
Proof of Lemma 1

Recall the definition of oracle solution, Equation (2), and we have:

�̂O = arg min
�Sc=0
�S2S

kX� � yk22 = argmin kXS�S � yk22, (6)

where XS denotes the sub-matrix of X that contains columns indexed by the non-zero index set S.
The first order optimal condition for Equation (6) is:
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where (7) comes from the facts that y = X�true + ✏ and �true

Sc = 0. We then multiply (8) by
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1

n
(�̂O � �true)TXT

S
XS(�̂O � �true) =

1

n
(�̂O � �true)TXT

S
✏,

which leads to the following inequality:
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Since ✏ is �-subgaussian and x is upper bounded, to bound the k 1
n
XT

S
✏k term, we can use the

Hanson-Wright inequality Rudelson et al. [2013]:
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where v = (v1, ..., vn) and vi is a zero mean �-sub-Gaussian random variable. As k 1
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The last inequality holds when n � s
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It is worths pointing out that Pj is the projection matrix that projects the n-dimensional vector ✏ onto
s-dimensional subspace and E[Pj✏] = 0, which directly leads to E[kPj✏k22] = V ar(Pj✏) = s�
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Therefore, with probability 1� �1, the following inequality holds:
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where �1 = exp(�O(n)).

Proof of Proposition 1

We first expand and restate Proposition 1 as follows: If the compatibility condition is satisfied, the
the error follows i.i.d �-subgaussian distribution, and min{|�true

j
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Note that Theorem 1 in Fan et al. [2014] states that if events E2 = {k�1 � �truek1  4 s

�2�} and
E3 = {k 1

n
X

T

Sc(XS �̂O � y)k1  a�} hold, then �̂2sWL = �̂o. Therefore, to prove this expanded
version of Proposition 1, we merely need to derive probability bounds for those two events.

First, let us consider the E2. As in 2sWL algorithm, we solve for the lasso solution in the first step,
i.e., �1 is a lasso solution. Under compatibility condition, Van De Geer et al. [2009] establishes that
the following inequality holds with probability 1� �2:
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Now we consider event E3, whose probability can be bounded as follows:
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where the first inequality comes from the union bound on non-significant dimensions, xi is the
ith column of covariate matrix X , Equation (10) comes from the fact that Equation (6) allows
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We then apply Hoeffding’s inequality and have the following results:
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where the second inequality comes from the facts that x2
i
 nx

2
max, where xmax=̇kxk1, and

(I � Pj) � I . Therefore, with union bound over i 2 S
c, we can bound event E3:
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Thus, with probability (1 � �2 � �3), �2 derived from the 2sWL procedure is an oracle solution.
Finally, combining with event E1 in Lemma 1, Proposition 1 follows immediately.

Proof of Proposition 2

When � = O(
p
log d/n), the minimum sample size needed to satisfy Proposition 1 can be derived
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Therefore, if we have a sample size larger than O(s2 log d), we have k�̂2sWL(X,y,�) �
�truek2  O(

p
s

n
) with certain probability (see Proposition 1), which implies that the cardinali-

ties of �̂2sWL(X,y,�) and �true are s. Accordingly, we have k�̂2sWL(X,y,�) � �truek1 
O(

p
s
p

s

n
) = O(s

p
1/n). Comparing to the Lasso bound in Van De Geer et al. [2009],

k�Lasso � �truek1  O(s
q

log d

n
), the convergence bound of the MCP estimator under the 2sWL

procedure is faster, when the sample size is large enough (e.g. n > O(s2 log d)).

In addition, with high probability, the MCP estimator under the 2sWL procedure will match the
oracle estimator, which mimics the scenario under which we solve the unpenalized problem with
only significant dimensions. Therefore, the MCP estimator under the 2sWL procedure will match the
oracle convergence rate with high probability.

Proof of Theorem 1

There are four key steps in establishing the expected cumulative regret upper-bound for the MCP-
Bandit algorithm in Theorem 1. The proofs for the first three steps (i.e., oracle inequality for non-i.i.d.
data, oracle inequality for forced-sample estimator, and oracle inequality for all-sample estimator)
have been detailed in §5.1, §5.2, and §5.3 in the main paper.

In the following, we will expand and provide details for the fourth step (i.e., bounding the cumulative
expected regret) to complete the proof. We first divide our time periods [T ] into three groups:

1. t  (Kq)2 with all samples and t > (Kq)2 with forced samples;

2. t > (Kq)2 without forced samples and the event At�1
.
=n

k�̂M (Ti,t�1,�)� �truek1  h

4xmax

o
doesn’t hold;

3. t > (Kq)2 without forced samples and the event At holds.

The first group contains the forced samples and all samples with t  (Kq)2. When t  (Kq)2,
we do not have sufficient samples to accurately estimate covariates parameter vectors, the decision
performance under the MCP-Bandit algorithm will be sub-optimal comparing to that of the oracle
case. Note that as we assume kxk1  xmax, k�k1  b, each user’s regret is bounded by 2bxmax

for any decision; and then the regret for t  (Kq)2 is upper bounded by (Kq)22bxmax. Since the
sampling frequency of forced sampling decays exponentially, there exists a constant C1 > 0 such
that the forced sample size |Ti,t| by time t > (Kq)2 is bounded as follows:

1

C1
q log t  |Tt,k|  C1q log t. (13)

We, therefore, can bound the cumulative regret by 2(Kq)2bxmax + 2C1qbxmax log T .

The second group includes scenarios where t > (Kq)2 and forced-sample-based estimators are not
accurate enough. In particular, when At�1 doesn’t hold, the forced sample based estimator vector
�̂M (Ti,t,�) is not near the true parameter vector �true. Under those scenarios, our decisions will
be sub-optimal with high probability. To bound the second group, we need to bound the expected
instances that At�1 doesn’t hold from (Kq)2 < t  T � 1. According to Equation (13), for arm k,
the forced sample size |Tt�1,k| is lower bounded by q/C1 log t for time t > (Kq)2. Since we require
q & O(s2 log d) � 8C1s�max�

2
xmax

h2�min
, we can show that the following inequality holds for T > 3:
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Through union bounds over different arms and Proposition 3, there exist some positive constants C4

and C5 satisfying:
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where the last inequality uses the fact that
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4
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regret bound for second group is 2Kbxmax log T .

To bound the third group, without loss of generality, we assume that decision j is optimal (i.e.,
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T�i). Then, the expected regret at time t is
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where the last inequality uses the fact that event {j = argmaxi2[K] x
T
t
�̂i} is a subset of the event

{xT
t
�̂i > xT

t
�̂j} and that xT

t
(�j � �i) � 0. Thus, we can bound rt through the regret incurred

by each arm in K with respect to the optimal arm. We define the event Bi = {xT
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2
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By the fact that xT
t
(�j � �i)  2bxmax and the definition of Bi, we can further bound the regret as

follows:
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X
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t
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i
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Note that if we choose decision i instead of decision j under the condition that event Bi happens,
then the following inequality must hold:
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q
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, and that we can find C7, C8, and C2 > 0 via Proposition 5

such that
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t
, j 2 K. (16)
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If we require q � C8+
p
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8+4C7C8 log d

2C7
and t � (Kq)2, then Equation (16) implies that
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t
=
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t
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Therefore, when t �
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, we have C7t �
p
t+C8 log d � log t+C8 log d. We

can further bound P[Bc

i
] by Assumption 1: P[Bc

i
] = P[xT

t
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p
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p
sC0�xmax.

Accordingly, we can bound the total regret of the final group as follows:
TX

t�(Kq)2

⇢
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2
x
2
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where Equation (18) requires K � 2, q � 1, and Equation (19) further requires
P

T

t=4 1/t  log T .
Combining the bounds for these three groups, we can write the total regret as in Theorem 1.

Finally, for the dependence on d and s, we only need to consider the part with term log T . As all
Ci, i = 2, 6 are independence on d, q = O(s2 log d) and �max  sx

2
max, we can derive that the

regret dependence on d and s is upper bounded by O(s2(s+ log d)).

Proof of Proposition 3
There are three key steps to prove Proposition 3:

1. Re-establish the compatibility condition for non-i.i.d. samples;
2. Provide the probability bound for the minimum eigenvalue of �min=̇

1
|A| (X

A
S
)TXA

S
;

3. Refine the results in Proposition 1

For the first step, we will rely on the matrix perturbation techniques. As |xt,i| is bounded by xmax

for all t and i  d, 1
|A0 | (X

A
0

S
)TXA

0

S
will converge to E[xT

S
xS ] when sample size is large enough.

Similarly, for large sample size, the sample compatibility constant �A0 will also converge to the
population compatibility constant �. Based on this idea, the bound for �A can be derived from �

with the bridge �A0 . We summarize our results in Lemma 2.

Lemma 2 When |A0 | � 1024sx3
max log d

�2 , we will have �|A| � �

q
|A0 |
2|A| with probability 1 �

exp
⇣
� �

2|A|
512sx2

max

⌘
.

In addition, we can show that eigmin(A+B) > eigmin(A) if A,B ⌫ 0. Immediately, we will have
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1
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A
S
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) = eigmin(
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|A|
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A
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S
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0

S
+

1

|A|
X

i2A�A0

xT

i
xi) �

|A0 |
|A| �min,A0 .

Combined with the matrix Chernoff bound ,the probability bound for �min can be established as in
the following Lemma:

Lemma 3 (Tropp et al. [2015] Theorem 5.1.1) �min,A � �min|A
0
|

2|A| with probability 1 � s ·

exp
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� |A

0
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◆
.
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Note that Lemma 2 suggests �A � �

q
|A0 |
2|A| � �

p
c0
4 and Lemma 3 indicates

eigmin(
1
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A

0

S
)TXA

0

S
) = �min,A � �min|A

0
|

2|A| � c0
4 �min. Plugging these two results back into

Proposition 1, we can establish Proposition 3.

Proof of Lemma 2
As all samples in A0

are i.i.d, we will have the following result (see exercise 14.3 in Bühlmann &
Van De Geer [2011]): if there exist K and �0 such that K2

�
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/K

2)� 1]
�
 �

2
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⇢
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�0
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2

◆◆�
 exp (�nt) ,

where �

⇣
K

�0
, n,
�
d

2

�⌘
=
q

2 log(d(d�1))
n

+ K log(d(d�1))
n

.

Setting K = xmax and �0 =
p
2xmax, we will have K

2
�
E[exp(x2

t,i
/K

2)� 1]
�
 x

2
max(e� 1) 

�
2
0 . Therefore, when the sample size is large enough, 1

|A0 | (X
A

0
)TXA

0
will not be far away from

E[xTx] element-wise with high probability.

Now, we only need to show that if 1
|A0 | (X

A
0
)TXA

0
is close enough to E[xTx] element-wise, XA

0

will also satisfy the compatibility condition. To this end, we need Corollary 6.8 in Bühlmann &
Van De Geer [2011], which shows that if 1) the population covariance matrix E[xTx] satisfies
the compatibility condition with constant � and 2) the sample covariance matrix 1

n
XTX satisfies

k 1
n
XTX � E[xTx]k1  �

2

25s , then X will also satisfies the compatibility condition with constant
�A = �/

p
2.

To combine these two results, we need to choose proper t and n so that the following inequality holds:

2K2
t+ 2K�0

p
2t+ 2K�0�

✓
K

�0
, n,

✓
p

2

◆◆
 �

2

25s
.

Intuitively, when t is sufficiently small and n is sufficiently large, the above inequality will hold
naturally. Although there are various choices of t and n, we adopt the following parameter choice to
simplify our proof: t = �

2

29sx2
max

and n � 210sx3
max log d

�2 , under which we will have

P

⇢
k 1

|A0 | (X
A

0

)TXA
0

� E[xTx]k1  �
2

25s

�
� 1� �4,

where �4 = exp
⇣
� �

2

29sx2
max

⌘
. This result implies that �A0 = �p

2
with probability 1� �4. The final

step is to build the relationship between �A and �A0 . Consider a vector � with k�Sck1  3k�Sk1,

1

|A|kX
A�k22 =

1

|A|�
T (XA)TXA�

=
1

|A|�
T

⇣
(XA

0
)T (XA�A

0
)T
⌘ 

XA
0

XA�A
0

!
�

=
|A0 |
|A| �

T (
1

|A0 | (X
A

0

)TXA
0

)� +
|A|� |A0 |

|A| �T (
1

|A|� |A0 | (X
A�A

0

)TXA�A
0

)�

� |A0 |
|A| (

1

|A0 |kX
A

0

�k22) �
|A0 |
|A|

�
2
A0

s
k�k21 =

|A0 |
|A|

�
2

2s
k�k21,

where the last equality comes from the fact that �A0 = �p
2

. Therefore �A is at least �
q

|A0 |
2|A| .
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Proof of Proposition 4 See Proposition 3 of Bastani & Bayati [2015].

Proof of Proposition 5 For xt 2 Uk where k 2 K, if the event At�1 =n
k�̂M (Ti,t�1,�)� �truek1  h

4xmax

o
holds, then we have:

xT

t
�̂M (Tk,t�1,�)� xT

t
�̂M (Ti,t�1,�)

�xT

t
(�̂M (Tk,t�1,�)� �true

k
)� xT

t
(�̂M (Ti,t�1,�)� �true

i
) + h

�� 1

4
h� 1

4
h+ h =

1

2
h.

Thus the set K̂ = {k|xT
t
�̂M (Tk,t�1,�1) � maxj2K{xT

t
�̂M (Tj,t�1,�1)}� h/2} must be a single-

ton. As we use K̂ as a pre-selection procedure in the MCP-Bandit algorithm, we will successfully
select arm k for xt 2 Uk if At�1 holds.

Let’s consider the probability of event At�1 hold. When T � 4 and q � 8C1s�max�
2
xmax

h2�min
for the

positive constant C1, we have
�max�

2

�min
· 8sx

2
max

h2
 1

C1
q log T  |Tt,k|

)

s
�max�

2

2�min

r
s

|A| 
h

4xmax
.

From Proposition 3, we can show that there exists two positive constants C4 and C5 such that:

P{At�1} � 1�K exp

✓
�C4

C1
q log(t� 1) + C5 log d

◆
. (20)

Furthermore, if we require q & O(s2 log d), then we will have q � C1
C4

(C5 log d+1) for the constants
C1 and C4, which implies the following result:

P{At�1} � 1�K exp

✓
�C4

C1
q log(t� 1) + C5 log d

◆
= 1� K

t� 1
. (21)

Let’s consider a sequence of {M(i), i = 0, 1, 2, .., T + 1} where {M(i) is defined as follows:

M(i) = E

2

4
TX

j=1

1(xj 2 Uk, Aj�1, j /2 TT,k|Fi

3

5 , (22)

where Fi = {xj , yj , j  i}. Thus {M(i)} is a martingale with bounded difference |M(i)�M(i+
1)|  1, i = 0, 1, 2, ..., T . We can use M(0) to bound the value of M(T+1) with Azuma’s inequality
and we have:

P(|M(T )�M(0)| � 1

2
M(0))  exp

✓
�M(0)2/4

2T

◆

) P(M(0)�M(T ) � 1

2
M(0))  exp

✓
�M(0)2/4

2T

◆

) P(M(T )  1

2
M(0))  exp

✓
�M(0)2/4

2T

◆
.

Further, we can bound M(0) is bounded as follows:

M(0) = E

2

4
TX

j=1

1(xj 2 Uk, Aj�1, j /2 TT,k)

3

5

=
TX

j=1

E[1((xj 2 Uk, Aj�1, j /2 TT,k)]

=
TX

j=1

P((xj 2 Uk, Aj�1, j /2 TT,k). (23)
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Since {x 2 Ui} is independent on {Aj�1, j /2 TT,k} and {j /2 TT,k} is independent on {Aj�1},
Equation (23) implies:

M(0) =
TX

j=1

P(xj 2 Uk)P(Aj�1)P(j /2 TT,k)

� p
⇤(1� K

T � 1
)(T � C1q log T ), (24)

where Equation (24) comes from Assumption 2, Equation (21), and the fact that the sample size
of the forced samples is bounded for the constant C1: 1

C1
q log T  |Tt,k|  C1q log T . When

T � max{(Kq)2, (4C1q)2}, we have

1� K

T � 1
� 1� 1

Kq
� 1

2
,

(T � C1q log T ) �
1

2
T + (

1

2
T � C1q

p
T ) � 1

2
T.

Therefore, M(0) is lower bounded by p
⇤

4 T and we have:

P
✓
M(T )  p

⇤
T

8

◆
 P (M(T )  M(0))  exp

✓
�(p⇤)2T 2

/64

2T

◆

)P
✓
M(T )  p

⇤
T

8

◆
 exp

✓
� (p⇤)2T

128

◆
. (25)

Combining Equation (21) and Equation (25), we can conclude that with probability 1 �
exp

�
(p⇤)2T/128

�
� K

T
, among the whole sample set of arm k 2 K, the iid samples in Uk will be at

least p⇤T/8. The remaining proof directly follows the Proposition 3 with c0 = p
⇤
/4.
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