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Abstract

We consider the problem of including additional
knowledge in estimating sparse Gaussian graph-
ical models (sGGMs) from aggregated samples,
arising often in bioinformatics and neuroimag-
ing applications. Previous joint sGGM estimators
either fail to use existing knowledge or cannot
scale-up to many tasks (large K) under a high-
dimensional (large p) situation. In this paper, we
propose a novel Joint Elementary Estimator incor-
porating additional Knowledge (JEEK) to infer
multiple related sparse Gaussian Graphical mod-
els from large-scale heterogeneous data. Using
domain knowledge as weights, we design a novel
hybrid norm as the minimization objective to en-
force the superposition of two weighted sparsity
constraints, one on the shared interactions and
the other on the task-specific structural patterns.
This enables JEEK to elegantly consider various
forms of existing knowledge based on the domain
at hand and avoid the need to design knowledge-
specific optimization. JEEK is solved through
a fast and entry-wise parallelizable solution that
largely improves the computational efficiency of
the state-of-the-art O(p5K4) to O(p2K4). We
conduct a rigorous statistical analysis showing
that JEEK achieves the same convergence rate
O(log(Kp)/ntot) as the state-of-the-art estima-
tors that are much harder to compute. Empirically,
on multiple synthetic datasets and two real-world
data, JEEK outperforms the speed of the state-of-
arts significantly while achieving the same level
of prediction accuracy.
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1 Introduction

Technology revolutions in the past decade have collected
large-scale heterogeneous samples from many scientific do-
mains. For instance, genomic technologies have delivered
petabytes of molecular measurements across more than hun-
dreds of types of cells and tissues from national projects like
ENCODE (Consortium et al., 2012) and TCGA (Network
et al., 2011). Neuroimaging technologies have generated
petabytes of functional magnetic resonance imaging (fMRI)
datasets across thousands of human subjects (shared pub-
licly through projects like openfMRI (Poldrack et al., 2013).
Given such data, understanding and quantifying variable
graphs from heterogeneous samples about multiple contexts
is a fundamental analysis task.

Such variable graphs can significantly simplify network-
driven studies about diseases (Ideker & Krogan, 2012), can
help understand the neural characteristics underlying clin-
ical disorders (Uddin et al., 2013) and can allow for un-
derstanding genetic or neural pathways and systems. The
number of contexts (denoted as K) that those applications
need to consider grows extremely fast, ranging from tens
(e.g., cancer types in TCGA (Network et al., 2011)) to thou-
sands (e.g., number of subjects in openfMRI (Poldrack et al.,
2013)). The number of variables (denoted as p) ranges from
hundreds (e.g., number of brain regions) to tens of thousands
(e.g., number of human genes).

The above data analysis problem can be formulated
as jointly estimating K conditional dependency graphs
G(1), G(2), . . . , G(K) on a single set of p variables based
on heterogeneous samples accumulated from K distinct
contexts. For homogeneous data samples from a given i-th
context, one typical approach is the sparse Gaussian Graph-
ical Model (sGGM) (Lauritzen, 1996; Yuan & Lin, 2007).
sGGM assumes samples are independently and identically
drawn from Np(µ

(i),Σ(i)), a multivariate Gaussian distri-
bution with mean vector µ(i) and covariance matrix Σ(i).
The graph structure G(i) is encoded by the sparsity pattern
of the inverse covariance matrix, also named precision ma-
trix, Ω(i). Ω(i) := (Σ(i))−1. Ω

(i)
jk = 0 if and only if in

G(i) an edge does not connect j-th node and k-th node (i.e.,
conditional independent). sGGM imposes an `1 penalty
on the parameter Ω(i) to achieve a consistent estimation
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under high-dimensional situations. When handling hetero-
geneous data samples, rather than estimating sGGM of each
condition separately, a multi-task formulation that jointly
estimatesK different but related sGGMs can lead to a better
generalization(Caruana, 1997).

Previous studies for joint estimation of multiple sGGMs
roughly fall into four categories: (Danaher et al., 2013; Mo-
han et al., 2013; Chiquet et al., 2011; Honorio & Samaras,
2010; Guo et al., 2011; Zhang & Wang, 2012; Zhang &
Schneider, 2010; Zhu et al., 2014): (1) The first group seeks
to optimize a sparsity regularized data likelihood function
plus an extra penalty functionR′ to enforce structural simi-
larity among multiple estimated networks. Joint graphical
lasso (JGL) (Danaher et al., 2013) proposed an alternating
direction method of multipliers (ADMM) based optimiza-
tion algorithm to work with two regularization functions
(`1 + R′). (2) The second category tries to recover the
support of Ω(i) using sparsity penalized regressions in a
column by column fashion. Recently (Monti et al., 2015)
proposed to learn population and subject-specific brain con-
nectivity networks via a so-called “Mixed Neighborhood
Selection” (MSN) method in this category. (3) The third
type of methods seeks to minimize the joint sparsity of the
target precision matrices under matrix inversion constraints.
One recent study, named SIMULE (Shared and Individual
parts of MULtiple graphs Explicitly) (Wang et al., 2017b),
automatically infers both specific edge patterns that are
unique to each context and shared interactions preserved
among all the contexts (i.e. by modeling each precision ma-
trix as Ω(i) = Ω

(i)
I + ΩS) via the constrained `1 minimiza-

tion. Following the CLIME estimator (Pang et al., 2014),
the constrained `1 convex formulation can also be solved
column by column via linear programming. However, all
three categories of aforementioned estimators are difficult
to scale up when the dimension p or the number of tasks
K are large because they cannot avoid expensive steps like
SVD (Danaher et al., 2013) for JGL, linear programming
for SIMULE or running multiple iterations of p expensive
penalized regressions in MNS. (4) The last category ex-
tends the so-called ”Elementary Estimator” graphical model
(EE-GM) formulation (Yang et al., 2014b) to revise JGL’s
penalized likelihood into a constrained convex program that
minimizes (`1 + R′). One proposed estimator FASJEM
(Wang et al., 2017a) is solved in an entry-wise manner and
group-entry-wise manner that largely outperforms the speed
of its JGL counterparts. More details of the related works
are in Section (5).

One significant caveat of state-of-the-art joint sGGM estima-
tors is the fact that little attention has been paid to incorpo-
rating existing knowledge of the nodes or knowledge of the
relationships among nodes in the models. In addition to the
samples themselves, additional information is widely avail-
able in real-world applications. In fact, incorporating the

knowledge is of great scientific interest. A prime example is
when estimating the functional brain connectivity networks
among brain regions based on fMRI samples, the spatial
position of the regions are readily available. Neuroscientists
have gathered considerable knowledge regarding the spatial
and anatomical evidence underlying brain connectivity (e.g.,
short edges and certain anatomical regions are more likely to
be connected (Watts & Strogatz, 1998)). Another important
example is the problem of identifying gene-gene interac-
tions from patients’ gene expression profiles across multiple
cancer types. Learning the statistical dependencies among
genes from such heterogeneous datasets can help to under-
stand how such dependencies vary from normal to abnormal
and help to discover contributing markers that influence or
cause the diseases. Besides the patient samples, state-of-
the-art bio-databases like HPRD (Prasad et al., 2009) have
collected a significant amount of information about direct
physical interactions among corresponding proteins, regu-
latory gene pairs or signaling relationships collected from
high-qualify bio-experiments.

Although being strong evidence of structural patterns we
aim to discover, this type of information has rarely been
considered in the joint sGGM formulation of such samples.
To the authors’ best knowledge, only one study named as W-
SIMULE tried to extend the constrained `1 minimization in
SIMULE into weighted `1 for considering spatial informa-
tion of brain regions in the joint discovery of heterogeneous
neural connectivity graphs (Singh et al., 2017). This method
was designed just for the neuroimaging samples and has
O(p5K4) time cost, making it not scalable for large-scale
settings (more details in Section 3).

This paper aims to fill this gap by adding additional knowl-
edge most effectively into scalable and fast joint sGGM
estimations. We propose a novel model, namely Joint
Elementary Estimator incorporating additional Knowledge
(JEEK), that presents a principled and scalable strategy to
include additional knowledge when estimating multiple re-
lated sGGMs jointly. Briefly speaking, this paper makes the
following contributions:

• Novel approach: JEEK presents a new way of integrat-
ing additional knowledge in learning multi-task sGGMs
in a scalable way. (Section 3)

• Fast optimization: We optimize JEEK through an entry-
wise and group-entry-wise manner that can dramatically
improve the time complexity to O(p2K4). (Section 3.4)

• Convergence rate: We theoretically prove the conver-
gence rate of JEEK asO(log(Kp)/ntot). This rate shows
the benefit of joint estimation and achieves the same con-
vergence rate as the state-of-the-art that are much harder
to compute. (Section 4)

• Evaluation: We evaluate JEEK using several synthetic
datasets and two real-world data, one from neuroscience
and one from genomics. It outperforms state-of-the-art
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baselines significantly regarding the speed. (Section 6)

JEEK provides the flexibility of using (K + 1) different
weight matrices representing the extra knowledge. We try
to showcase a few possible designs of the weight matrices
in Section S:5, including (but not limited to):

• Spatial or anatomy knowledge about brain regions;
• Knowledge of known co-hub nodes or perturbed nodes;
• Known group information about nodes, such as genes

belonging to the same biological pathway or cellular lo-
cation;

• Using existing known edges as the knowledge, like the
known protein interaction databases for discovering gene
networks (a semi-supervised setting for such estimations).

We sincerely believe the scalability and flexibility provided
by JEEK can make structure learning of joint sGGM feasible
in many real-world tasks.

Att: Due to space limitations, we have put details of certain
contents (e.g., proofs) in the appendix. Notations with “S:”
as the prefix in the numbering mean the corresponding con-
tents are in the appendix. For example, full proofs are in
Section (S:3).

Notations: math notations we use are described in Sec-

tion (S:1). ntot =
K∑
i=1

ni is the total number of data samples.

2 Background
Sparse Gaussian graphical model (sGGM):The classic
formulation of estimating sparse Gaussian Graphical model
(Yuan & Lin, 2007) from a single given condition (single
sGGM) is the “graphical lasso” estimator (GLasso) (Yuan &
Lin, 2007; Banerjee et al., 2008). It solves the following `1
penalized maximum likelihood estimation (MLE) problem:

argmin
Ω>0

− log det(Ω)+ < Ω, Σ̂ > +λn||Ω||1 (2.1)

M-Estimator with Decomposable Regularizer in High-
-Dimensional Situations: Recently the seminal study (Ne-
gahban et al., 2009) proposed a unified framework for high-
dimensional analysis of the following general formulation:
M-estimators with decomposable regularizers:

argmin
θ
L(θ) + λnR(θ) (2.2)

where R(·) represents a decomposable regulariza-
tion function and L(·) represents a loss function
(e.g., the negative log-likelihood function in sGGM
L(Ω) = − log det(Ω)+ < Ω, Σ̂ >). Here λn > 0 is the
tuning parameter.

Elementary Estimators (EE): Using the analysis frame-
work from (Negahban et al., 2009), recent studies (Yang

et al., 2014a;b;c) propose a new category of estimators
named “Elementary estimator” (EE) with the following gen-
eral formulation:

argmin
θ
R(θ)

subject to:R∗(θ − θ̂n) ≤ λn
(2.3)

WhereR∗(·) is the dual norm ofR(·),

R∗(v) := sup
u6=0

< u, v >

R(u)
= sup
R(u)≤1

< u, v > . (2.4)

The solution of Eq. (2.3) achieves the near optimal con-
vergence rate as Eq. (2.2) when satisfying certain condi-
tions. R(·) represents a decomposable regularization func-
tion (e.g., `1-norm) andR∗(·) is the dual norm ofR(·) (e.g.,
`∞-norm is the dual norm of `1-norm). λn is a regulariza-
tion parameter.

The basic motivation of Eq. (2.3) is to build simpler and pos-
sibly fast estimators, that yet come with statistical guaran-
tees that are nonetheless comparable to regularized MLE. θ̂n
needs to be carefully constructed, well-defined and closed-
form for the purpose of simpler computations. The formu-
lation defined by Eq. (2.3) is to ensure its solution having
the desired structure defined by R(·). For cases of high-
dimensional estimation of linear regression models, θ̂n can
be the classical ridge estimator that itself is closed-form
and with strong statistical convergence guarantees in high-
dimensional situations.

EE-sGGM:(Yang et al., 2014b) proposed elementary esti-
mators for graphical models (GM) of exponential families,
in which θ̂n represents so-called proxy of backward map-
ping for the target GM (more details in Section S:4). The
key idea (summarized in the upper row of Figure 1) is to
investigate the vanilla MLE and where it breaks down for
estimating a graphical model of exponential families in the
case of high-dimensions (Yang et al., 2014b). Essentially
the vanilla graphical model MLE can be expressed as a
backward mapping that computes the model parameters
from some given moments in an exponential family distri-
bution. For instance, in the case of learning Gaussian GM
(GGM) with vanilla MLE, the backward mapping is Σ̂−1

that estimates Ω from the sample covariance matrix (mo-
ment) Σ̂. We introduce the details of backward mapping in
Section S:4.

However, even though this backward mapping has a sim-
ple closed form for GGM, the backward mapping is nor-
mally not well-defined in high-dimensional settings. When
given the sample covariance Σ̂, we cannot just compute the
vanilla MLE solution as [Σ̂]−1 for GGM since Σ̂ is rank-
deficient when p > n. Therefore Yang et al. (Yang et al.,
2014b) used carefully constructed proxy backward maps as
θ̂n = [Tv(Σ̂)]−1 that is both available in closed-form, and
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Figure 1. Basic idea of JEEK.

well-defined in high-dimensional settings for GGMs. We
introduce the details of [Tv(Σ̂)]−1 and its statistical prop-
erty in Section S:4. Now Eq. (2.3) becomes the following
closed-form estimator for learning sparse Gaussian graphi-
cal models (Yang et al., 2014b):

argmin
Ω
||Ω||1,,off

subject to:||Ω− [Tv(Σ̂)]−1||∞,off ≤ λn
(2.5)

Eq. (2.5) is a special case of Eq. (2.3), in whichR(·) is the
off-diagonal `1-norm and the precision matrix Ω is the θ
we search for. When R(·) is the `1-norm, the solution of
Eq. (2.3) (and Eq. (2.5)) just needs to perform entry-wise
thresholding operations on θ̂n to ensure the desired sparsity
structure of its final solution.

3 Proposed Method: JEEK
In applications of Gaussian graphical models, we typically
have more information than just the data samples them-
selves. This paper aims to propose a simple, scalable and
theoretically-guaranteed joint estimator for estimating mul-
tiple sGGMs with additional knowledge in large-scale situa-
tions.

3.1 A Joint EE (JEE) Formulation

We first propose to jointly estimate multiple related sGGMs
from K data blocks using the following formulation:

argmin
Ω(1),Ω(2),...,Ω(K)

K∑
i=1

L(Ω(i)) + λnR(Ω(1),Ω(2), . . . ,Ω(K))

(3.1)

where Ω(i) denotes the precision matrix for i-th task.
L(Ω) = − log det(Ω)+ < Ω, Σ̂ > describes the negative
log-likelihood function in sGGM. Ω(i) � 0 means that Ω(i)

needs to be a positive definite matrix. R(·) represents a de-
composable regularization function enforcing sparsity and
structure assumptions (details in Section (3.2)).

For ease of notation, we denote that Ωtot =
(Ω(1),Ω(2), . . . ,Ω(K)) and Σtot = (Σ(1),Σ(2), . . . ,Σ(K)).

Ωtot and Σtot are both p × Kp matrices (i.e., Kp2 pa-
rameters to estimate). Now define an inverse function as
inv(Atot) := (A(1)−1

, A(2)−1
, . . . , A(K)−1

), where Atot
is a given p ×Kp matrix with the same structure as Σtot.
Then we rewrite Eq. (3.1) into the following form:

argmin
Ωtot

L(Ωtot) + λnR(Ωtot) (3.2)

Now connecting Eq. (3.2) to Eq. (2.2) and Eq. (2.3), we
propose the following joint elementary estimator (JEE) for
learning multiple sGGMs:

argmin
Ωtot

R(Ωtot)

subject to: R∗(Ωtot − Ω̂totntot
) ≤ λn

(3.3)

The fundamental component in Eq. (2.3) for the single con-
text sGGM was to use a well-defined proxy function to
approximate the vanilla MLE solution (named as the back-
ward mapping for exponential family distributions) (Yang
et al., 2014b). The proposed proxy θ̂n = [Tv(Σ̂)]−1 is both
well-defined under high-dimensional situations and also has
a simple closed-form. Following a similar idea, when learn-
ing multiple sGGMs, we propose to use inv(Tv(Σ̂

tot)) for
Ω̂totntot

and get the following joint elementary estimator:

argmin
Ωtot

R(Ωtot)

Subject to: R∗(Ωtot − inv(Tv(Σ̂
tot))) ≤ λn

(3.4)

3.2 Knowledge as Weight (KW-Norm)

The main goal of this paper is to design a principled strategy
to incorporate existing knowledge (other than samples or
structured assumptions) into the multi-sGGM formulation.
We consider two factors in such a design:

(1) When learning multiple sGGMs jointly from real-world
applications, it is often of great scientific interests to model
and learn context-specific graph variations explicitly, be-
cause such variations can “fingerprint” important markers in
domains like cognition (Ideker & Krogan, 2012) or pathol-
ogy (Kelly et al., 2012). Therefore we design to share
parameters between different contexts. Mathematically, we
model Ω(i) as two parts:

Ω(i) = Ω
(i)
I + ΩS (3.5)

where Ω
(i)
I is the individual precision matrix for context

i and ΩS is the shared precision matrix between con-
texts. Again, for ease of notation we denote ΩtotI =

(Ω
(1)
I ,Ω

(2)
I , . . . ,Ω

(K)
I ) and ΩtotS = (ΩS ,ΩS , . . . ,ΩS).

(2) We represent additional knowledge as positive weight
matrices from Rp×p. More specifically, we represent
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the knowledge of the task-specific graph as weight ma-
trix {W (i)} and WS representing existing knowledge of
the shared network. The positive matrix-based repre-
sentation is a powerful and flexible strategy that can de-
scribe many possible forms of existing knowledge. In Sec-
tion (S:5), we provide a few different designs of {W (i)}
and WS for real-world applications. In total, we have
weight matrices {W (1)

I ,W
(2)
I , . . . ,W

(K)
I ,WS} to repre-

sent additional knowledge. To simplify notations, we
denote W tot

I = (W
(1)
I ,W (2), . . . ,W

(K)
I ) and W tot

S =
(WS ,WS , . . . ,WS).

Now we propose the following knowledge as weight norm
(kw-norm) combining the above two:

R(Ωtot) = ||W tot
I ◦ ΩtotI ||1 + ||W tot

S ◦ ΩtotS ||1 (3.6)

Here the Hadamard product ◦ is the element-wise product
between two matrices i.e. [A ◦B]ij = AijBij .

The kw-norm( Eq. (3.6)) has the following three properties:

• (i) kw-norm is a norm function if and only if any entries
in W tot

I and W tot
S do not equal to 0.

• (ii) If the condition in (i) holds, kw-norm is a decompos-
able norm.

• (iii) If the condition in (i) holds, the dual norm of kw-
norm isR∗(u) = max(||W tot

I ◦ u||∞, ||W tot
S ◦ u||∞).

Section S:3.1 provides proofs of the above claims.

3.3 JEE with Knowledge (JEEK)

Plugging Eq. (3.6) to Eq. (3.4), we obtain the following
formulation of JEEK for learning multiple related sGGMs
from heterogereous samples:

argmin
Ωtot

I ,Ωtot
S

||W tot
I ◦ ΩtotI ||1 + ||W tot

S ◦ ΩtotS ||

Subject to: ||W tot
I ◦ (Ωtot − inv(Tv(Σ̂

tot)))||∞ ≤ λn
||W tot

S ◦ (Ωtot − inv(Tv(Σ̂
tot)))||∞ ≤ λn

Ωtot = ΩtotS + ΩtotI
(3.7)

In Section 4, we theoretically prove that the statistical con-
vergence rate of JEEK achieves the same sharp convergence
rate as the state-of-the-art estimators for multi-task sGGMs.
Our proofs are inspired by the unified framework of the
high-dimensional statistics (Negahban et al., 2009).

3.4 Solution of JEEK:

A huge computational advantage of JEEK (Eq. (3.7)) is
that it can be decomposed into p × p independent small
linear programming problems. To simplify notations, we
denote Ω

(i)
I j,k (the {j, k}-th entry of Ω(i)) as ai. Similarly

Algorithm 1. Joint Elementary Estimator with additional knowl-
edge (JEEK) for Multi-task sGGMs
Input: Data sample matrix X(i) ( i = 1 toK), regularization hyperparameter λn,
Knowledge weight matrices {W (i)

I ,WS} and LP(.) (a linear programming
solver)
Output: {Ω(i)} ( i = 1 toK)

1: for i = 1 toK do
2: Initialize Σ̂(i) = 1

ni−1

∑ni
s=1(X(i)

s, −µ̂
(i))(X(i)

s, −µ̂
(i))T (the sample

covariance matrix of X(i))
3: Initialize Ω(i) = 0p×p

4: Calculate the proxy backward mapping [Tv(Σ̂(i))]−1

5: end for
6: for j = 1 to p do
7: for k = 1 to j do
8: ci = [Tv(Σ̂(i))]−1

j,k

9: wi = W
(i)
j,k

10: ws = WSj,k

11: ai, b = LP(wi, ws, ci, λn) where i = 1, . . . , K and LP(.) solves
Eq. (3.8)

12: for i = 1 toK do
13: Ω(i)

j,k = Ω(i)
k,j = ai + b

14: Ω
(i)
I j,k

= ai

15: ΩSj,k = b

16: end for
17: end for
18: end for

we denote ΩSj,k as b and [Tv(Σ̂
(i))]−1

j,k be ci. Similarly we

denote W (i)
j,k = wi and WS

j,k = ws. ”A group of entries”
means a set of parameters {a1, . . . , aK , b} for certain j, k.

In order to estimate {a1, . . . , aK , b}, JEEK (Eq. (3.7)) can
be decomposed into the following formulation for a certain
j, k :

argmin
ai,b

∑
i

|wiai|+K|wsb|

Subject to: |ai + b− ci| ≤
λn

min(wi, ws)
,

i = 1, . . . ,K

(3.8)

Eq. (3.8) can be easily converted into a linear program-
ming form of Eq. (S:1–1) with only K + 1 variables. The
time complexity of Eq. (3.8) is O(K4). Considering JEEK
has a total p(p − 1)/2 of such subproblems to solve, the
computational complexity of JEEK (Eq. (3.7)) is therefore
O(p2K4). We summarize the optimization algorithm of
JEEK in Algorithm 1 (details in Section (S:1.2)).

4 Theoretical Analysis
KW-Norm:We presented the three properties of kw-norm
in Section 3.2. The proofs of these three properties are
included in Section (S:3.1).

Theoretical error bounds of Proxy Backward Mapping:
(Yang et al., 2014b) proved that when (p ≥ n), the proxy
backward mapping [Tv(Σ̂)]−1 used by EE-sGGM achieves
the sharp convergence rate to its truth (i.e., by proving

||Tv(Σ̂))−1 − Σ∗−1||∞ = O(
√

log p
n )). The proof was ex-

tended from the previous study (Rothman et al., 2009) that
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devised Tv(Σ̂) for estimating covariance matrix consistently
in high-dimensional situations. See detailed proofs in Sec-
tion S:4.3. To derive the statistical error bound of JEEK, we
need to assume that inv(Tv(Σ̂

tot)) are well-defined. This
is ensured by assuming that the true Ω(i)∗ satisfy the condi-
tions defined in Section (S:3.1).

Theoretical error bounds of JEEK:We now use the high-
dimensional analysis framework from (Negahban et al.,
2009), three properties of kw-norm, and error bounds of
backward mapping from (Rothman et al., 2009; Yang et al.,
2014b) to derive the statistical convergence rates of JEEK.
Detailed proofs of the following theorems are in Section 4 .

Before providing the theorem, we need to define the
structural assumption, the IS-Sparsity, we assume for the
parameter truth.
(IS-Sparsity): The ’true’ parameter of Ωtot

∗ can be
decomposed into two clear structures–{ΩtotI

∗ and ΩtotS
∗}.

ΩtotI
∗ is exactly sparse with ki non-zero entries indexed

by a support set SI and ΩtotS
∗ is exactly sparse with ks

non-zero entries indexed by a support set SS . SI
⋂
SS = ∅.

All other elements equal to 0 (in (SI
⋃
SS)c).

Theorem 4.1. Consider Ωtot whose true parameter Ωtot
∗

satisfies the (IS-Sparsity) assumption. Suppose we com-
pute the solution of Eq. (3.7) with a bounded λn such that
λn ≥ max(||W tot

I ◦ (Ωtot
∗− inv(Tv(Σ̂

tot)))||∞, ||W tot
S ◦

(Ωtot
∗ − inv(Tv(Σ̂

tot)))||∞), then the estimated solution
Ω̂tot satisfies the following error bounds:

||Ω̂tot − Ωtot∗||F ≤ 4
√
ki + ksλn

max(||W tot
I ◦ (Ω̂tot − Ωtot∗)||∞, ||W tot

S ◦ (Ω̂tot − Ωtot∗||∞)

≤ 2λn

||W tot
I ◦ (Ω̂tot

I − Ωtot
I
∗
)||1 + ||W tot

S ◦ (Ω̂tot
S − Ωtot

S
∗
)||1

≤ 8(ki + ks)λn

(4.1)

Proof. See detailed proof in Section S:3.2

Theorem (4.1) provides a general bound for any selection of
λn. The bound of λn is controlled by the distance between
Ωtot

∗ and inv(Tv(Σ̂
tot)). We then extend Theorem (4.1) to

derive the statistical convergence rate of JEEK. This gives
us the following corollary:
Corollary 4.2. Suppose the high-dimensional setting,

i.e., p > max(ni). Let v := a
√

log(Kp)
ntot

. Then for

λn := 8κ1a
κ2

√
log(Kp)
ntot

and ntot > c logKp, with a
probability of at least 1− 2C1 exp(−C2Kp log(Kp)), the
estimated optimal solution Ω̂tot has the following error
bound:

||Ω̂tot−Ωtot∗||F

≤
16κ1amax

j,k
(W tot

I j,k,W
tot
S j,k)

κ2

√
(ki + ks) log(Kp)

ntot

(4.2)

where a, c, κ1 and κ2 are constants.

Proof. See detailed proof in Section S:3.2.2 (especially
from Eq. (S:3–11) to Eq. (S:3–19)).

Bayesian View of JEEK:In Section (S:2) we provide a
direct Bayesian interpretation of JEEK through the perspec-
tive of hierarchical Bayesian modeling. Our hierarchical
Bayesian interpretation nicely explains the assumptions we
make in JEEK.

5 Connecting to Relevant Studies
JEEK is closely related to a few state-of-the-art studies
summarized in Table 1. We compare the time complexity
and functional properties of JEEK versus these studies.

NAK: (Bu & Lederer, 2017)For the single task sGGM,
one recent study (Bu & Lederer, 2017) (following ideas
from (Shimamura et al., 2007)) proposed to integrating
Additional Knowledge (NAK)into estimation of graphical
models through a weighted Neighbourhood selection formu-
lation (NAK) as: β̂j = argmin

β,βj=0

1
2 ||X

j−Xβ||22 + ||rj ◦β||1.

NAK is designed for estimating brain connectivity networks
from homogeneous samples and incorporate distance knowl-
edge as weight vectors. 1 In experiments, we compare JEEK
to NAK (by running NAK R package K times) on multiple
synthetic datasets of simulated samples about brain regions.
The data simulation strategy was suggested by (Bu & Led-
erer, 2017). Same as the NAK (Bu & Lederer, 2017), we
use the spatial distance among brain regions as additional
knowledge in JEEK.

W-SIMULE: (Singh et al., 2017)Like JEEK, one re-
cent study (Singh et al., 2017) of multi-sGGMs (follow-
ing ideas from (Wang et al., 2017b)) also assumed that
Ω(i) = Ω

(i)
I + ΩS and incorporated spatial distance knowl-

edge in their convex formulation for joint discovery of het-
erogeneous neural connectivity graphs. This study, with
name W-SIMULE (Weighted model for Shared and Individ-
ual parts of MULtiple graphs Explicitly) uses a weighted
constrained `1 minimization:

argmin

Ω
(i)
I

,ΩS

∑
i

||W ◦ Ω
(i)
I ||1 + εK||W ◦ ΩS ||1 (5.1)

Subject to: ||Σ(i)
(Ω

(i)
I + ΩS)− I||∞ ≤ λn, i = 1, . . . , K

1Here β̂j indicates the sparsity of j-th column of a single Ω̂.
Namely, β̂j

k = 0 if and only if Ω̂k,j = 0. rj is a weight vector as
the additional knowledge The NAK formulation can be solved by
a classic Lasso solver like glmnet.
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Method JEEK W-SIMULE JGL FASJEM NAK (run K times)
Time Complexity O(K4p2) (⇒ O(K4)

if parallelizing completely)

O(K4p5) O(T ×Kp3) O(T ×Kp2) O(Knp3 +Kp4)

Additional Knowledge YES YES NO NO YES

Table 1. Compare JEEK versus baselines. Here T is the number of iterations.

W-SIMULE simply includes the additional knowledge as a
weight matrix W . 2

Different from W-SIMULE, JEEK separates the knowledge
of individual context and the shared using different weight
matrices. While W-SIMULE also minimizes a weighted
`1 norm, its constraint optimization term is entirely dif-
ferent from JEEK. The formulation difference makes the
optimization of JEEK much faster and more scalable than W-
SIMULE (Section (6)). We have provided a complete theo-
retical analysis of error bounds of JEEK, while W-SIMULE
provided no theoretical results. Empirically, we compare
JEEK with W-SIMULE R package from (Singh et al., 2017)
in the experiments.

JGL: (Danaher et al., 2013): Regularized MLE based
multi-sGGMs Studies mostly follow the so called joint
graphical lasso (JGL) formulation as Eq. (5.2):

argmin
Ω(i)�0

K∑
i=1

(−L(Ω
(i)

) + λn

K∑
i=1

||Ω(i)||1

+ λ
′
nR
′
(Ω

(1)
,Ω

(2)
, . . . ,Ω

(K)
)

(5.2)

R′(·) is the second penalty function for enforcing some
structural assumption of group property among the multi-
ple graphs. One caveat of JGL is that R′(·) cannot model
explicit additional knowledge. For instance,it can not incor-
porate the information of a few known hub nodes shared
by the contexts. In experiments, we compare JEEK to JGL-
co-hub and JGL-perturb-hub toolbox provided by (Mohan
et al., 2013).

FASJEM: (Wang et al., 2017a) One very recent study
extended JGL using so-called Elementary superposition-
structured moment estimator formulation as Eq. (5.3):

argmin
Ωtot

||Ωtot||1 + εR′(Ωtot)

s.t.||Ωtot − inv(Tv(Σ̂tot))||∞ ≤ λn

R′∗(Ωtot − inv(Tv(Σ̂tot))) ≤ ελn

(5.3)

FASJEM is much faster and more scalable than the JGL
estimators. However like JGL estimators it can not model
additional knowledge and its optimization needs to be care-
fully re-designed for differentR′(·). 3

2It can be solved by any linear programming solver and can be
column-wise paralleled. However, it is very slow when p > 200
due to the expensive computation cost O(K4p5).

3FASJEM extends JGL into multiple independent group-entry
wise optimization just like JEEK. HereR

′∗(·) is the dual norm of
R′(·). Because (Wang et al., 2017a) only designs the optimization
of two cases (group,2 and group,inf), we can not use it as a baseline.

Both NAK and W-SIMULE only explored the formulation
for estimating neural connectivity graphs using spatial in-
formation as additional knowledge. Differently our exper-
iments (Section (6)) extend the weight-as-knowledge for-
mulation on weights as distance, as shared hub knowledge,
as perturbed hub knowledge, and as nodes’ grouping infor-
mation (e.g., multiple genes are known to be in the same
pathway). This has largely extends the previous studies
in showing the real-world adaptivity of the proposed for-
mulation. JEEK elegantly formulates existing knowledge
based on the problem at hand and avoid the need to design
knowledge-specific optimization.

6 Experiments
We empirically evaluate JEEK and baselines on four types
of datasets, including two groups of synthetic data, one real-
world fMRI dataset for brain connectivity estimation and
one real-world genomics dataset for estimating interaction
among regulatory genes (results in Section (6.2)). In order
to incorporating various types of knowledge, we provide
five different designs of the weight matrices in Section S:5.
Details of experimental setup, metrics and hyper-parameter
tuning are included in Section (S:6.1). Baselines used in our
experiments have been explained in details by Section (5).
We also use JEEK with no additional knowledge (JEEK-
NK) as a baseline.

JEEK is available as the R package ’jeek’ in CRAN.

6.1 Experiment: Simulated Samples with Known
Hubs as Knowledge

Inspired the JGL-co-hub and JGL-perturb-hub toolbox
(JGL-node) provided by (Mohan et al., 2013), we em-
pirically show JEEK’s ability to model known co-hub or
perturbed-hub nodes as knowledge when estimating mul-
tiple sGGMs. We generate multiple simulated Gaussian
datasets through the random graph model (Rothman et al.,
2008) to simulate both the co-hub and perturbed-hub graph
structures (details in S:7.1). We use JGL-node package,
W-SIMULE and JEEK-NK as baselines for this set of exper-
iments. The weights in {W tot

I ,W tot
S } are designed using

the strategy proposed in Section (S:5).

We use AUC score (to reflect the consistency and variance of
a method’s performance when varying its important hyper-
parameter) and computational time cost to compare JEEK
with baselines. We compare all methods on many simulated
cases by varying p from the set {100, 200, 300, 400, 500}
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Figure 2. Performance comparison on simulation Datasets using co-Hub Knowledge: AUC vs. Time when varying number of nodes p.

and the number of tasks K from the set {2, 3, 4}. In Fig-
ure 2 and Figure S:1(a)(b), JEEK consistently achieves
higher AUC-scores than the baselines JGL, JEEK-NK and
W-SIMULE for all cases. JEEK is more than 10 times
faster than the baselines on average. In Figure 2, for each
p > 300 case (with n = p/2), W-SIMULE takes more than
one month and JGL takes more than one day. Therefore we
can not show them with p > 300.

6.2 Experiment: Gene Interaction Network from
Real-World Genomics Data

Next, we apply JEEK and the baselines on one real-world
biomedical data about gene expression profiles across two
different cell types. We explored two different types of
knowledge: (1) Known edges and (2) Known group about
genes. Figure S:1(c) shows that JEEK has lower time cost
and recovers more interactions than baselines (higher num-
ber of matched edges to the existing bio-databases.). More
results are in Appendix Section (S:7.2) and the design of
weight matrices for this case is in Section (S:5).

6.3 Experiment: Simulated Data about Brain
Connectivity with Distance as Knowledge

Following (Bu & Lederer, 2017), we use one known Eu-
clidean distance between human brain regions as additional
knowledge W and use it to generate multiple simulated
datasets (details in Section S:7.3). We compare JEEK with
the baselines regarding (a) Scalability (computational time
cost), and (b) effectiveness (F1-score, because NAK pack-
age does not allow AUC calculation). For each simula-
tion case, the computation time for each estimator is the
summation of a method’s execution time over all values of
λn. Figure S:2(a)(b) show clearly that JEEK outperforms
its baselines. JEEK has a consistently higher F1-Score
and is almost 6 times faster than W-SIMULE in the high
dimensional case. JEEK performs better than JEEK-NK,
confirming the advantage of integrating additional distance
knowledge. While NAK is fast, its F1-Score is nearly 0 and
hence, not useful for multi-sGGM structure learning.

6.4 Experiment: Functional Connectivity Estimation
from Real-World Brain fMRI Data

We evaluate JEEK and relevant baselines for a classification
task on one real-world publicly available resting-state fMRI
dataset: ABIDE(Di Martino et al., 2014). The ABIDE data
aims to understand human brain connectivity and how it
reflects neural disorders (Van Essen et al., 2013). ABIDE
includes two groups of human subjects: autism and control,
and therefore we formulate it as K = 2 graph estimation.
We utilize the spatial distance between human brain regions
as additional knowledge for estimating functional connectiv-
ity edges among brain regions. We use Linear Discriminant
Analysis (LDA) for a downstream classification task aiming
to assess the ability of a graph estimator to learn the differ-
ential patterns of the connectome structures. (Details of the
ABIDE dataset, baselines, design of the additional knowl-
edge W matrix, cross-validation and LDA classification
method are in Section (S:7.4).)

Figure S:2(c) compares JEEK and three baselines: JEEK-
NK, W-SIMULE and W-SIMULE with no additional knowl-
edge (W-SIMULE-NK). JEEK yields a classification accu-
racy of 58.62% for distinguishing the autism subjects versus
the control subjects, clearly outperforming JEEK-NK and
W-SIMULE-NK. JEEK is roughly 7 times faster than the
W-SIMULE estimators, locating at the top left region in
Figure S:2(c) (higher classification accuracy and lower time
cost). We also experimented with variations of theW matrix
and found the classification results are fairly robust to the
variations of W (Section (S:7.4)).

7 Conclusions

We propose a novel method, JEEK, to incorporate additional
knowledge in estimating multi-sGGMs. JEEK achieves the
same asymptotic convergence rate as the state-of-the-art.
Our experiments has showcased using weights for describ-
ing pairwise knowledge among brain regions, for shared
hub knowledge, for perturbed hub knowledge, for describ-
ing group information among nodes (e.g., genes known to
be in the same pathway), and for using known interaction
edges as the knowledge.
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