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Abstract

In large-scale machine learning applications and
high-dimensional statistics, it is ubiquitous to ad-
dress a considerable number of features among
which many are redundant. As a remedy, on-
line feature selection has attracted increasing at-
tention in recent years. It sequentially reveals
features and evaluates the importance of them.
Though online feature selection has proven an el-
egant methodology, it is usually challenging to
carry out a rigorous theoretical characterization.
In this work, we propose a provable online fea-
ture selection algorithm that utilizes the online
leverage score. The selected features are then fed
to k-means clustering, making the clustering step
memory and computationally efficient. We prove
that with high probability, performing k-means
clustering based on the selected feature space does
not deviate far from the optimal clustering using
the original data. The empirical results on real-
world data sets demonstrate the effectiveness of
our algorithm.

1. Introduction

For retailers, brick-and-mortar stores and internet-based
stores, various recommendation methods are proposed in
an attempt to sell products. The recommendation model
is usually updated in a timely manner or it includes new
valuable features of products which are not previously avail-
able. For example, during the Apple WWDC 2018 keynote,
Apple has introduced new features of their platforms to fight
“fingerprinting”, a technique which tracks users based on
identifying computers. With the available of new features, a
feature selection model is employed to determine whether
the new features will drive sales of products in the future
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and only related features will be included in the recommen-
dation model. Hence, in real-world applications, features
are usually revealed in a continuous stream. It is necessary
to evaluate new features immediately and output interme-
diate result. The feature evaluation process in a stream is
called online feature selection (Perkins & Theiler, 2003}
Zhou et al.| 2005 [Wu et al.l [2010). We first formulate this
problem.

Suppose that there are n samples but initially we do not ob-
serve all of the features. We call the sequence a1, as,--- €
R™ is a feature stream, with each a; € R™ being the ith
feature, or the ith covariate of n samples. Note that in our
setting, the feature a; is revealed at time stamp i. If a; is
selected, we update the observation matrix A as follows:

(1.1)

where the parameter 6; # 0 is chosen in an online manner.

In the literature, a large number of online methods have been
proposed based on statistical measurements or optimization
techniques (Perkins & Theiler, 2003} Zhou et al.l 2005}
Wang et al.,2015). For example, [Perkins & Theiler| (2003])
added a new feature which contributes to a predictor learn-
ing and optimization analysis into the model. Zhou et al.
(2005) proposed an adaptive complexity penalty method to
evaluate a new feature based on its p-value. 'Wu et al.| (2010)
utilized the Markov blanket to measure the relationship be-
tween a new feature and the selected feature subset. Yet
successful, most of the results in this line of research are
empirical in nature.

On the other hand, feature selection method can be catego-
rized into either supervised or unsupervised. For instance,
Shen & Li| (2017) recently proposed a non-convex super-
vised approach for variable selection with favorable iteration
complexity. Unsupervised methods, however, are with great
practical importance to many areas such as Cardiology, as
annotated data is usually precious and limited due to genetic
privacy issue and the medical background requirement for
annotators.

Summary of Contributions. In this paper, we consider
the high-dimensional regime that the number of features is
much larger than the sample size, and the features are re-
vealed in an online manner. We propose an unsupervised al-
gorithm termed Online leverage scores for Feature Selection
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(OFS). Our main technique is to approximately compute the
broadly used leverage score in each iteration, and determine
the importance of each feature in real time. We prove that
the reduced feature space is a good approximation to the
original one in some sense to be clarified. Furthermore, we
apply k-means clustering on the set of selected features, and
show that the clustering performance does not degrade a lot.
Computationally, our algorithm enjoys low time complexity
and little memory usage, which makes it a perfect fit for big
data analytics.

2. Related Work

Feature selection is a primary technique in machine learn-
ing to address “the curse of dimensionality”. In the last
decades, a number of methods have been proposed (Guyon
& Elisseeft], 2003 IDonoho & Jinl [2008)). In this section, we
give a brief review of existing approaches in terms of batch
situation and online situation.

Batch Methods. Existing batch feature selection meth-
ods can be roughly divided to unsupervised, supervised
and semi-supervised approaches. The supervised methods
utilize the target variable to guide the feature evaluation
process, such as Fisher score, Least Absolute Shrinkage
and Selection Operator (Lasso) (Tibshiranil [1996) and mini-
mum Redundancy Maximum Relevance (Peng et al., 2005).
Unsupervised feature selection methods mainly depend on
latent data distribution analysis (He et al., 2005)), such as
spectral analysis (Zhao & Liu, 2007;|Cai et al.,[2010) and
Kullback-Leibler Divergence between neighborhood distri-
butions (Wei & Philipl 2016)). The semi-supervised feature
selection algorithms make benefits of both aforementioned
approaches, such as combining Gaussian Field and Har-
monic functions (Kong & Yu, [2010;|Zhu et al., 2003).

Feature selection methods are also characterized as wrapper,
embedded and filter model. The wrapper model evaluates
feature subsets by their performance on a specific algorithm,
such as SVM or Naive Bayes for classification tasks (For-
man, [2003) and k-means for clustering tasks (Guyon et al.,
2002; Xu et al., 2014). The embedded model seeks the
desired feature subset by solving a regularized optimization
objective function with certain constraints (Zhang| 2009;
Yang & Xul 2013). Examples of this approach include
Least Angle Regression (Efron et al., 2004)) and group Lasso
(Zhang et al.| [2016). The optimization process forces most
coefficients small or exact zero. The features corresponding
to nonzero coefficients are selected.

The filter model utilizes certain statistical measurements,
such as the Hilbert-Schmidt Independence Criterion (HSIC),
leverage score (Boutsidis et al.l |2009) and kernel-based
measures of independence (Chen et al., 2017). Specifically,
the statistical leverage score is an important measurement

for unsupervised feature selection. It characterizes the out-
standing features that have more affect towards the result
of a statistical procedure. There are multiple variants of the
statistical leverage score, such as the normalized leverage
score (Boutsidis et al., [2009), the truncated version of lever-
age score (Gittens & Mahoney, 2013) and the kernel ridge
leverage score (Alaoui & Mahoneyl [2015). The ridge lever-
age score is used to select features for k-means clustering
(Boutsidis et al., |2009) and has proved to attain (2 + €)-
approximate partition. Specifically, the ridge leverage score
of the ith column of data matrix A € R"*? is defined as
(Alaoui & Mahoney, 2015),

li=a] (AAT + \I)"ta,, 2.1

where A > 0 is a parameter, I € R™*" is the identity ma-
trix. However, it is expensive as it requires O (n3 + n2d)
running time and O (nd) memory storage. A number of
recent papers focus on sampling some columns of A and
approximate the linear kernel of A (Li et al.,[2013}|Alaoui &
Mahoney, 2015} |Cohen et al.,2016; Musco & Musco, |2017).
However, none of these techniques have been applied for
feature selection of streaming features.

Online Methods. Motivated by the fact that features are
available in a stream in real-world applications, online fea-
ture selection has attracted a lot of attention (Perkins &
Theiler, 2003 |Zhou et al.| 2005; [Wu et al., |2010; |Wang
et al., 2013). The batch-mode algorithms cannot handle
this situation well as the global feature space is required in
advance. Examples of online feature selection approaches ei-
ther utilize statistical measurements, such as alpha-investing
(Zhou et al.| 2005)) and mutual information (Wu et al.| [2010)
or rely on optimization techniques, such as stochastic gra-
dient grafting (Perkins & Theiler, 2003; Wang et al.| 2015]).
All existing mentioned methods come with no theoretical
guarantees of the selected feature subset for clustering task.

2.1. Notation

We use bold lower-case letters, e.g. v € R4 to denote a
column vector. ||v||, is used to denote the ¢5-norm of the
vector. Capital letters such as X are used to denote matrices,
and its transpose is denoted by X 7. The capital letter I, x,
is reserved for the identity matrix where n indicates its
size. For an invertible matrix X, we write its inverse as
XL Otherwise, we use X T for the pseudoinverse. For
a square matrix X, we write its trace as Tr (X'), which
is the sum of its diagonal elements. The ith column and
jth row of the matrix X are denoted by x; and (x7) ',
respectively. Suppose that the rank of matrix X € R"*™ is
k < min{m,n}. The singular value decomposition of X
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is given by
g1 ’UI
X = [ula 7uk]
Ok ’U;Cr

where the singular values in descending order oy > --- >
o > 0, U = [ug, - ,ux] € R™F contains the left
singular vectors and V' = [vy,- - ,v] contains the right
singular vectors. In this paper, we will use the Frobe-

nius norm || X || := \/Zle o? and the spectral norm

HXH2 = INax)<i<k 0y = 071.

For a sequence of random variables X1, X, ..., we write
E; ; [X] for the expectation of X ; conditioning on
{Xl,...,Xjfl}.

3. Main Results

In this section, we propose an online algorithm for feature
selection, where the goal is to approximate the original
data with much fewer attributes in some sense. To the end,
we make use of the leverage score that, from a high level,
reflects the importance of each feature.

Suppose that the data matrix is A € R"*¢, i.e., n samples
lying in a d-dimensional ambient space. The statistical lever-
age score of the ith column (i.e., feature) of A is defined
as

I: =a (AA ) a,. (3.1

It is well known that sampling an n x O (e*Qn log n) matrix
A with probabilities proportional to the respective leverage
scores yields a (1 + €)-spectral approximation to A (Spiel4
man & Srivastaval, [2011), in the sense that for all

HAT:UH2 ~ HATscH2 , or more precisely
1-ex'AATz < T AA' z <(1+ex"AA Tz, or
(1-)AAT < AA' <(1+c)AAT.

In the online setting, however, we are not able to access all
the data to compute the leverage score. The key idea of our
algorithm is that when a new feature arrives, we approximate
its leverage score based on the obtained features, which can
further be used to guide the selection process.

To be more concrete, at time stamp ¢, suppose the observed
data matrix is Ai,l and the new feature a; is revealed, we
need to determine whether a; is kept or discarded. A natural
way for the sake is to compute the approximate leverage
score of a; as follows:

ll‘ = a?(Ai,lAll)Tai. (32)

Algorithm 1 Online Feature Selection

Require: Initial data matrix A, sampling rate ¢ =
8¢ =2 log n, approximation parameter € € (0,1).
1: fori=1,--- do
2:  Reveal the ith feature a;.
Compute the online leverage score

w

I, = min((1 + e)a] (A,_1 A4, tai,1).
4:  Compute the probability,
pi = min(cl;, 1).
5:  With probability p;, update
A=Ay ai/\/pi

Otherwise,

6: end for

Intuitively, if A, qisa good approximation to A, [; indi-
cates the importance of a; as [ does. And what we will
show is that, it is the case after we reveal a few attributes.

It is known that if the entire feature space is available, each
leverage score is upper bounded by 1. However the esti-
mates based on A;_; can be arbitrary because A; 7 is a

submatrix of A which leads to Ai,pzlll < AA". For
our analysis, we technically require that each I; is not larger
than 1. Hence, we will make use of a modified quantity

; = min ((1 +oal (A A, ) a, 1) . (33)
Note that ¢ > 0 is some pre-defined accuracy parameter,
and the above suggests we are using a conservative estimate
of the leverage score. To see this, consider Ai_l = A, then
I > [7. It is essential in the online setting in that we may
lose many important features with an aggressive strategy.

Then, the sampling probability is computed as

p; = min (86*2 logn - I, 1) : (3.4)
With the scaling factor of l: above, it is not hard to see
that for a small approximation error €, one has to select the
current feature with high probability, which conforms the
intuition — an exact estimation of A requires selecting all
the features. We summarize our method in Algorithm T}

3.1. Analysis

We first show that with high probability, the data matrix
produced by our algorithm is a good approximation to A.
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Theorem 1. Consider Algorithm|l} Let A be the output
when it terminates. It holds with high probability that

(1-AAT < AA < (1+0AAT.

Proof. Let A; = (a1 asy. ..
matrix and for all 7 > 1, let

a;). Define Y as the zero

-
Yio1=(AA)/2(A; 1A, — A1 A )(AAT)T/2,

Let u; = (AAT)T/QG,Z‘. If HYi,1||2 > e, weset X; =0.

Otherwise, set

X, — {<1/pi - Dugu]

if a; is sampled in A,

—uu otherwise.

Thus, X,L' = Y7 - Yi—1~

Consider the case || Y;_1]|, < €. We get

li = min((1 + e)a] (4; )Tai’l)
> min((1 + €)a; (A; AT+6AAT) a;, 1)
> min((1+e)a; ((1+€)(AAT))Ta;, 1)
=a; (AA ) a;
=u; u;.

K2

> If p, = 1, then X;
Otherwise, we have p; > cujui. Moreover, we get

Thus, p; > min(cu; u;, 1).

[Xill2 <1/c
and
Ei_1 [X]]
=<pi-(1/pi — 1)*(uu) )® + (1= p;) - (win] )?
= (UZUI)Q/Z?Z
< uu, /.

Let W, = 2221 Ej_1 [X}]. We have

%
IWill, <[> win] fe| <1/e.
k=1

2

Applying Lemma ] gives

PrVll, > 0 < e (1 L)

< n-exp(—ce?/4)
=1/n.

This implies that with high probability

H(AAT)T/Q(AAT)(AAT)W - IH <e.
2

= 0.

We thus have

(1-0)AAT <AA <(1+eAAT,

completing the theorem. O

Now we turn to control the number of features selected by
Algorithm ‘We will use the result in (Cohen et al.,[2015)
shown below.

Lemma 1. Let A be an n x d matrix, ¢ € (0,1),
1/¢, l~1, Sl lNd be over-estimated leverage scores, i.e.,
a] (AA"Ya; forall 1 < i < d. Let p; = min{cl;, 1}.
Construct A by independently sampling each column a;
of A with probability p; and rescale it by 1/\/p; if it is
included in A. Then, with high probability, A is the (14¢€)-
spectral approximation of A and the number of columns in

AisO (6_2 S ilog n)

¢
l

Vol

By Lemmal[l] in order to control the number of selected fea-
tures, we need to bound the sum of online leverage scores.

Lemma 2. After running Algorithm|l} it holds with high
probability that

d
3= O (nlog(|AlL).

Proof. We define

0; = log det(AiA:) —log det(;{i_lﬁj_l).

The sum of §; can be bounded by the logarithm of the ratio

. < al . .
of the determinants of AA . By the matrix determinant
lemma, we have

E; 1 [exp(l;/8 — 61‘)}
=pi (1t al (A A
+(1—pi)- e/

<(14+U4/4) - (pi(1+ a;'r(Ai—lA:—l)il
+1—p;).

a;/pi)”"
a;/p;)”"

If clNi < 1, we have p; = cl~i and
Ei 1 [exp(li/s - 5)]

<cli-(1+1;/4)(1+1/((1+€)e)”
(1+1;/4)

= (1 +1;/4)(cli(1 +1/((1 +€)c)) !

<(A+6L/4)A+ci(1—1/(4c) — 1))

=(1+1;/4)(1—1;/4) < 1.

1 + (1 — Cil)
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Otherwise, p; = 1 and we have

Ei 1 [exp(li/s — )]

S+ 1/4)1+ AT (A A + D)7 4,7
<A+L/4aA+1L)" <.

We now analyze the expected product of exp(l; /8 — d;) over
the first k steps. For k£ > 1 we have

k k—1
i=1 1=1

and so by induction on k,

E lexp (il}/g 51-)1 <1

Hence by Markov’s inequality,

d d
Pr (Zl > 8n+825i> <e ™.
i=1 =1

Using Theorem I] with high probability, we have

AA < (1+6AAT,
implying that
(1+o)"(lAl3)",
) < n(1+log(||A[3))-

By the definition of §;, it holds with high probability that

det(A AA' ) <
log det(A a'

d
— logdet(A' A+ AI) —

< n(1+log(||All3) — 1)
= n(log (|| A[l3)).

And with high probability,

d d
=1 =1
< 8n + 8nlog(||A[3)

= 0 (nlog(lAll2))
= O (nlog(||Al,))-

The proof is complete. O

Thus Lemma [I] and [2] imply that Algorithm [I] selects
O (e ?nlogdlog(||Al|,)) features with high probability.

Time Complexity. The running time of Algorithm |1 is
dominated by the online leverage score computation in Step
3, which is O (n®). In the case that A;_; is a Laplacian
matrix, Step 3 can be implemented in O (dlog® n) time by a
fast graph Laplacian solver with the Johnson-Lindenstrauss
lemma, as stated in (Koutis et al.,[2016)).

Memory Cost. The memory cost for leverage score compu-
tation is significantly reduced from O (nd) to O (n2 logn
(storage of Ai). This follows from the analysis of Lemma
which states that when the algorithm terminates, only
O (e ?nlognlog(||A|,)) features will be selected. Note
that this paper considers the regime where n < d, such as
the number of patients with rare diseases n and the length
of their gene expressions d, or the batch size in neural net-
works n and the corresponding dimension of feature space
d. Hence our online implementation is order of magnitude
more efficient. It leads to practical values of our algorithm
for learning tasks, such as clustering.

3.2. Application to k-Means Clustering

We explore the performance of matrix A returned by Al-
gorithm[T|when it is used for k-means clustering. We first
recall the k-means clustering problem.

Formally, k-means clustering seeks to partition the data
matrix A € R"*4 into k clusters {C},--- ,C}} to mini-
mize the distance between data points and its closest center
{py, -+, g} (Awasthi et al., 2010):

min, Z > fla? = il

M- i1 jec;

(3.5)

where pt; be the center of data points in C;. It is known that
k-means clustering is an instance of low-rank approximation
(Boutsidis et al., [2009). To see this, we construct an n X k
matrix X as the cluster indicator matrix. Then for each
solution {g;}%_ | of (3.5), we will assign a cluster label,
say ¢; € {1,2,...,k}, to each sample a’. We set X ;; =
1/4/|C}| if a; belongs to C}, and 0 otherwise. In this way,
the ith row of X X " A is actually the average of the points
with label i, i.e., the center p; of the ith class. Hence, from
the discussion, we may rewrite (3.3)) as follows:

k
min > " Haj (XX TA) z

i=1j€C;

More compactly, we aim to solve
.
min HA - XX AH
X F

See (Ostrovsky et al., [2006)) for a more detailed discussion.
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Let the indicator matrix X, € R™** denote the optimal
partition on A, i.e.,

2
‘A _ XXTAH .
F

X, = argmin (3.6)
b'e

We first investigate how the cluster indicator matrix X over

A is deviated from the optimum. The following lemma

provides the bound of the k-means objective function value
on A.

Lemma 3. Suppose that A is the matrix returned by Algo-
rithm[I} then

2 - ~ 112
1ol xxaf) < [ xxal]

< (1+e) ’A—XXTAHi,

when € is the parameter of Algorithm([l]

Proof. Using the notation Y = I — X X T, we can rewrite
the objective function of k-means based on the data matrices
A and A as

T 407 2 T
HA XX AH — [y A% =Tr (YAA Y) ,
F
N T |12 12 LT
HA XX AHF - HYAHF -Tr(Yaa'y).
Note that
LT t AT
Tr <YAA Y) =Tr Zyz AA vy, |,
i=1
where y; is the 7th column of Y. Then by the spectral bound
on AA' in Theorem we immediately get
(1—)Tr (YAATY) <Tr (YAATY)
<(1+e)Tr (YAATY) .

Pluggingy =1 - XX T into the above inequalities com-
pletes the proof. O

Now we show that A is also a good approximation to A.
Theorem 2. Suppose that A is returned by Algorithm Let

- 2
X, = argmin HA - XXTAHF. Then given € € (0,1),
we can get

. 2 1 2
HAfX*XIAH < +€-HA7X*X*TAH .
F—1l—e¢ F

Proof. Using Lemmal[3] we have
~ ~ T 2 ~ -~ T ~112
(1—¢) ‘A—X*X* AHF < HA—X*X*AHF,

~ ~ 12
HA ~ X*XIAH <(1+e) HA - X*X*TAH
F

2
.

On the other hand, by the optimality of X, for A, we have

~ 112 ~ TV
HA—X*X*AH SHA—X*X*TAH .
F F

Combining the above inequalities, we have

- 2 1 2
HAfX*X*TAH < +€-HA—X*XIAH .
F—1l—e F

The proof is complete. O

Theorem implies that if X « 18 an optimal solution for ;1,
then it also preserves an (1 + €)-approximation for A. We
compare our algorithm with existing dimension reduction
methods for k-means clustering as shown in Table I}

4. Experiments

This section describes an empirical study of the efficacy and
efficiency of our algorithm. We first elaborate the experi-
mental settings.

Data Sets. We perform the experiments on 6 realistic
data sets, including USPS| AR?| COIL2(f| CIFAR-1(fY]
MNISTE] and ORI_ﬂ The summary of them is shown in
Table 2

Comparative Methods. We compare our algorithm with
state-of-the-art feature selection approaches, including su-
pervised model, for instance, alpha-investing (Alpha) (Zhou
et al.,|2005)), as well as unsupervised model, e.g., A\-ridge
leverage score (LevS) (Alaoui & Mahoney| 2015) and Lapla-
cian score (LapS) (He et al., [2005). We also compare to
sparse random projection (SEC) (Liu et al.,2017) which is
particularly designed for k-means clustering.

Pipeline. After running our method and the baselines above,
we obtain a reduced set of features. Then we feed it to the
standard k-means clustering that is available in Matlab. We
also report the clustering result based on the original set of
features, and we simply denote it by k-means.

Results. We report the clustering accuracy against the num-
ber of selected features in Figure[I] We can see that our al-
gorithm achieves competitive performance with other batch
methods. For example, our algorithm outperforms all the

'https://archive.ics.uci.edu/ml/datasets.
html

“http://www2.ece.ohio-state.edu/~aleix/
ARdatabase.html

http://www.cs.columbia.edu/CAVE/
software/softlib/coil-20.php

‘https://www.cs.toronto.edu/~kriz/cifar.
html

>http://yann.lecun.com/exdb/mnist/

®http://www.cl.cam.ac.uk/research/dtg/
attarchive/facedatabase.html


 https://archive.ics.uci.edu/ml/datasets.html
 https://archive.ics.uci.edu/ml/datasets.html
http://www2.ece.ohio-state.edu/~aleix/ARdatabase.html
http://www2.ece.ohio-state.edu/~aleix/ARdatabase.html
http://www.cs.columbia.edu/CAVE/software/softlib/coil-20.php
http://www.cs.columbia.edu/CAVE/software/softlib/coil-20.php
https://www.cs.toronto.edu/~kriz/cifar.html
https://www.cs.toronto.edu/~kriz/cifar.html
http://yann.lecun.com/exdb/mnist/
http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html
http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html

Provable Variable Selection for Streaming Features

Table 1. Comparison of dimension reduction methods for k-means clustering on data matrix A € R™*¢ with n data points and d features.
0 € (0, 1) represents the confidence level. Note that we consider the high-dimensional regime where n < d.

Methods Dimension Time Approximation Ratio
Boutsidis et al.|(2009) O (e *klog(k/e)) O (min(nd?, nd)) 2+¢
Boutsidis et al.|(2015) O (k/e*) O (nde%k/log(n)) 2+e¢

| Liuetal. (2017) O (max(e2(k +log(1/9)), 25)) O (nnz(A)) 1+e
| [Pourkamali-Anaraki & Becker|(2017) O (log(n)/n) O (ndlog(d) + dlog(n)) N/A
This Work O (e *nlognlog([|A],)) O (n%) 1+e
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Figure 1. Clustering accuracy against the number of selected features.

Table 2. Summary of Data Sets. Table 3. CPU time of comparative algorithms (seconds in default).
Data set # Data Points | # Features Data set LapS | LevS | Alpha | SEC | OFS
USPS 9,298 256 USPS 1.46 0.94 3.30 | 0.003 | 0.15
AR 1,400 3,168 AR 0.70 7.76 26.99 | 0.005 | 1.74
COIL20 1,440 1,024 COIL20 0.23 0.64 4.79 | 0.002 | 0.58
CIFAR-10 60,000 512 CIFAR-10 | 2mins | 13.79 | 3 mins | 0.002 | 2.28
MNIST 70,000 784 MNIST 19.38 | 10.23 9.62 | 0.003 | 1.32
ORL 96,436 1,770 ORL 0.24 0.45 0.42 | 0.003 | 0.05

baseline methods on COIL20, CIFAR-10 and ORL when the
number of selected features varies from 10 to 500. The clus-
tering performance on our selected subset even outperforms
the one with all available features.

Computational Efficiency. We illustrate the running time
in Table[3] In terms of efficiency, our algorithm outperforms
most of the comparative methods. This is not surprising in
that for batch methods, they often update the model with all
the data while we process them one by one. For example, on
the CIFAR-10 data set, Laplacian score requires 2 minutes

for feature selection because the computation of the graph
matrix based on global feature space is expensive. Our
algorithm, in contrast, only requires a few seconds. The
reason is that in each iteration, we operate with a skinny
matrix A instead of the whole data matrix A.

5. Conclusion

In this paper, we have proposed an online feature selection
for k-means clustering. For features in a stream, we approx-
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imate its leverage score in an online manner and perform
feature selection based on such an inexact score. We pro-
vide theoretical guarantee that our unsupervised approach
produces an accurate estimation based on the original space.
Moreover, in the high-dimensional regime the algorithm
is computationally efficient and consumes little memory.
Perhaps more importantly, our algorithm is capable of ad-
dressing streaming data which makes it a perfect fit for
large-scale learning systems. In addition, we extend the
analysis to the k-means clustering problem, and provably
show that with the set of features reduced by our approach,
we are still able to obtain a near-optimal solution to the
original k-means problem. The extensive empirical study
matches perfectly our analysis.
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A. Technical Lemmas
We provide a technical lemma which is due to (Tropp et al.,
2011).

Lemma 4. Let Yy,Y1,...,Y, be a matrix martingale
that are self-adjoint matrices with dimension d, and let
X1,...,Xpbesuchthat X, =Y, — Y 1 foralll <
k < n. Assume

| Xklls < R, almost surely for all k.

Define the predictable quadratic variation process
k
Wy = ZEj_l [X?] forall k,
j=1

where Ej_ [X ?] denotes the expectation of X ? condition-
ingon X1,--+,Xj_1. Then, for all ¢ > 0 and o* > 0,

Pr([[Yally > eand [|[W, |, < 0®)
—€2/2
<d- —_ .
< d-exp <O’2 + Re/3>
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