j,k)|i = 1, . . . ,K} = Ω̂tot.

(S:1–1)

Proof. Eq. (3.8) are the small sub-linear programming prob-
lems on each group of entries.

S:1.3 Extending JEEK with Structured Norms

We can add more flexibility into the JEEK by adding struc-
tured norms like those second normalization functions used
in JGL. This will extend JEEK to the following formulation:



Appendix: JEEK: Joint Elementary Estimator for Learning Multi-sGGM Using Additional Knowledge

 0

 0.2

 0.4

 0.6

 0.8

 0  1000  2000  3000

AU
C

 (0
 --

 1
)

Time (s)

AUC vs. Time - [perturb, varying K]

JEEK
JEEK-NK

W-SIMULE
JGL-perturb

 0

 0.2

 0.4

 0.6

 0.8

 0  1000  2000  3000  4000

AU
C

 (0
 --

 1
)

Time (s)

AUC vs. Time - [hub, varying K]

JEEK
JEEK-NK

W-SIMULE
JGL-hub

 40

 60

 80

 200  400  600  800  1000  1200  1400

M
at

ch
es

Time (s)

Matches vs. Time - [GeneInteract]

JEEK-PPI
JEEK-David

JEEK-NK
W-SIMULE-PPI

W-SIMULE-David

(a) (b) (c)
Figure S:1. (a)(b) Performance comparison on simulation Datasets about hubs: AUC vs. Time when varying number of tasks K. (a) is the
perturbed hub cases and (b) is for the co-hub cases. (c) Performance comparison on one real-world gene expression dataset with two cell
types. Two type knowledge are used to cover one fifth of the nodes, therefore each method corresponds to two performance points.
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Figure S:2. Experimental Results on Simulated Brain Datasets and on ABIDE. (a) Performance obtained on simulated brain samples
with respect to F1-score vs. computational time cost when varying the number of tasks K. (b) Performance obtained on simulated brain
samples with respect to F1-score vs. computational time cost when varying the number of samples n. In both (a) and (b) the smaller box
shows an enlarged view comparing JEEK and JEEK-NK points. All JEEK points are in the top left region indicating higher F1-score and
lower computational cost. (c). On ABIDE, JEEK outperforms the baseline methods in both classification accuracy and running time cost.
JEEK and JEEK-NK points in the top left region and JEEK points are higher in terms of y-axis positions.

argmin
ΩtotI ,ΩtotS

||W tot
I ◦ ΩtotI ||1 + ||W tot

S ◦ ΩtotS ||+ εR′(Ωtot)

Subject to: ||W tot
I ◦ (Ωtot − inv(Tv(Σ̂

tot)))||∞ ≤ λn
||W tot

S ◦ (Ωtot − inv(Tv(Σ̂
tot)))||∞ ≤ λn

R∗′(Ωtot) ≤ ελn
(S:1–2)

Here,R′ needs to consider Ωtot. We propose two ways to
solve Eq. (S:1–2). (1) The first is to use the parallelized
proximal algorithm directly. However, this requires the
kw-norm has a closed-form proximity, which has not been
discovered. (2) In the second strategy we assume each
weighted `1 norm (either Ω(i)I or ΩS) in the objective of
Eq. (S:1–2) as an indepedent regularizer. However, this
increases the number of proximities we need to calculate
per iteration to K + 1. Both two solutions make the extend-

JEEK algorithm less fast or less scalable. Therefore, We
choose not to introduce this work in this paper.

S:2 Connecting to the Bayesian statistics

Our approach has a close connection to a hierarchical
Bayesian model perspective. We show that the additional
knowledge weight matrices are also the parameters of the
prior distribution of Ω

(i)
I ,ΩS . In our formulationEq. (3.7),

W
(i)
I ,WS are the additional knowledge weight matrices.

From a hierarchical Bayesian view, the first level of the
prior is a Gaussian distribution and the second level is a
Laplace distribution. In the following section, we show that
W

(i)
I ,WS are also the parameters of Laplace distributions,

which is a prior distribution of Ω
(i)
I ,ΩS .

Since by the definition, Ω
(i)
I j,kΩSj,k = 0. There are only

two possible situations:
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Case I (Ω(i)
I j,k = 0):

X(i)|µ(i),Ω(i) ∼ N(µ(i), (Ω(i))−1) (S:2–1)

Ω
(i)
j,k|µ

(i),W
(i)
I j,k,WSj,k = ΩSj,k|µ(i),WSj,k (S:2–2)

p(ΩSj,k|µ(i),WSj,k)

∝ e−(WSj,k|ΩSj,k|)
(S:2–3)

Here ΩSj,k|µ(i),WSj,k follows a Laplace distribution with
mean 0. 1/WSj,k > 0 is the diversity parameter. The
larger WSj,k is, the distribution of ΩSj,k|µ(i),WSj,k more
likely concentrate on the 0. Namely, there will be the higher
density for ΩSj,k = 0|µ(i),WSj,k.

Case II (ΩSj,k = 0):

X(i)|µ(i),Ω(i) ∼ N(µ(i), (Ω(i))−1) (S:2–4)

Ω
(i)
j,k|µ

(i),W
(i)
I j,k,WSj,k = Ω

(i)
I j,k|µ

(i),W
(i)
I j,k

(S:2–5)

p(Ω
(i)
I j,k|µ

(i),W
(i)
I j,k)

∝ e−(W
(i)
I j,k

|Ω(i)
I j,k

|)
(S:2–6)

Here Ω
(i)
I j,k|µ

(i),W
(i)
I j,k follows a Laplace distribution

with mean 0. 1/W
(i)
I j,k > 0 is the diversity parameter. The

larger W (i)
I j,k is, the distribution of Ω

(i)
I j,k|µ

(i),W
(i)
I j,k

more likely concentrate on the 0. Namely, there will be the
higher density for Ω

(i)
I j,k = 0|µ(i),W

(i)
I j,k.

Therefore, we can combine the above two cases into the
following one equation.

p(Ω
(i)
j,k|µ

(i),W
(i)
I j,k,WSj,k)

∝ e−(W
(i)
I j,k

|Ω(i)
I j,k

|+WSj,k|ΩSj,k|)
(S:2–7)

Our final hierarchical Bayesian formulation consists of
the Eq. (S:2–1) and Eq. (S:2–7). This model is a gener-
alization of the model considered in the seminal paper on
the Bayesian lasso(Park & Casella, 2008). The parameters
W

(i)
I j,k,WSj,k in our general model are hyper-parameters

that specify the shape of the prior distribution of each edges

in Ω(i). The negative log-posterior distribution of Ω(i) is
now given by:

− log(P(Ω(i)|X(i), µ(i),W
(i)
I j,k,WSj,k))

∝ − log(det(Ω(i)−1
))+ < Ω(i), Σ̂(i) >

+
∑
j,k

(W
(i)
I j,k|Ω

(i)
I j,k|+WS |ΩSj,k|)

(S:2–8)

Eq. (S:2–8) follows a weighted variation of Eq. (2.1).

S:3 More about Theoretical Analysis
S:3.1 Theorems and Proofs of three properties of

kw-norm

In this sub-section, we prove the three properties of kw-
norm used in Section 3.2. We then provide the convergence
rate of our estimator based on these three properties.

• (i) kw-norm is a norm function if and only if any entries
in W tot

I and W tot
S do not equal to 0.

• (ii) If the condition in (i) holds, kw-norm is a decompos-
able norm.

• (iii) If the condition in (i) holds, the dual norm of kw-
norm isR∗(u) = max(||W tot

I ◦ u||∞, ||W tot
S ◦ u||∞).

S:3.1.1 NORM:

First we prove the correctness of the argument that kw-
norm is a norm function by the following theorem:

Theorem S:3.1. Eq. (3.6) is a norm if and only if ∀1 ≥
j, k ≤ p,W (i)

I jk 6= 0, and WSj,k 6= 0.

This theorem gives the sufficient and necessary conditions
to make kw-norm ( Eq. (3.6)) a norm function.

S:3.1.2 DECOMPOSABLE NORM:

Then we show that kw-norm is a decomposable norm
within a certain subspace. Before providing the theorem,
we give the structural assumption of the parameter.

(IS-Sparsity): The ’true’ parameter for Ωtot
∗ ( multi-

ple GGM structures) can be decomposed into two clear
structures–ΩtotI

∗ and ΩtotS
∗. ΩtotI

∗ is exactly sparse with ki
non-zero entries indexed by a support set SI and ΩtotS

∗ is
exactly sparse with ks non-zero entries indexed by a support
set SS . SI

⋂
SS = ∅. All other elements equal to 0 (in

(SI
⋃
SS)c).

Definition S:3.2. (IS-subspace)

M(SI
⋃
SS) = {θj = 0|∀j /∈ SI

⋃
SS} (S:3–1)

Theorem S:3.3. Eq. (3.6) is a decomposable norm with
respect toM and M̄⊥
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S:3.1.3 DUAL NORM OF KW-NORM:

To obtain the final formulation Eq. (3.7) and its statistical
convergence rate, we need to derive the dual norm formula-
tion of kw-norm.

Theorem S:3.4. The dual norm of kw-norm ( Eq. (3.6)) is

R∗(u) = max(||W tot
I ◦ u||∞, ||W tot

S ◦ u||∞) (S:3–2)

The details of the proof are as follows.

S:3.1.4 PROOF OF THEOREM (S:3.1)

Lemma S:3.5. For kw-norm, W tot
I j,k 6= 0 and W tot

S j,k 6=
0 equals to W tot

I j,k > 0 and W tot
S j,k > 0.

Proof. If W tot
I j,k < 0, then |W tot

I j,kΩtotI j,k| =

|W tot
I j,k||Ω

tot
I j,k| = | − W tot

I j,kΩtotI j,k|. Notice that
−W tot

I j,k > 0.

Proof. To prove the kw-norm is a norm, by Lemma (S:4.2)
the only thing we need to prove is that f(x) = ||W ◦ x||1
is a norm function if Wi,j > 0. 1. f(ax) = ||aW ◦ x||1 =
|a|||W ◦x||1 = |a|f(x). 2. f(x+ y) = ||W ◦ (x+ y)||1 =
||W ◦x+W ◦y||1 ≤ ||W ◦x||1 + ||W ◦y||1 = f(x)+f(y).
3. f(x) ≥ 0 4. If f(x) = 0, then

∑
|Wi,jxi,j | = 0. Since

Wi,j 6= 0, xi,j = 0. Therefore, x = 0. Based on the above,
f(x) is a norm function. Since summation of norm is still a
norm function, kw-norm is a norm function.

Futhurmore, we have the following Lemma:

Lemma S:3.6. The dual norm of f(x) is ||W ◦ x||∞.

Proof. f∗(u) = sup
x

<u,x>
||W◦x||1 = sup

x
{< u, x > |||W ◦

x||1 ≤ 1} = ||W ◦ u||∞.

S:3.1.5 PROOF OF THEOREM (S:3.3)

Proof. Assume u ∈M and v ∈ M̄⊥,R(u+v) = ||W tot
I ◦

(uI + vI)||1 + ||W tot
S ◦ (uS + vS)||1 = ||W tot

I ◦ uI ||1 +
||W tot

S ◦ uS ||1 + ||W tot
I ◦ vI ||1 + ||W tot

S ◦ vS ||1 = R(u) +
R(v). Therefore, kw-norm is a decomposable norm with
respect to the subspace pair (M,M̄⊥).

S:3.1.6 PROOF OF THEOREM (S:3.4)

Proof. SupposeR(θ) =
∑
α∈I

cαRα(θα), where
∑
α∈I

θα = θ.

Then the dual normR∗(·) can be derived by the following

equation.

R∗(u) = sup
θ

< θ, u >

θ

= sup
θα

∑
α
< u, θα >∑

α
cαRα(θα)

= sup
θα

∑
α
< u/cα, θα >∑
α
Rα(θα)

≤ sup
θα

∑
α
R∗α(u/cα)R(θα)∑
α
Rα(θα)

≤ max
α∈I
R∗α(u)/cα.

(S:3–3)

Therefore by Lemma (S:3.6), the dual norm of kw-norm is
R∗(u) = max(||W tot

I ◦ u||∞, ||W tot
S ◦ u||∞).

S:3.2 Appendix: Proofs of Theorems about All Error
Bounds of JEEK

S:3.2.1 DERIVATION OF THEOREM (4.1)

JEEK formulation Eq. (3.7) and EE-sGGM Eq. (2.5) are
special cases of the following generic formulation:

argmin
θ
R(θ)

subject to:R∗(θ − θ̂n) ≤ λn
(S:3–4)

WhereR∗(·) is the dual norm ofR(·),

R∗(v) := sup
u6=0

< u, v >

R(u)
= sup
R(u)≤1

< u, v > . (S:3–5)

Connecting Eq. (3.7) and Eq. (S:3–4),R() is the kw-norm.
θ̂n represents a close approximation of θ∗.

Following the unified framework (Negahban et al., 2009),
we first decompose the parameter space into a subspace
pair(M,M̄⊥), where M̄ is the closure of M. Here
M̄⊥ := {v ∈ Rp| < u, v >= 0,∀u ∈ M̄}. M is the
model subspace that typically has a much lower dimen-
sion than the original high-dimensional space. M̄⊥ is the
perturbation subspace of parameters. For further proofs,
we assume the regularization function in Eq. (S:3–4) is
decomposable w.r.t the subspace pair (M,M̄⊥).

(C1)R(u+ v) = R(u) +R(v), ∀u ∈M,∀v ∈ M̄⊥.

(Negahban et al., 2009) showed that most regularization
norms are decomposable corresponding to a certain sub-
space pair.
Definition S:3.7. Subspace Compatibility Constant
Subspace compatibility constant is defined as Ψ(M, | · |) :=

sup
u∈M\{0}

R(u)
|u| which captures the relative value between

the error norm | · | and the regularization functionR(·).
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For simplicity, we assume there exists a true parameter θ∗

which has the exact structure w.r.t a certain subspace pair.
Concretely:

(C2) ∃ a subspace pair (M,M̄⊥) such that the true param-
eter satisfies projM⊥(θ∗) = 0

Then we have the following theorem.

Theorem S:3.8. Suppose the regularization function in
Eq. (S:3–4) satisfies condition (C1), the true parameter
of Eq. (S:3–4) satisfies condition (C2), and λn satisfies
that λn ≥ R∗(θ̂n − θ∗). Then, the optimal solution θ̂ of
Eq. (S:3–4) satisfies:

R∗(θ̂ − θ∗) ≤ 2λn (S:3–6)

||θ̂ − θ∗||2 ≤ 4λnΨ(M̄) (S:3–7)

R(θ̂ − θ∗) ≤ 8λnΨ(M̄)2 (S:3–8)

For the proposed JEEK model,R(Ωtot) = ||W tot
I ◦ΩtotI ||1+

||W tot
S ◦ ΩtotS ||1. Based on the results in(Negahban et al.,

2009), Ψ(M̄) =
√
ki + ks, where ki and ks are the to-

tal number of nonzero entries in ΩtotI and ΩtotS . Using
R(Ωtot) = ||W tot

I ◦ ΩtotI ||1 + ||W tot
S ◦ ΩtotS ||1 in Theo-

rem (S:3.8), we have the following theorem (the same as
Theorem (4.1)),

Theorem S:3.9. Suppose thatR(Ωtot) = ||W tot
I ◦ΩtotI ||1+

||W tot
S ◦ ΩtotS ||1 and the true parameter Ωtot

∗ satisfy the
conditions (C1)(C2) and λn ≥ R∗(Ω̂tot − Ωtot

∗
), then the

optimal point Ω̂tot of Eq. (3.7) has the following error
bounds:

max(||W tot
I ◦ (Ω̂tot − Ωtot

∗
)||∞, ||W tot

S ◦ (Ω̂tot − Ωtot
∗||∞)

≤ 2λn

||Ω̂tot − Ωtot
∗||F ≤ 4

√
ki + ksλn

||W tot
I ◦ (Ω̂totI − ΩtotI

∗
)||1 + ||W tot

S ◦ (Ω̂totS − ΩtotS
∗
)||1

≤ 8(ki + ks)λn
(S:3–9)

S:3.2.2 PROOF OF THEOREM (S:3.8)

Proof. Let δ := θ̂ − θ∗ be the error vector that we are
interested in.

R∗(θ̂ − θ∗) = R∗(θ̂ − θ̂n + θ̂n − θ∗)

≤ R∗(θ̂n − θ̂) +R∗(θ̂n − θ∗) ≤ 2λn
(S:3–10)

By the fact that θ∗M⊥ = 0, and the decomposability of R

with respect to (M,M̄⊥)

R(θ∗)

= R(θ∗) +R[ΠM̄⊥(δ)]−R[ΠM̄⊥(δ)]

= R[θ∗ + ΠM̄⊥(δ)]−R[ΠM̄⊥(δ)]

≤ R[θ∗ + ΠM̄⊥(δ) + ΠM̄(δ)] +R[ΠM̄(δ)]

−R[ΠM̄⊥(δ)]

= R[θ∗ + δ] +R[ΠM̄(δ)]−R[ΠM̄⊥(δ)]

(S:3–11)

Here, the inequality holds by the triangle inequality of norm.
Since Eq. (S:3–4) minimizesR(θ̂), we haveR(θ∗ + ∆) =

R(θ̂) ≤ R(θ∗). Combining this inequality with Eq. (S:3–
11), we have:

R[ΠM̄⊥(δ)] ≤ R[ΠM̄(δ)] (S:3–12)

Moreover, by Hlder’s inequality and the decomposability of
R(·), we have:

||∆||22 = 〈δ, δ〉 ≤ R∗(δ)R(δ) ≤ 2λnR(δ)

= 2λn[R(ΠM̄(δ)) +R(ΠM̄⊥(δ))] ≤ 4λnR(ΠM̄(δ))

≤ 4λnΨ(M̄)||ΠM̄(δ)||2
(S:3–13)

where Ψ(M̄) is a simple notation for Ψ(M̄, || · ||2).

Since the projection operator is defined in terms of || · ||2
norm, it is non-expansive: ||ΠM̄(∆)||2 ≤ ||∆||2. Therefore,
by Eq. (S:3–13), we have:

||ΠM̄(δ)||2 ≤ 4λnΨ(M̄), (S:3–14)

and plugging it back to Eq. (S:3–13) yields the error bound
Eq. (S:3–7).

Finally, Eq. (S:3–8) is straightforward from Eq. (S:3–12)
and Eq. (S:3–14).

R(δ) ≤ 2R(ΠM̄(δ))

≤ 2Ψ(M̄)||ΠM̄(δ)||2 ≤ 8λnΨ(M̄)2.
(S:3–15)

S:3.2.3 CONDITIONS OF PROVING ERROR BOUNDS OF
JEEK

JEEK achieves similar convergence rates as the
SIMULE(Wang et al., 2017b) (W-SIMULE with no
additional knowledge) and FASJEM estimator (Wang et al.,
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2017a). The other multiple sGGMs estimation methods
have not provided such convergence rate analysis.

To derive the statistical error bound of JEEK, we need to
assume that inv(Tv(Σ̂

tot)) are well-defined. This is en-
sured by assuming that the true Ω(i)∗ satisfy the following
conditions (Yang et al., 2014):

(C-MinInf−Σ): The true Ω(i)∗ Eq. (3.7) have
bounded induced operator norm, i.e., |||Ω(i)∗|||∞ :=

sup
w 6=0∈Rp

||Σ(i)∗w||∞
||w||∞ ≤ κ1 .

(C-Sparse-Σ): The true covariance matrices Σ(i)∗ are
“approximately sparse” (following (Bickel & Levina,
2008)). For some constant 0 ≤ q < 1 and c0(p),

max
i

p∑
j=1

|[Σ(i)∗]ij |q ≤ c0(p). 1

We additionally require inf
w 6=0∈Rp

||Ω(i)∗w||∞
||w||∞ ≥ κ2.

S:3.2.4 PROOF OF COROLLARY (4.2)

Proof. In the following proof, we re-denote the following

two notations: Σtot :=


Σ(1) 0 · · · 0

0 Σ(2) · · · 0
...

...
. . .

...
0 0 · · · Σ(K)


and

Ωtot :=


Ω(1) 0 · · · 0

0 Ω(2) · · · 0
...

...
. . .

...
0 0 · · · Ω(K)


The condition (C-SparseΣ) and condition (C-MinInfΣ)
also hold for Ω∗tot and Σ∗tot. In order to utilize Theo-
rem (S:3.9) for this specific case, we only need to show
that ||Ω∗tot − [Tν(Σ̂tot)]

−1||∞ ≤ λn for the setting of λn in
the statement:

||Ω∗tot − [Tν(Σ̂tot)]
−1||∞

= ||[Tν(Σ̂tot)]
−1(Tν(Σ̂tot)Ω

∗
tot − I)||∞

≤ |||[Tν(Σ̂tot)w]|||∞||Tν(Σ̂tot)Ω
∗
tot − I||∞

= |||[Tν(Σ̂tot)]
−1|||∞||Ω∗tot(Tν(Σ̂tot)− Σ∗tot)||∞

≤ |||[Tν(Σ̂tot)]
−1|||∞|||Ω∗tot|||∞||Tν(Σ̂tot)− Σ∗tot||∞.

(S:3–16)

We first compute the upper bound of |||[Tν(Σ̂tot)]
−1|||∞.

By the selection ν in the statement, Lemma (S:4.2)

1This indicates for some positive constant d, [Σ(i)∗]jj ≤ d
for all diagonal entries. Moreover, if q = 0, then this condition
reduces to Σ(i)∗.

and Lemma (S:4.3) hold with probability at least 1 −
4/p′τ−2. Armed with Eq. (S:4–9), we use the triangle in-
equality of norm and the condition (C-SparseΣ): for any
w,

||Tν(Σ̂tot)w||∞ = ||Tν(Σ̂tot)w − Σw + Σw||∞
≥ ||Σw||∞ − ||(Tν(Σ̂tot)− Σ)w||∞
≥ κ2||w||∞ − ||(Tν(Σ̂tot)− Σ)w||∞
≥ (κ2 − ||(Tν(Σ̂tot)− Σ)w||∞)||w||∞

(S:3–17)

Where the second inequality uses the condition (C-SparseΣ).
Now, by Lemma (S:4.2) with the selection of ν, we have

|||Tν(Σ̂tot)− Σ|||∞ ≤ c1(
log(Kp′)

ntot
)(1−q)/2c0(p)

(S:3–18)

where c1 is a constant related only on τ and maxi Σii.
Specifically, it is defined as 6.5(16(maxi Σii)

√
10τ)1−q.

Hence, as long as ntot > ( 2c1c0(p)
κ2

)
2

1−q log p′ as stated,

so that |||Tν(Σ̂tot) − Σ|||∞ ≤ κ2

2 , we can con-
clude that ||Tν(Σ̂tot)w||∞ ≥ κ2

2 ||w||∞, which implies
|||[Tν(Σ̂tot)]

−1|||∞ ≤ 2
κ2

.

The remaining term in Eq. (S:3–16) is ||Tν(Σ̂tot)−Σ∗tot||∞;
||Tν(Σ̂tot) − Σ∗tot||∞ ≤ ||Tν(Σ̂tot) − Σ̂tot||∞ + ||Σ̂tot −
Σ∗tot||∞. By construction of Tν(·) in (C-Thresh) and
by Lemma (S:4.3), we can confirm that ||Tν(Σ̂tot)−Σ̂tot||∞
as well as ||Σ̂tot − Σ∗tot||∞ can be upper-bounded by ν.

Therefore,

max(||W tot
I ◦ (Ωtot

∗ − inv(Tv(Σ̂
tot)))||∞,

||W tot
S ◦ (Ωtot

∗ − inv(Tv(Σ̂
tot)))||∞)

≤ O(max max
j,k

(W tot
I j,k,W

tot
S j,k)

√
log(Kp)

ntot
)

(S:3–19)

By combining all together, we can confirm that the selection
of λn satisfies the requirement of Theorem (S:3.9), which
completes the proof.

S:4 Appendix: More Background of Proxy
Backward mapping and Theorems of Tv

Being Invertible
The first row of Figure 1 summarizes the EE-sGGMs. Two
important concepts:
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(1) Backward Mapping: The Gaussian distribution is nat-
urally an exponential-family distribution. Based on (Wain-
wright & Jordan, 2008), learning an exponential family
distribution from data means to estimate its canonical pa-
rameter. For an exponential family distribution, computing
the canonical parameter through vanilla graphical model
MLE can be expressed as a backward mapping (the first
step in Figure 1). For a Gaussian, the backward mapping is
easily computable as the inverse of the sample covariance
matrix. More details in Section (S:4.1).

(2) Proxy Backward Mapping: When being high-
dimensional, we can not compute the backward mapping
of Gaussian through the inverse of the sample covariance
matrix. Now the key is to find a closed-form and statisti-
cally guaranteed estimator as the proxy backward mapping
under high-dimensional cases. By the conclusion given by
the EE-sGGM, we choose {({[Tv(Σ̂(i))]−1)} as the proxy
backward mapping for {Ω(i)}.

[Tv(A)]ij := ρv(Aij) (S:4–1)

where ρv(·) is chosen to be a soft-thresholding function.

S:4.1 More About Background: backward mapping
for an exponential-family distribution:

The solution of vanilla graphical model MLE can be ex-
pressed as a backward mapping(Wainwright & Jordan,
2008) for an exponential family distribution. It estimates
the model parameters (canonical parameter θ) from certain
(sample) moments. We provide detailed explanations about
backward mapping of exponential families, backward map-
ping for Gaussian special case and backward mapping for
differential network of GGM in this section.

Backward mapping:Essentially the vanilla graphical
model MLE can be expressed as a backward mapping that
computes the model parameters corresponding to some
given moments in an exponential family distribution. For
instance, in the case of learning GGM with vanilla MLE,
the backward mapping is Σ̂−1 that estimates Ω from the
sample covariance (moment) Σ̂.

Suppose a random variableX ∈ Rp follows the exponential
family distribution:

P(X; θ) = h(X)exp{< θ, φ(θ) > −A(θ)} (S:4–2)

Where θ ∈ Θ ⊂ Rd is the canonical parameter to be
estimated and Θ denotes the parameter space. φ(X) de-
notes the sufficient statistics as a feature mapping function
φ : Rp → Rd, and A(θ) is the log-partition function. We
then define mean parameters v as the expectation of φ(X):
v(θ) := E[φ(X)], which can be the first and second mo-
ments of the sufficient statistics φ(X) under the exponential

family distribution. The set of all possible moments by the
moment polytope:

M = {v|∃p is a distribution s.t. Ep[φ(X)] = v} (S:4–3)

Mostly, the graphical model inference involves the task
of computing moments v(θ) ∈ M given the canonical
parameters θ ∈ H . We denote this computing as forward
mapping :

A : H →M (S:4–4)

The learning/estimation of graphical models involves the
task of the reverse computing of the forward mapping,
the so-called backward mapping (Wainwright & Jordan,
2008). We denote the interior of M as M0. backward
mapping is defined as:

A∗ :M0 → H (S:4–5)

which does not need to be unique. For the exponential
family distribution,

A∗ : v(θ)→ θ = ∇A∗(v(θ)). (S:4–6)

Where A∗(v(θ)) = sup

θ∈ H
< θ, v(θ) > −A(θ).

Backward Mapping: Gaussian Case If a random variable
X ∈ Rp follows the Gaussian Distribution N(µ,Σ). then
θ = (Σ−1µ,− 1

2Σ−1). The sufficient statistics φ(X) =

(X,XXT ), h(x) = (2π)−
k
2 , and the log-partition function

A(θ) =
1

2
µTΣ−1µ+

1

2
log(|Σ|) (S:4–7)

When performing the inference of Gaussian Graphical Mod-
els, it is easy to estimate the mean vector v(θ), since it
equals to E[X,XXT ].

When learning the GGM, we estimate its canonical parame-
ter θ through vanilla MLE. Because Σ−1 is one entry of θ
we can use the backward mapping to estimate Σ−1.

θ = (Σ−1µ,−1

2
Σ−1) = A∗(v) = ∇A∗(v)

= ((Eθ[XXT ]− Eθ[X]Eθ[X]T )−1Eθ[X],

−1

2
(Eθ[XXT ]− Eθ[X]Eθ[X]T )−1).

(S:4–8)

By plugging in Eq. (S:4–7) into Eq. (S:4–6), we get the back-
ward mapping of Ω as (Eθ[XXT ]− Eθ[X]Eθ[X]T )−1) =

Σ̂−1, easily computable from the sample covariance matrix.

S:4.2 Theorems of Tv Being Invertible

Based on (Yang et al., 2014) for any matrix A, the element
wise operator Tv is defined as:

[Tv(A)]ij =

{
Aii + v if i = j

sign(Aij)(|Aij | − v) otherwise, i 6= j
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Suppose we apply this operator Tv to the sample covariance

matrix
XTX

n
to obtain Tv(

XTX

n
). Then, Tv(

XTX

n
) un-

der high dimensional settings will be invertible with high
probability, under the following conditions:
Condition-1 (Σ-Gaussian ensemble) Each row of the de-
sign matrix X ∈ Rn×p is i.i.id sampled from N(0,Σ).
Condition-2 The covariance Σ of the Σ-Gaussian ensem-
ble is strictly diagonally dominant: for all row i, δi :=
Σii − Σj 6=i ≥ δmin > 0 where δmin is a large enough

constant so that ||Σ||∞ ≤ 1

δmin
.

This assumption guarantees that the matrix Tv(
XTX

n
) is

invertible, and its induced `∞ norm is well bounded. Then
the following theorem holds:

Theorem S:4.1. Suppose Condition-1 and Condition-2

hold. Then for any v ≥ 8(maxiΣii)
√

(
10τ log p′

n
), the

matrix Tv(
XTX

n
) is invertible with probability at least

1− 4/p′
τ−2 for p′ := max{n, p} and any constant τ > 2.

Then we provide the error bound of Tv in the first lemma
of Section (S:4.3) and use it in deriving the error bound of
JEEK.

S:4.3 Useful lemma(s) of Error Bounds of (Proxy)
Backward Mapping

Lemma S:4.2. (Theorem 1 of (Rothman et al., 2009)). Let
δ be maxij |[X

TX
n ]ij − Σij |. Suppose that ν > 2δ. Then,

under the conditions (C-SparseΣ), and as ρv(·) is a soft-
threshold function, we can deterministically guarantee that
the spectral norm of error is bounded as follows:

|||Tv(Σ̂)− Σ|||∞ ≤ 5ν1−qc0(p) + 3ν−qc0(p)δ (S:4–9)

Lemma S:4.3. (Lemma 1 of (Ravikumar et al., 2011)). Let
A be the event that

||X
TX

n
− Σ||∞ ≤ 8(max

i
Σii)

√
10τ log p′

n
(S:4–10)

where p′ := max(n, p) and τ is any constant greater than
2. Suppose that the design matrix X is i.i.d. sampled from
Σ-Gaussian ensemble with n ≥ 40 maxi Σii. Then, the
probability of event A occurring is at least 1− 4/p′τ−2.

S:5 Design WS and W
(i)
I : connections with

related work and real-world
applications

In this section, we showcase with specific examples that
our proposed model JEEK can easily incorporate edge-level
(like distance) as well as node-based (like hubs or groups)
knowledge for the joint estimation of multiple graphs. To
this end, we introduce four different choices of W tot

S and
W tot
I in our formulation Eq. (3.7). By simply designing dif-

ferent choices of W tot
S and W tot

I , we can express different
kinds of additional knowledge explicitly without changing
the optimization algorithm.

Specifically, we design WS and W (i)
I for cases like:

• (1) the additional knowledge is available in the form of
a p ∗ p matrix W . For instance distance matrix among
brain regions in neuroscience study belongs to this type;

• (2) the existing knowledge is not in the form of matrix
about nodes. We need to design W for such cases, for
example the information of known hub nodes or the in-
formation of how nodes fall into groups (e.g., genes be-
longing to the same pathway or locations).

For the second kind, we showcase three different designs of
weight matrices for representing (a) known co-Hub nodes,
(b) perturbed hub nodes, and (c) node grouping information.

The design of knowledge matrices is loosely related to the
different structural assumptions used by he JGL studies as
((Mohan et al., 2013), (Danaher et al., 2013)). For exam-
ple, JGL can use specially designed norms like the one
proposed in (Mohan et al., 2013) to push multiple graphs to
have a similar set of nodes as hubs. However JGL can not
model additional knowledge like a specific set of nodes are
hub nodes (like we know node j is a hub node). Differently,
JEEK can design {W (i)

I ,WS} for incorporating such knowl-
edge. Essentially JEEK is complementary to JGL because
they capture different type of prior information.

S:5.1 Case study I: Knowledge as matrix form like a
distance matrix or some known edges

The first example we consider is exploiting a spatial prior
to jointly estimate brain connectivity for multiple subject
groups. Over time, neuroscientists have gathered consider-
able knowledge regarding the spatial and anatomical infor-
mation underlying brain connectivity (i.e. short edges and
certain anatomical regions are more likely to be connected
(Watts & Strogatz, 1998)). Previous studies enforce these
priors via a matrix of weights, W , corresponding to edges.
To use our proposed model JEEK for such tasks, we can
similarly choose W = W

(i)
I = WS in Eq. (3.7)).
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Figure S:3. co-hub. Top: An example of the co-hub node structure.
Bottom: The designed WS for the co-hub structure case (white
off-diagonal entries are 1).

S:5.2 Case study II: Knowledge of co-hub nodes

The structure assumption we consider is graphs with
co-hub nodes. Namely, there exists a set of nodes
NId = {j|j ∈ {1, 2, . . . , p}} such that Ω

(i)
j,k 6= 0,∀i ∈

{1, 2, . . . ,K} and k ∈ {1, . . . , p}. The above sub-figure of
Figure S:6 is an example of the co-hub nodes.

A so-called JGL-hub (Mohan et al., 2013) estimator chooses
R′(·) =

∑
i<i′

Pq(Ω
(i)−Ω(i′)) in Eq. (5.2) to account for the

co-hub structure assumption. Here Pq(Θ1,Θ2, . . . ,Θk) =
1/2||Θ1, . . . ,Θk||`1,`q . Θi is a symmetric matrix and || ·
||`1,`q is the notation of `1, `q-norm. JGL-hub formulation
needs a complicated ADMM solution with computationally
expensive SVD steps.

We design WS and W (i)
I for the co-hub type knowledge

in JEEK via: (1) We initialize {W (i)
I ,WS} with 1p×p; (2)

WSj,k = 1
γ ,∀j ∈ NId and k ∈ 1, . . . , p where γ is a

hyperparameter. Therefore, the smaller weights for the edge
connecting to the node j of all the graphs enforce the co-hub
structure.; (3). After this process, each entry of {W (i)

I ,WS}
equals to either 1

γ or 1. The below sub-figure of Figure S:6
is an example of the designed WS .

S:5.3 Case study III: Knowledge of the perturbed
hub nodes

Another structure assumption we study is graphs with
perturbed nodes. Namely, there exists a set of nodes

Figure S:4. Perturb hub nodes. Top: An example of the perturbed
node structure. Bottom: The designed WI for the perturbed case.
(white off-diagonal entries are 1.)

NId = {j|j ∈ {1, 2, . . . , p}} so that there exists i, i′

Ω
(i)
j,k 6= 0, and Ω

(i′)
j,k = 0,∀k ∈ {1, . . . , p}. The above sub-

figure of Figure S:7 is an example of the perturbed nodes.
A so-called JGL-perturb (Mohan et al., 2013) estimator
chose R′(·) =

∑
i<i′

Pq((Ω
(1) − diag(Ω(1))), . . . , (Ω(K) −

diag(Ω(K)))) in Eq. (5.2). Here Pq(·) has the same defini-
tion as mentioned previously. This JGL-perturb formulation
also needs a complicated ADMM solution with computa-
tionally expensive SVD steps.

To design WS and W
(i)
I for this type of knowledge in

JEEK, we use a similar strategy as the above strategy: (1)
We initialize {W (i)

I ,WS} with 1p×p; we let W (i)
I j,k =

1
γ ,W

(i′)
I j,k = γ,∀j ∈ NId and k ∈ 1, . . . , p. Therefore,

the different weights for the edge connecting to the node
j in different W (i)

I enforce the node-perturbed structure. ;
(3). After this process, each entry of {W (i)

I ,WS} equals to
either 1

γ ,γ or 1. The below sub-figure of Figure S:7 is an

example of the designed {W (i)
I }.

S:5.4 Case study IV: Knowledge of group
information about nodes

To design WS and W (i)
I for the group information about

a set of nodes, we use a simple three-step strategy: (1)
We initialize {W (i)

I ,WS} with 1p×p; (2) We let WSj,k =
1
γ ,∀(j, k) ∈ Id where γ is a hyperparameter. Therefore, the
smaller weights for the edge (j, k) in all the graphs favors
the edges among nodes in the same group. ; (3). After this
process, each entry of {W (i)

I ,WS} equals to either 1
γ or 1.

The below sub-figure of Figure S:5 is an example of the
designed WS (extra knowledge is that X2, X3, X4 belong
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to the same group).

Figure S:5. Co-group example case. Top: An example of the co-
group node structure. Bottom: The designed WS for the case.
(white off-diagonal entries are 1.)

S:6 More about Experimental Setup
S:6.1 Experimental Setup

On four types of datasets, we focus on empirically evalu-
ating JEEK with regard to three aspects: (i) effectiveness,
computational speed and scalability in brain connectivity
simulation data; (ii) flexibility in incorporating different
types of knowledge of known hub nodes in graphs; (iii) ef-
fectiveness and computational speed for brain connectivity
estimation from real-world fMRI.

S:6.2 Evaluation Metrics

• AUC-score: The edge-level false positive rate (FPR) and
true positive rate (TPR) are used to measure the difference
between the true graphs and the predicted graphs. We
obtain FPR vs. TPR curve for each method by tuning
over a range of its regularization parameter. We use the
area under the FPR -TPR curve (AUC-Score) to compare

the predicted versus true graph. Here, FPR =
FP

FP + TN

and TPR =
TP

FN + TP
. TP (true positive) and TN (true

negative) means the number of true edges and non-edges
correctly estimated by the predicted network respectively.
FP (false positive) and FN (false negative) are the number
of incorrectly predicted nonzero entries and zero entries
respectively.

• F1-score: We first use the edge-level F1-score to com-
pare the predicted versus true graph. Here, F1 =
2·Precision·Recall
Precision+Recall , where Precision = TP

TP+FP and Recall =
TP

TP+FN . The better method achieves a higher F1-score.

• Time Cost: We use the execution time (measured in sec-
onds or log(seconds)) for a method as a measure of its
scalability. To ensure a fair comparison, we try 30 differ-
ent λn (or λ2) and measure the total time of execution for
each method. The better method uses less time2

Evaluations: For the first experiment on brain simulation
data, we evaluate JEEK and the baseline methods on F1-
score and running time cost. For the second experiment,
we use AUC-score and running time cost.3 For the third
experiment, our evaluation metrics include classification
accuracy, likelihood and running time cost.

• The first set of experiments evaluates the speed and scal-
ability of our model JEEK on simulation data imitating
brain connectivity. We compare both the estimation per-
formance and computational time of JEEK with the base-
lines in multiple simulated datasets.

• In the second experiment, we show JEEK’s ability to in-
corporate knowledge of known hubs in multiple graphs.
We also compare the estimation performance and scala-
bility of JEEK with the baselines in multiple simulated
datasets.

• Thirdly, we evaluate the ability to import additional
knowledge for enhancing graph estimation in a real world
dataset. The dataset used in this experiment is a human
brain fMRI dataset with two groups of subjects: autism
and control. Our choice of this dataset is motivated by
recent literature in neuroscience that has suggested many
known weights between different regions in human brain
as the additional knowledge.

S:6.3 Hyper-parameters:

We need to tune four hyper-parameters v, λn, λ2 and γ:

• v is used for soft-thresholding in JEEK. We choose v from
the set {0.001i|i = 1, 2, . . . , 1000} and pick a value that
makes Tv(Σ̂(i)) invertible.

• λn is the main hyper-parameter that controls the sparsity
of the estimated network. Based on our convergence rate

analysis in Section 4, λn ≥ C
√

logKp
ntot

where ntot = Kn

and n = ni. Accordingly, we choose λn from a range of

{0.01×
√

logKp
ntot

× i|i ∈ {1, 2, 3, . . . , 30}}.

2The machine that we use for experiments is an AMD 64-core
CPU with a 256GB memory.

3We cannot use AUC-score for the first set of experiments as
the baseline NAK only gives us the best adjacency matrix after
tuning over their hyperparameters. It does not provide an option
for tuning the λn.
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• λ2 controls the regularization of the second penalty func-
tion in JGL-type estimators. We tune λ2 from the set
{0.01, 0.05, 0.1} for all experiments and pick the one
that gives the best results.

• γ is a hyperparameter used to design the W (i)
I ,WS (5).

The value of γ intuitively indicates the confidence of the
additional knowledge weights. In the second experiment,
we choose γ = {2, 4, 10}.

S:7 More about Experimental Results
S:7.1 More Experiment: Simulate Samples with

Known Hubs as Knowledge

In this set of experiments, we show empirically JEEK’s abil-
ity to model knowledge of known hub nodes across multiple
sGGMs and its advantages in scalability and effectiveness.
We generate multiple simulated Gaussian datasets for both
the co-hub and perturbed-hub graph structures.

Simulation Protocol to generate simulated datasets: We
generate multiple sets of synthetic multivariate-Gaussian
datasets. First, we generate random graphs following the
Random Graph Model (Rothman et al., 2008). This model
assumes Ω(i) = B

(i)
I + BS + δI , where each off-diagonal

entry in B(i) is generated independently and equals 0.5
with probability 0.1i and 0 with probability 1− 0.1i. The
shared part BS is generated independently and equal to
0.5 with probability 0.1 and 0 with probability 0.9. δ is
selected large enough to guarantee positive definiteness. We
generate cohub and perturbed structure simulations, using
the following data generation models:

• Random Graphs with cohub nodes: After we gener-
ate the random graphs using the aforementioned Ran-
dom Graph Model, we randomly generate a set of nodes
NId = {j|j ∈ {1, 2, . . . , p}} as the cohub nodes among
all the random graphs. The cardinal number of this set
equals to 5%p. For each of these nodes j, we randomly
select 90% edges Ej = {(j, k)|k ∈ {1, 2, . . . , p}} to
be included in the graph. Then we set Ω

(i)
j,k = Ω

(i)
k,j =

0.5,∀i ∈ {1, 2, . . . ,K} and (j, k) ∈ Ej .

• Random Graphs with perturbed nodes: After we gen-
erate the random graphs using the aforementioned Ran-
dom Graph Model, we randomly generate a set of nodes
NId = {j|j ∈ {1, 2, . . . , p}} as the perturbed hub
nodes for the random graphs. The cardinal number of
this set equals to 5%p. For all graphs {Ω(i)|i is odd},
for each of these nodes j ∈ NId, we randomly se-
lect 90% edges Ej = {(j, k)|k ∈ {1, 2, . . . , p}} to
be included in the graph. We set Ω

(i)
j,k = Ω

(i)
k,j =

0.5,∀ odd i ∈ {1, 2, . . . ,K} and (j, k) ∈ Ej . For all
graphs {Ω(i)|i is even} and nodes j ∈ NId, we ran-
domly select 10% edgesE

′

j = {(j, k)|k ∈ {1, 2, . . . , p}}

to be included in the graph. We set Ω
(i)
j,k = Ω

(i)
k,j =

0.5,∀ even i ∈ {1, 2, . . . ,K} and (j, k) ∈ E′j . This cre-
ates a perturbed node structure in the multiple graphs.

Experimental baselines:We employ JGL-node for cohub
and perturbed hub node structure (JGL-hub and JGL-perturb
respectively) and W-SIMULE as the baselines for this set
of experiments. The weights in {W tot

I ,W tot
S } are designed

by the strategy mentioned in Section S:5.

Experiment Results: We assess the performance of JEEK
in terms of effectiveness (AUC score) and scalability (com-
putational time cost) through baseline comparison as fol-
lows:

(a) Effectiveness: We plot the AUC-score for a number
of multiple simulated datasets generated by varying the
number of features p, the number of tasks K and the num-
ber of samples n. We calculate AUC by varying λn. For
the JGL estimator, we additionally vary λ2 and select the
best AUC (section S:6.1). In Figure S:6 (a) and Figure S:6
(b), we plot the AUC-Score for the cohub node structure
vs varying p and K, respectively. Figure S:7 (a) and Fig-
ure S:7 (b) plot the same for the perturbed node structure.
In Figure S:6 (a) and Figure S:7 (a), we vary p in the set
{100, 200, 300, 400, 500} and set K = 2 and n = p/2. For
p > 300 and n = p/2, W-SIMULE takes more than one
month and JGL takes more than one day. Therefore we can
not show their results for p > 300. For both the cohub and
perturbed node structures, JEEK consistently achieves bet-
ter AUC-score than the baseline methods as p is increased.
For Figure S:6(b) and Figure S:7 (b), we vary K in the
set {2, 3, 4} and set p = 200 and n = p/2. JEEK consis-
tently has a higher AUC-score than the baselines JGL and
W-SIMULE as K is increased.

(b) Scalability: In Figure S:6 (c) and (d), we plot the com-
putational time cost for the cohub node structure vs the
number of features p and the number of tasks K, respec-
tively. Figure S:7 (c) and (d) plot the same for the perturbed
node structure. We interpolate the points of computation
time of each estimator into curves. For each simulation
case, the computation time for each estimator is the sum-
mation of a method’s execution time over all values of λn.
In Figure S:6(c) and Figure S:7(c), we vary p in the set
{100, 200, 300, 400, 500} and set K = 2 and n = p/2.
When p > 300 and n = p/2, W-SIMULE takes more than
one month and JGL takes more than one day. Hence, we
have omitted their results for p > 300. For both the co-
hub and perturbed node structures, JEEK is consistently
more than 5 times faster as p is increased. In Figure S:6(d)
and Figure S:7 (d), we vary K in the set {2, 3, 4} and fix
p = 200 and n = p/2. JEEK is 50 times faster than the
baselines for all cases with p = 200 and as K is increased.
In summary, JEEK is on an average more than 10 times
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Figure S:6. Cohub node structure: (a) AUC-score vs the number of features (p). (b) AUC-score vs the number of tasks (K). (c) Time
cost (log(seconds)) vs the number of features (p). (d) Time cost (log(seconds)) vs the number of tasks (K). For p > 300 and n = p/2
W-SIMULE takes more than one month and JGL takes more than one day (indicated by dotted blue line). JGL package can only run for
K = 2.

faster than all the baselines.

(c) Stability of Results when varying W matrices: Addi-
tionally, to account for JEEK’s explicit structure assump-
tion, we also vary the ratio of known hub nodes to the total
number of hub nodes. The known hub nodes are used to
design the {W i

I ,WS} matrices(details in Section 5). In Fig-
ure S:8(a) and (b), AUC for JEEK increases as the ratio of
the number of known to total hub nodes increases. The ini-
tial increase in AUC is particularly significant as it confirms
that JEEK is effective in harvesting additional knowledge
for multiple sGGMs. The increase in AUC is particularly
significant in the perturbed node case (Figure S:8(b)). The
AUC for the hub case does not have a correspondingly large
increase with an increase in ratio because the total number
of hub nodes are only 5% of the total nodes. In comparison,
an increase in this ratio leads to a more significant increase
in AUC because the perturbed node assumption has more
information than the cohub node structure. We show in
Figure S:8(c) and (d) that the computational cost is largely

unaffected by this ratio for both the cohub and perturbed
node structure.

We also empirically check how the parameter r in the de-
signed knowledge weight matrices influences the perfor-
mance. In Figure S:9(a) and (b), we show that the designed
strategy for including additional knowledge as W is not af-
fected by variations of γ. We vary γ in the set of {2, 4, 10}.
In summary, the AUC-score(Figure S:9(a),(b)) and compu-
tational time cost(Figure S:9(c),(d)) remains relatively unaf-
fected by the changes in γ for both co-hub and perturbed-
hub case.

Figure S:10 empirically shows the performance of our meth-
ods and baselines when varying the number of samples.
We vary n in the set {100, 200, 400} and fix p = 200 and
K = 2. In Figure S:10 (c) and (d), we plot the time cost
vs the number of samples n for the cohub and perturbed
node structures respectively. JEEK is much faster than both
JGL-node (JGL-hub and JGL-perturb) and W-SIMULE for
all cases. Also, the time cost of JEEK does not vary signif-
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Figure S:7. Perturbed node structure: (a) AUC-score vs the number of features (p). (b) AUC-score vs the number of tasks (K). (c) Time
cost (log(seconds)) of JEEK and the baseline methods vs the number of features (p). (d) Time cost (log(seconds)) vs the number of tasks
(K). for p > 300 and n = p/2, W-SIMULE takes more than one month and JGL takes more than one day (indicated by dotted blue line).
JGL package can only run for K = 2.

icantly as n increases. In Figure S:10 (a) and (b) we also
present the AUC-score vs the varying number of samples
n for the cohub and perturbed node structures respectively.
For both the cohub and perturbed node structure, JEEK
achieves a higher AUC-score compared to W-SIMULE and
JGL-node (JGL-hub and JGL-perturb) when p > n. The
only cases in which the W-SIMULE performs better in Fig-
ure S:10 (a) and (b) is the low dimensional case (p = 200,
n = 400). This is as expected because JEEK is designed
for high dimensional data situations.

S:7.2 More Experiment: Gene Interaction Network
from Real-World Genomics Data

Next, we apply JEEK and the baselines on one real-world
biomedical data: gene expression profiles describing many
human samples across multiple cancer types aggregated by
(McCall et al., 2011).

Advancements in genome-wide monitoring have resulted
in enormous amounts of data across most of the common
cell contexts, like multiple common cancer types (Network

et al., 2011). Complex diseases such as cancer are the result
of multiple genetic and epigenetic factors. Thus, recent
research has shifted towards the identification of multiple
genes/proteins that interact directly or indirectly in con-
tributing to certain disease(s). Structure learning of sGGMs
on such heterogeneous datasets can uncover statistical de-
pendencies among genes and understand how such depen-
dencies vary from normal to abnormal or across different
diseases. These structural variations are highly likely to be
contributing markers that influence or cause the diseases.

Two major cell contexts are selected from the human expres-
sion dataset provided by (McCall et al., 2011): leukemia
cells (including 895 samples and normal blood cells (includ-
ing 227 samples). Then we choose the top 1000 features
from the total 12,704 features (ranked by variance) and per-
form graph estimation on this two-task dataset. We explore
two type of knowledge in the experiments.

The first kind (DAVID) is about the known group in-
formation about nodes, such as genes belonging to the
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Figure S:8. AUC-Score vs. ratio of number of known hub nodes to number of total hub nodes for (a) Cohub node structure (b) perturbed
node structure. Computational Time Cost vs. ratio of number of known hub nodes to number of total hub nodes for (a) Cohub node
structure (b) perturbed node structure.

same biological pathway or cellular location. We use
the popular “functional enrichment” analysis tool DAVID
(Da Wei Huang & Lempicki, 2008) to get a set of group in-
formation about the 1000 genes. Multiple different types of
groups are provided by DAVID and we pick the co-pathway.
We only use the grouping information covering 20% of the
nodes (randomly picked from 1000). The derived depen-
dency graphs are compared by using the number of predicted
edges being validated by three major existing protein/gene
interaction databases (Prasad et al., 2009; Orchard et al.,
2013; Stark et al., 2006) (average over both cell contexts).

The second type (PPI) is using existing known edges as the
knowledge, like the known protein interaction databases for
discovering gene networks (a semi-supervised setting for
such estimations). We use three major existing protein/gene
interaction databases (Prasad et al., 2009; Orchard et al.,
2013; Stark et al., 2006). We only use the known interaction
edge information covering 20% of the nodes (randomly
picked from 1000). The derived dependency graphs are

compared by using the number of predicted edges that are
not part of the known knowledge and are being validated
by three major existing protein/gene interaction databases
(Prasad et al., 2009; Orchard et al., 2013; Stark et al., 2006)
(average over both cell contexts).

We would like to point out that the interactions JEEK and
baselines find represent statistical dependencies between
genes that vary across multiple cell types. There exist many
possibilities for such interactions, including like physical
protein-protein interactions, regulatory gene pairs or signal-
ing relationships. Therefore, we combine multiple existing
databases for a joint validation. The numbers of matches be-
tween interactions in databases and those edges predicted by
each method have been shown as the y-axis in Figure S:1(c).
It clearly shows that JEEK consistently outperforms two
baselines.



Appendix: JEEK: Joint Elementary Estimator for Learning Multi-sGGM Using Additional Knowledge

Figure S:9. AUC-Score vs. γ (a) Cohub node structure for (b) perturbed node structure. Computational Time Cost vs. γ for (a) Cohub
node structure (b) perturbed node structure.

S:7.3 More Experiment: Simulated Samples about
Brain Connectivity with Distance as Knowledge

In this set of experiments, we confirm JEEK’s ability
to harvest additional knowledge using brain connectivity
simulation data. Following (Bu & Lederer, 2017), we
employ the known Euclidean distance between brain re-
gions as additional knowledge W to generate simulated
datasets. To generate the simulated graphs, we use pj,k =
inv.logit(10 −Wj,k/3) as the probability of an edge be-
tween nodes j and k in the graphs, where Wj,k is the Eu-
clidean distance between regions j and k of the brain.

The generate datasets all have p = 116 corresponding to
the number of brain regions in the distance matrix shared
by (Bu & Lederer, 2017). We vary K from the set {2, 3, 4}
with n = p/2. The F1-scores for JEEK, JEEK-NK and
W-SIMULE is the best F1-score after tuning over λn. The
hyperparameter tuning for NAK is done by the package
itself.

Simulated brain data generation model: We generate
multiple sets of synthetic multivariate-Gaussian datasets. To
imitate brain connectivity, we use the Euclidean distance
between the brain regions as additional knowledgeW where

Wj,k is the Euclidean distance between regions j and k. We
fix p = 116 corresponding to the number of brain regions
(Bu & Lederer, 2017). We generate the graph Ω(i) following
Ω(i) = B

(i)
I + BS + δI , where each off-diagonal entry in

B
(i)
I is generated independently and equals 0.5 with proba-

bility pj,k = inv.logit(10−Wj,k/3) and 0 with probability
1 − pj,k (Bu & Lederer, 2017). Similarly, the shared part
BS is generated independently and equal to 0.5 with proba-
bility pj,k = inv.logit(10−Wj,k/3) and 0 with probability
1 − pj,k. δ is selected large enough to guarantee the posi-
tive definiteness. This choice ensures there are more direct
connections between close regions, effectively simulating
brain connectivity. For each case of simulated data genera-
tion, we generate K blocks of data samples following the
distribution N(0, (Ω(i))−1). Details see Section S:6.1.

Experimental baselines:We choose W-SIMULE, NAK
and JEEK with no additional knowledge(JEEK-NK) as the
baselines. (see Section 5).

Experiment Results: We compare JEEK with the base-
lines regarding two aspects– (a) Scalability (Computational
time cost), and (b) Effectiveness (F1-score). Figure S:2(a)
and Figure S:2(b) respectively show the F1-score vs. com-
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Figure S:10. AUC vs. number of samples n for (a) cohub node structure (b) perturbed node structure. Computational Time Cost vs.
number of samples for (c) cohub node structure and (d) perturbed node structure.

putational time cost with varying number of tasks K and
the number of samples n. In these experiments, p = 116
corresponding to the number of brain regions in the dis-
tance matrix provided by (Bu & Lederer, 2017). In Fig-
ure S:2(a), we vary K in the set {2, 3, 4} with n = p/2.
In Figure S:2(b), we vary n in the set {p/2, p, 2p} and fix
K = 2. The F1-score plotted for JEEK, JEEK-NK and
W-SIMULE is the best F1-score after tuning over λn. The
hyperparameter tuning for NAK is done by the package
itself. For each simulation case, the computation time for
each estimator is the summation of a method’s execution
time over all values of λn. The points in the top left region
of Figure S:2 indicate higher F1-score and lower computa-
tional cost. Clearly, JEEK outperforms its baselines as all
JEEK points are in the top left region of Figure S:2. JEEK
has a consistently higher F1-Score and is almost 6 times
faster than W-SIMULE in the high dimensional case. JEEK
performs better than JEEK-NK, confirming the advantage of
integrating additional knowledge in graph estimation. While
NAK is fast, its F1-Score is nearly 0 and hence, not useful

for multi-sGGM estimation.

S:7.4 More Experiment: Brain Connectivity
Estimation from Real-World fMRI

Experimental Baselines:We choose W-SIMULE as the the
baseline in this experiment. We also compare JEEK to
JEEK-NK and W-SIMULE-NK to demonstrate the need for
additional knowledge in graph estimation.

ABIDE Dataset:This data is from the Autism Brain Imag-
ing Data Exchange (ABIDE) (Di Martino et al., 2014), a
publicly available resting-state fMRI dataset. The ABIDE
data aims to understand human brain connectivity and how
it reflects neural disorders (Van Essen et al., 2013). The data
is retrieved from the Preprocessed Connectomes Project
(Craddock, 2014), where preprocessing is performed using
the Configurable Pipeline for the Analysis of Connectomes
(CPAC) (Craddock et al., 2013) without global signal cor-
rection or band-pass filtering. After preprocessing with
this pipeline, 871 individuals remain (468 diagnosed with
autism). Signals for the 160 (number of features p = 160)



Appendix: JEEK: Joint Elementary Estimator for Learning Multi-sGGM Using Additional Knowledge

regions of interest (ROIs) in the often-used Dosenbach Atlas
(Dosenbach et al., 2010) are examined.

Distance as Additional Knowledge:To select the weights
{W (i)

I ,WS}, two separate spatial distance matricesW were
derived from the Dosenbach atlas. The first, referred to
as anatomicali, gives each ROI one of 40 well-known,
anatomic labels (e.g. “basal ganglia”, “thalamus”). Weights
Wj,k take the low value i if two ROIs have the same label,
and the high value 10− i otherwise. The second additional
knowledge matrix, referred to as disti, sets the weight of
each edge (Wj,k) to its spatial length, in MNI space4, raised
to the power i. Then W (i)

I = WS = W .

Cross-validation:Classification is performed using the 3-
fold cross-validation suggested by the literature (Poldrack
et al., 2008)(Varoquaux et al., 2010). The subjects are
randomly partitioned into three equal sets: a training set,
a validation set, and a test set. Each estimator produces
Ω̂(1) − Ω̂(2) using the training set. Then, these differential
networks are used as inputs to linear discriminant analysis
(LDA), which is tuned via cross-validation on the validation
set. Finally, accuracy is calculated by running LDA on the
test set. This classification process aims to assess the abil-
ity of an estimator to learn the differential patterns of the
connectome structures. We cannot use NAK to perform clas-
sification for this task, as NAK outputs only an adjacency
matrix, which cannot be used for estimation using LDA.

Parameter variation:The results are fairly robust to vari-
ations of the W . (see Table S:1). The effect of changing
W seems to have a fairly small effect on the log-likelihood
of the model. This is likely because both penalize pick-
ing physically long edges, which agrees with observations
from neuroscience. The dist W effectively encourages the
selection of short edges, and the anatomical W also has
substantial spatial localization.
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