
Supplementary Materials for
Approximate Leave-One-Out for Fast Parameter Tuning

in High Dimensions

A Proof of Equation 7

In this Section, we prove the primal-dual correspondence in (6) and (7). Recall the form of the
primal problem:

min
β

n∑
j=1

`(x>j β; yj) +R(β). (31)

With a change of variable, we may transform (31) into the following form:

min
β,µ

n∑
j=1

`(−µj ; yj) +R(β), subject to: µ = −Xβ.

We may further absorb the constraint into the objective function by adding a Lagrangian
multiplier θ ∈ Rn:

max
θ

min
β,µ

n∑
j=1

`(−µj ; yj) +R(β)− θ>(Xβ + µ). (32)

Note that in (32), β and µ decoupled from each other and we can optimize over them respectively.
Specifically, we have that

min
β
R(β)− θ>Xβ = −max

β

{
〈β,X>θ〉 −R(β)

}
= −R∗(X>θ), (33)

min
µj

`(−µj ; yj)− θjµj = −max{µjθj − `(−µj ; yj)} = −`∗(−θj ; yj). (34)

We plug (33) and (34) in (32) and obtain that

max
θ

n∑
j=1

−`∗(−θj ; yj)−R∗(X>θ). (35)

B Primal Dual Equivalence (Proofs of Theorems 5.1 and
5.2)

In this section we prove the equivalence between the two stated methods in the case where the
loss and regularizer are twice differentiable. Let `, `∗, R and R∗ be twice differentiable. We con-
struct quadratic surrogates by Taylor extensions. The following lemma plays a key role in our analysis:

Lemma B.1. Let f be a proper closed convex function, such that both f and f∗ are twice differen-
tiable. Then, we have for any x in the domain of f and any u in the domain of f∗:

∇2f∗(∇f(x)) =[∇2f(x)]−1,

∇2f(∇f∗(u)) =[∇2f∗(u)]−1.

Proof. This lemma is a known result in convex optimization. However, since the proof is short and
for the sake of completeness we include the proof here. For f a proper closed convex function, we
have by Theorem 23.5 of [Rockafellar, 1970] that for all x,x∗:

x∗ ∈ ∂f(x)⇒ x ∈ ∂f∗(x∗).

1



In particular, if f and f∗ are differentiable, we obtain:

x = ∇f∗(∇f(x)).

Taking derivative in x once more, we obtain that:

I = [∇2f∗(∇f(x))][∇2f(x)],

which immediately gives:
∇2f∗(∇f(x)) = [∇2f(x)]−1.

The proof of the second part is immediate by applying the existing result to f∗.

Proof of Theorem 5.1. We have the following expressions for ˜̀ and R̃:

˜̀(zj ; yj) =
1

2
῭(x>j β̂; yj)(zj − x>j β̂)2 + ˙̀(x>j β̂; yj)(zj − x>j β̂) + c,

R̃(β) =
1

2
(β − β̂)>[∇2R(β̂)](β − β̂) + [∇R(β̂)]>(β − β̂) + d,

where c, d ∈ R are constants that do not affect the location of the optimizer. We now compute the
convex conjugate of ˜̀ and R̃, and we obtain that:

˜̀∗(wj ; yj) =
1

2

1

῭(x>j β̂; yj)
(wj − ˙̀(x>j β̂; yj))

2 + (x>j β̂)(wj − ˙̀(x>j β̂; yj)) + c′, (36)

R̃∗(µ) =
1

2
(µ−∇R(β̂))>[∇2R(β̂)]−1(µ−∇R(β̂)) + β̂>(µ−∇R(β̂)) + d′, (37)

where again c′, d′ ∈ R are constants.
Now, we wish to relate (36) and (37) to ˜̀∗

D and R̃∗D. By substituting the primal-dual correspon-
dence described in (8) of the main text for components of (36) and (37), we obtain that:

˜̀∗(wj ; yj) =
1

2

1

῭( ˙̀∗(−θ̂j ; yj); yj)
(wj + θ̂j)

2 + ˙̀∗(−θ̂j ; yj)(wj + θ̂j) + c′, (38)

R̃∗(µ) =
1

2
(µ−X>θ̂)>[∇2R(∇R∗(X>θ̂))]−1(µ−X>θ̂)

+ [∇R∗(X>θ̂)]>(µ−X>θ̂) + d′. (39)

To conclude, we note that according to Lemma B.1 we have

῭( ˙̀∗(−θ̂j ; yj); yj) = (῭∗(−θ̂j ; yj))−1,

∇2R(∇R∗(X>θ̂)) = [∇2R∗(X>θ̂)]−1.
(40)

Substitute (40) in (38) and (39) we obtain the dual of the quadratic surrogate equals

1

2

∑
j

˜̀∗(−θj ; yj) + R̃∗(X>θ) =
1

2

∑
j

῭∗(−θ̂j ; yj)
(
− θj + θ̂j +

˙̀∗(−θ̂j ; yj)
῭∗(−θ̂j ; yj)

)2

+
1

2
(X>θ −X>θ̂)∇2R∗(X>θ̂)(X>θ −X>θ̂)

+ [∇R∗(X>θ̂)]>(X>θ −X>θ̂) + c′. (41)

We recognize that the formula given in (41) exactly corresponds to the second-order Taylor
expansion of (15) in the main paper, which is just the form of ˜̀∗

D and R̃∗D.

Additionally, we show that the augmented dual method solves the surrogate quadratic problem.

2



Proof of Theorem 5.2. We noted in Section 3.2 of the main text that our dual method as described
explicitly approximates the loss by its quadratic expansion at the optimal value. We may thus
assume without loss of generality that the loss is given by `(µ; y) = (µ− y)2/2.

In this case, as stated in Section 3.2, we have that

θ̂ = proxg(y),

where we have defined g(u) = R∗(X>u). In addition, we note that the augmented observation
vector ya must have its ith observation lie on the leave-i-out regression line by definition, and in
particular we have that:

[proxg(ya)]i = 0.

This motivated us to solve for ỹ
/i
i by linearly expanding proxg and considering the intersection

of its ith coordinate with 0. Specifically, the desired ỹ
/i
i is obtained from the solution of the following

linear equation in z:
[proxg(y) + Jproxg (y)ei(z − yi)]i = 0. (42)

where Jproxg (y) denotes the Jacobian matrix of proxg at y.

We show that if R∗ is replaced with its quadratic surrogate R̃∗ as defined in the Theorem 5.1,
then:

[proxg̃(ỹa)]i = 0,

where g̃(u) = R̃∗(X>u), and ỹa denotes the vector y, except with its ith coordinate replaced by

the ALO value ỹ
/i
i . Let us note that as g̃ is quadratic, its proximal map proxg̃ is linear, and the

equation may thus be solved directly by a single Newton’s step. As a linear map is characterized by
its intercept and slope, compared with (42), it remains to show that:

proxg(y) = proxg̃(y), (43)

Jproxg (y) = Jproxg̃ (y). (44)

We note that (43) is immediate from the definition of g̃, as both the left and right hand sides

are equal to the dual optimal θ̂. In order to show (44), since g̃ is quadratic, we may compute its
proximal map exactly. From the previous section, we have that:

g̃(θ) =
1

2
(θ − θ̂)>X[∇2R(∇R∗(X>θ̂))]−1X>(θ − θ̂) + [∇R∗(X>θ̂)]>X>(θ − θ̂),

We minimize 1
2‖y − θ‖

2
2 + g̃(θ) in θ and get

proxg̃(y) = (I +X[∇2R(∇R∗(X>θ̂))]−1X>)−1(y −X∇R∗(X>θ̂)),

Notice the primal dual correspondence implies β̂ = ∇R∗(X>θ̂). In particular we may compute

the Jacobian of proxg̃ at y as (I +X[∇2R(β̂)]−1X>)−1.
On the other hand, we know that the proximal operator proxg is exactly the resolvent of the

subgradient ∂g:
proxg = (I + ∂g)−1

and in particular we have that:

proxg(y) +∇g(proxg(y)) = y.

Taking derivative again with respect to y and applying the chain rule, we obtain that:

Jproxg (y)(I +∇2g(proxg(y))) = I,

and hence that:
Jproxg (y) = (I +∇2g(proxg(y))−1.

Now, note that we have proxg(y) = θ̂, and that:

∇2g(θ̂) = X[∇2R∗(X>θ̂)]X>.

We are thus done by Lemma B.1.

3



C Proof of Primal Approximation Approach

In this section we prove the results of our primal approach on nonsmooth models presented in
Section 4 of the main paper rigorously. Since we use a kernel smoothing strategy, we start with some
useful preliminary results on kernel smoothing. We then discuss nonsmooth loss and nonsmooth
regularizer respectively.

C.1 Properties of Kernel Smoothing

In the paper, we consider the following smoothing strategy for a convex function f : R→ R:

fh(z) =
1

h

∫
f(u)φ((z − u)/h)du (45)

We make the following assumption about the kernel φ:

Compact support: φ has a compact support, i.e., supp(φ) = [−C,C] for some C > 0;

Normalization: φ kernel:
∫
φ(w)dw = 1, φ(0) > 0; φ(x) ≥ 0 for every x;

Symmetry: φ is smooth and symmetric around 0 on R.

Let K := {v1, . . . , vk} denote the set of zero-order singularities of the function f . Denote by ḟ−
and ḟ+ the left and right derivative of f . Our next lemma summarizes some of the basic properties
of f that may be used in the proofs of Theorem 4.1 and 4.2 of the main text.

Lemma C.1. The smooth function fh verifies the following properties:

1. fh(z) ≥ f(z) for all z ∈ R;

2. For all z ∈ KC , for all h small enough:

ḟh(z) =
1

h

∫
ḟ(u)φ((z − u)/h)du, f̈h(z) =

1

h

∫
f̈(u)φ((z − u)/h)du.

3. For all z ∈ K:

lim
h→0

ḟh(z) =
ḟ−(z) + ḟ+(z)

2
, lim

h→0
f̈h(z) = +∞.

4. If f is locally Lipschiz in the sense that, for any A > 0, and for any x, y ∈ [−A,A], we have
|f(x)−f(y)| ≤ LA|x−y|, where LA is a constant that only depends on A; then fh(z) converges
to f(z) uniformly on any compact set.

Proof. For part 1, by the normalization property of φ, we can treat φ as a probability density.
Consider the random variable U ∼ 1

hφ( z−uh ). From the convexity of f and Jensen’s inequality we
have

fh(z) = Ef(U) ≥ f(EU) = f(z).

For part 2, note that

ḟh(z) =
1

h2

∫
f(u)φ̇((z − u)/h)du =

∫
ḟ(u)

1

h
φ((z − u)/h)du.

A similar computation gives the stated equation for f̈h(z).

4



For part 3, when z ∈ K, we have by compact support of φ that as h→ 0:

ḟh(z) =
1

h2

∫ z

z−hC
f(u)φ̇((z − u)/h)du+

1

h2

∫ z+hC

z

f(u)φ̇((z − u)/h)du

=

∫ 0

−C
ḟ(z − hw)φ(w)dw +

∫ C

0

ḟ(z − hw)φ(w)dw

→
∫ 0

−C
ḟ+(z)φ(w)dw +

∫ C

0

ḟ−(z)φ(w)dw

=
ḟ+(z) + ḟ−(z)

2
.

A similar computation for the second-order derivative yields:

f̈h(z) =
1

h3

∫ z

z−hC
f(u)φ̈((z − u)/h)du+

1

h3

∫ z+hC

z

f(u)φ̈((z − u)/h)du

=
1

h
φ(0)(ḟ+(z)− ḟ−(z)) +

∫ C

0

f̈(z − hw)φ(w)dw +

∫ 0

−C
f̈(z − hw)φ(w)dw

→∞.

noticing that ḟ+(z) > ḟ−(z).
For part 4, for any compact set C which can be covered by a large enough set [−A,A] for some

A > 0, we have

sup
z∈C
|fh(z)− f(z)| ≤ sup

z∈C

∫ C

−C
|f(z − hw)− f(z)|φ(w)dw ≤ 2hCLA+C → 0, as h→ 0

Having established the basic properties of our kernel smoothing strategy, we apply them to
non-smooth loss and non-smooth regularizer respectively.

C.2 Proof of Theorem 4.2: Nonsmooth Separable Regularizer With
Smooth Loss

Consider the penalized regression problem:

β̂ = arg min
β

n∑
j=1

`(x>j β; yj) + λ
∑
l

r(βl). (46)

with ` and r being twice differentiable and nonsmooth functions respectively. Let rh be the smoothed
version of r constructed as in (45). Define

β̂h = arg min
β

∑
j

`(x>j β; yj) + λ
∑
l

rh(βl).

As before, let K denote the set of all zero-order singularities of r. We make the following
assumptions on the regularizer.

Assumption C.1. We will need the following assumptions on the problem.

1. r is locally Lipschiz in the sense that, for any A > 0, and for any x, y ∈ [−A,A], we have
|r(x)− r(y)| ≤ LA|x− y|, where LA is a constant that only depends on A;

2. β̂ is the unique minimizer of (46);

5



3. When β̂l = v ∈ K, the subgradient gr(β̂l) of r at β̂l satisfies gr(β̂l) ∈ (ṙ−(v), ṙ+(v)).

4. r is coercive in the sense that |r(z)| → ∞ as |z| → ∞.

Lemma C.2. Suppose that Assumption C.1 holds. There exists M > 0 that only depends on r, `
and λ, such that we have for any h ≤ 1:

‖β̂‖∞, ‖β̂h‖∞ < M.

Proof. Let h ≤ 1, then the minimizer of the smoothed version β̂h satifies

λ

p∑
l=1

r([β̂h]l) ≤ λ
p∑
l=1

rh([β̂h]l)

≤
∑
i

`(yi; 0) + λprh(0)

=
∑
i

`(yi; 0) + λp

∫ C

−C
r(hw)φ(w)dw

≤
∑
i

`(yi; 0) + λp sup
|w|≤C

r(w).

On the other hand, the minimizer β̂ of the original problem satisfies

λ

p∑
l=1

r([β̂]l) ≤
∑
i

`(yi; 0) + λpr(0) ≤
∑
i

`(yi; 0) + λp sup
|w|≤C

r(w).

The convexity and coerciveness of r implies that there exists an M , such that for all h ≤ 1:

‖β̂h‖∞ ≤M and ‖β̂‖∞ ≤M.

Lemma C.3. Suppose that Assumption C.1 holds. Then the smoothed version converges to the
original problem in the sense that:

‖β̂h − β̂‖2 → 0 as h→ 0.

Proof. By the local Lipschitz condition of r, we have for any z ≤M and h ≤ 1:

0 ≤ rh(z)− r(z) =

∫ C

−C
[r(z − hw)− r(z)]φ(w)dw ≤ 2CLM+Ch (47)

Let Ph(β) :=
∑
j `(x

>
j β; yj) + λ

∑
l rh(βl) denote the primal objective value. (47) implies that:

sup
‖β‖∞≤M

|P (β)− Ph(β)| ≤ 2hpCLM+C

By Lemma C.2 β̂h is in a compact set. Hence, any of its subsequence contains a convergent
sub-subsequence. Let us abuse the notation and denote by β̂h any of such convergent sub-subsquence,
that is, assume that β̂h → β̂0. Along such a sub-subsequence, we have that:

P (β̂0) = lim
h→0

P (β̂h) = lim
h→0

Ph(β̂h) ≤ lim
h→0

Ph(β̂) = lim
h→0

P (β̂).

The uniqueness of the minimizer implies β̂0 = β̂. As the above holds along any convergent
sub-subsequence, we have that:

‖β̂h − β̂‖2 → 0 as h→ 0.

6



Lemma C.4 (Convergence of the subgradients). Suppose that Assumption C.1 holds. Recall that
we use R(β) =

∑p
l=1 r(βl). We have that:

‖∇Rh(β̂h)− gR(β̂)‖2 → 0, as h→ 0.

where gR(β̂) is the subgradient of R at β̂.

Proof. By the first-order optimality conditions and the continuity of `, we have that as h→ 0:

‖∇Rh(β̂h)− gR(β̂)‖2 =
∥∥∥∑

j

`(x>j β̂; yj)−
∑
j

`(x>j β̂h; yj)
∥∥∥

2
→ 0.

Lemma C.5 (Convergence of the Hessian). Suppose that Assumption C.1 holds. We have that as
h→ 0:

r̈h(β̂h,i)→

{
r̈(β̂i) if β̂i /∈ K,
+∞ if β̂i ∈ K.

Proof. Let us first consider the case β̂i /∈ K. As R \ K is open, there exists δ > 0 such that

[β̂i − δ, β̂i + δ] ⊂ R\K. Since β̂h,i → β̂i as h→ 0, we have for h small enough that:

[β̂h,i − hC, β̂h,i + hC] ⊂ [β̂i − δ, β̂i + δ] ⊂ R\K.

Since r̈ is smooth on [β̂i − δ, β̂i + δ], by the bounded convergence theorem, we have as h→ 0:

r̈h(β̂h,i) =

∫ C

−C
r̈(β̂h,i − hw)φ(w)dw →

∫ C

−C
r̈(β̂i)φ(w)dw = r̈(β̂i)

Now, let us consider the case where β̂i ∈ K. By Lemma C.4, we have that ṙh(β̂h,i) → gr(β̂i),
from which we deduce:

|β̂h,i − β̂i| < hC.

Indeed, if we had β̂i ≥ β̂h,i + hC, notice the assumption on the subgradient gr(β̂i), this would
imply:

ṙh(β̂h,i) =

∫ C

−C
ṙ(β̂h,i − hw)φ(w)dw ≤ ṙ−(β̂i) < gr(β̂i),

which is contradictory. The same happens if β̂i ≤ β̂h,i − hC. To conclude, note that as h→ 0:

r̈h(β̂h,i) =

∫ β̂i

β̂h,i−hC
r(u)

1

h3
φ̈
( β̂h,i − u

h

)
du+

∫ β̂h,i+hC

β̂i

r(u)
1

h3
φ̈
( β̂h,i − u

h

)
du

=
1

h
φ
( β̂h,i − β̂i

h

)
(ṙ+(β̂i)− ṙ−(β̂i)) +

∫ C

β̂h,i−β̂i
h

r̈(β̂h,i − hw)φ(w)dw

+

∫ β̂h,i−β̂i
h

−C
r̈(β̂h,i − hw)φ(w)dw

→ +∞.

Lemma C.6. Consider a sequence of matrices An, n ∈ N, and let An =
[
A1n A2n

A3n A4n

]
where

A1n,A4n are invertible for all n. Additionally, suppose that Ain → Ai, i = 1, 2, 3, and A−1
4n → 0 as

n→∞. Then we have as n→∞ that:

A−1
n →

[
A−1

1 0
0 0

]

7



Proof. By the Woodbury matrix identity [Woodbury, 1950], we have

A−1
n =

[
(A1n −A2nA

−1
4nA3n)−1 −(A1n −A2nA

−1
4nA3n)−1A2nA

−1
4n

−A−1
4nA3n(A1n −A2nA

−1
4nA3n)−1 A−1

4nA3n(A1n −A2nA
−1
4nA3n)−1A2nA

−1
4n +A−1

4n

]
→
[
A−1

1 0
0 0

]

Proof of Theorem 4.2. The proof of Theorem 4.2 is a straightforward corollary of the Lemmas C.3,
C.4, C.5 and C.6.

C.3 Proof of Theorem 4.1: Nonsmooth Loss With Smooth Regularizer

We now consider the case of non-smooth loss. The proof is very similar to the previous section, so
we briefly mention the common parts and focus on the differences.

Consider nonsmooth loss ` and its smoothed version `h. R is assumed to be smooth. Let us
consider:

P (β) =

n∑
j=1

`(x>j β; yj) +R(β),

Ph(β) =

n∑
j=1

`h(x>j β; yj) +R(β).

Let us still use β̂ = arg minβ P (β) and β̂h = arg minβ Ph(β) to denote the optimizers. As before,

let K = {v1, . . . , vk} denote the zero-order singularities of `, and let V = {i : x>i β̂ ∈ K} be the set
of indices of observations at such singularities.

Assumption C.2. We need the following assumptions on `, R and β̂:

1. ` is locally Lipschitz, that is, for any A > 0, for any x, y ∈ [−A,A], we have |`(x)− `(y)| ≤
LA|x− y|, where LA is a constant depends only on A.

2. λmin(XVX
>
V ) > 0.

3. β̂ is the unique minimizer.

4. Whenever x>j β̂ = v ∈ K, the subgradient of ` at x>j β̂, g`(x
>β̂) satisfies g`(x

>β̂) ∈
(`−(v), `+(v)).

5. R is coercive in the sense that |R(β)| → ∞ as ‖β‖ → ∞.

Lemma C.7. Suppose that Assumption C.2 holds. There exists M > 0 that only depends on r, `
and λ, such that for all h ≤ 1, we have:

‖β̂‖∞ ≤M and ‖β̂h‖∞ ≤M.

Proof. Let h ≤ 1, then β̂h verifies:

R(β̂h) ≤
∑
j

`h(0; yj) + pR(0)

=
∑
j

∫ C

−C
`(hw; yj)φ(w)dw + pR(0) ≤

∑
j

sup
|w|≤C

`(w; yi) + pR(0).

Additionally, β̂ verifies:

R(β̂) ≤
∑
j

`(0; yj) + pR(0) ≤
∑
j

sup
|w|≤C

`(w; yi) + pR(0).

8



The convexity and coerciveness of R implies that there exists a M , such that for all h ≤ 1:

‖β̂h‖2 ≤M and ‖β̂‖2 ≤M.

Lemma C.8. Suppose that Assumption C.2 holds. We have that as h→ 0:

‖β̂h − β̂‖2 → 0.

Proof. Let Mx = maxi ‖xi‖2. By the local Lipschitz condition of `, we have that for any ‖β‖2 ≤M
and h ≤ 1 that:

0 ≤ `h(yi;x
>
i β)− `(yi;x>i β)

=

∫ C

−C
[`(yi;x

>
i β − hw)− `(yi;x>i β)]φ(w)dw

≤ 2CLMxM+Ch.

This implies:
sup

‖β‖2≤M
|P (β)− Ph(β)| ≤ 2nhCLMxM+C

From Lemma C.7, we know β̂h is in a compact set, thus any of its subsequence contains a
convergent sub-subsequence. Again abuse the notation and let β̂h denote this convergent sub-
subsequence. Suppose that: β̂h → β̂0. Now we have again:

P (β̂0) = lim
h→0

P (β̂h) = lim
h→0

Ph(β̂h) ≤ lim
h→0

Ph(β̂) = lim
h→0

P (β̂).

The uniqueness implies β̂0 = β̂. As the previous result holds along any sub-subsequence, we
deduce that:

‖β̂h − β̂‖2 → 0.

Lemma C.9 (Convergence of gradients). Suppose that Assumption C.2 holds. Then, we have that
for any j, as h→ 0:

‖ ˙̀
h(x>j β̂h)− g`(x>j β̂)‖2 → 0.

Proof. for j /∈ V , the result is immediate. For j ∈ V , we have that as h→ 0:∥∥∥∑
j∈V

xj ˙̀
h(x>j β̂h; yj)−

∑
j∈V

xjg`(x
>
j β̂; yj)

∥∥∥
2
→ 0

This implies the desired result by the assumption on XV,·.

Lemma C.10 (Convergence of Hessian). Suppose that Assumption C.2 holds. Then, we have that
for any j, as h→ 0:

῭
h(x>j β̂h; yj)→

{
῭(x>j β̂; yj) if j /∈ V
+∞ if j ∈ V

Proof. Again, the result follows through a similar argument as in the proof of Lemma C.5 for j /∈ V .
For j ∈ V , we have by Lemma C.9 that as h→ 0:

˙̀
h(x>j β̂h; yj)→ g`(x

>
j β̂; yj).

Following a similar reasoning as in the proof of Lemma C.5, we have that:

|x>j β̂h − x>j β̂| < hC.

9



Finally, we note that as h→ 0:

῭
h(x>j β̂h; yj) ≥

1

h
φ
(x>j β̂h − x>j β̂

h

)
( ˙̀

+(x>j β̂)− ˙̀−(x>j β̂))→ +∞

Proof of Theorem 4.1. Recall V = {i : x>i β̂ ∈ K} and S = [1 : n]\V . Let Hh be the matrix

in ALO for smooth loss and smooth regularizer when using `h. Let Lh = diag[{῭h(x>j β̂; yj)}j ],
LS = diag[{῭(x>j β̂; yj)}j∈S ]. Lh,S and Lh,V are similarly defined. Recall

Hh = X(λ∇2R+X>LhX)−1X>

We then have

(λ∇2R+X>LhX)−1

=(λ∇2R+X>S,·Lh,SXS,·︸ ︷︷ ︸
Yh

+X>V,·Lh,VXV,·)
−1

=Y −1
h − Y −1

h X>V,·(L
−1
h,V +XV,·Y

−1
h X>V,·)

−1XV,·Y
−1
h

As a result, we have

(λ∇2R+X>LhX)−1X>V,·

=Y −1
h X>V,· − Y −1

h X>V,·(L
−1
h,V +XV,·Y

−1
h X>V,·)

−1XV,·Y
−1
h X>V,·

=Y −1
h X>V,·(Ip − (L−1

h,V +XV,·Y
−1
h X>V,·)

−1XV,·Y
−1
h X>V,·)

=Y −1
h X>V,·(L

−1
h,V +XV,·Y

−1
h X>V,·)

−1L−1
h,V

Similarly we can get

XV,·(λ∇2R+X>LhX)−1 =L−1
h,V (L−1

h,V +XV,·Y
−1
h X>V,·)

−1XV,·Y
−1
h

XV,·(λ∇2R+X>LhX)−1X>V,· =L−1
h,V −L

−1
h,V (L−1

h,V +XV,·Y
−1
h X>V,·)

−1L−1
h,V

By Lemma C.10, Yh → Y := λ∇2R+X>S,·LSXS,·, L
−1
h,V → 0, we have

Hh,S,SLh,S →XS,·(Y
−1 − Y −1X>V,·(XV,·Y

−1X>V,·)
−1XV,·Y

−1)X>S,·LS

Hh,S,VLh,V →XS,·Y
−1X>V,·(XV,·Y

−1X>V,·)
−1

Hh,V,SLh,S →0

Hh,V,VLh,V →IV
This is not enough, however, noticing that in the final formula of the smooth case, we need
Hh,ii

1−Lh,iiHh,ii but for i ∈ V , 1− Lh,iiHh,ii → 0 and Hh,ii → 0. So further we have

Lh,V (IV −Hh,V VLh,V )

=Lh,V (IV − (L−1
h,V −L

−1
h,V (L−1

h,V +XV,·Y
−1
h X>V,·)

−1L−1
h,V )Lh,V )

=(L−1
h,V +XV,·Y

−1
h X>V,·)

−1

→(XV,·Y
−1X>V,·)

−1

As a result, we have

Hh,ii

1− Lh,iiHh,ii
→


x>i (Y −1−Y −1X>V,·(XV,·Y

−1X>V,·)
−1XV,·Y

−1)xi

1−xi(Y −1−Y −1X>V,·(XV,·Y −1X>V,·)
−1XV,·Y −1)xi ῭i

i ∈ S
1

[(XV,·Y −1X>V,·)
−1]ii

i ∈ V

For ˙̀
h(x>i β̂h; yi), as h → 0, Lemma C.9 implies the limit value the smooth gradients would

converge to. Notice that for j ∈ V , we solve for the subgradient by applying least square formula to
the 1st order optimality equation. The final results easily follow.

10



D Derivation of the Dual for Generalized LASSO

In this section we derive the dual form of the generalized LASSO stated in the main paper. We
recall that for a given matrix D ∈ Rm×p, the generalized LASSO is given by:

min
β

1

2

n∑
j=1

(yj − x>j β)2 + λ‖Dβ‖1.

Introduce dummy variables z ∈ Rn, w ∈ Rm, and consider the following equivalent constrained
optimization problem:

min
β,z,w

1

2
‖z‖22 + λ‖w‖1

subject to: y −Xβ = z and Dβ = w.

We may now consider the Lagrangian form of the optimization problem, introducing dual
variables θ ∈ Rn and u ∈ Rm, the dual problem is

max
θ,u

min
β,z,w

1

2
‖z‖22 + λ‖w‖1 + θ>(y −Xβ − z) + u>(Dβ −w)

=−min
θ,u

[
max
z
{θ>z − 1

2
‖z‖22}+ max

w
{u>w − λ‖w‖1}+ max

β
{θ>Xβ − u>Dβ} − θ>y

]
Consider the three subproblems within square brackets respectively, we have

max
z
{θ>z − 1

2
‖z‖22} =

1

2
‖θ‖22,

max
w
{u>w − λ‖w‖1} =

{
0 if ‖u‖∞ ≤ λ,
∞ otherwise.

where θ>Xβ − u>Dβ is unbounded unless X>θ = D>u. Finally, we substitute the above results
into our Lagrangian dual problem to obtain:

min
θ,u

1

2
‖θ‖22 − θ>y,

subject to: D>u = X>θ and ‖u‖∞ ≤ λ.

which is equivalent to the stated dual problem.

E Proof of Nuclear Norm ALO Formula

In this section, we prove Theorem 6.1. We consider the following matrix sensing formulation

B̂ = arg min
B

n∑
j=1

`(〈Xj ,B〉; yj)2 + λR(B).

where R is a unitarily invariant function, which will be explained and studied in more detail in
Section E.1. This section is laid out as follows: in Section E.1, we briefly discuss basic properties of
unitarily invariant functions; In Section E.2 we do ALO for smooth unitarily invariant penalties; In
Section E.3 we prove Theorem 6.1 where nuclear norm is considered.

E.1 Properties of Unitarily Invariant Functions

Let B ∈ Rp1×p2 , and consider the SVD of B as B = Udiag[σ]V > with U ∈ Rp1×p1 , V ∈ Rp2×p2 .
We say that a function R : Rp1×p2 → R is unitarily invariant if there exists an absolutely symmetric
function f : Rmin(p1,p2) → R such that:

R(B) = f(σ),

11



where we say that f : Rq → R is absolutely symmetric if for any x ∈ Rq, any permutation τ and
signs ε ∈ {−1, 1}q we have:

f(x1, . . . , xq) = f(ε1xτ(1), . . . , εqxτ(q)).

The properties of R and f are closely related, and in particular we will make use of the following
lemma relating their convexity, smoothness and derivatives, proved in [Lewis, 1995].

Lemma E.1 ([Lewis, 1995]). Let R(B) = f(σ) with B = Udiag[σ]V > its SVD. There is an
one-to-one correspondence between unitarily invariant matrix functions R and symmetric functions
f . Furthermore the convexity and/or differentiability of f are equivalent to the convexity and/or
differentiability of R respectively. If R is differentiable, its derivative is given by:

∇R(B) = Udiag[∇f(σ)]V > (48)

When f is not differentiable, a similar result holds with gradient replaced by subdifferentials.

∂R(B) = Udiag[∂f(σ)]V > (49)

Based on this lemma, we know that as long as f is convex and/or smooth, the corresponding
matrix function will be convex and/or smooth. This enables us to produce convex and smooth
unitarily invariant approximation to non-smooth unitarily invariant matrix regularizers.

In addition to the gradient of the unitarily invariant matrix functions, we also need their Hessians.
We show this result in the following Theorem E.1 for a sub-class of unitarily invariant functions.

Theorem E.1. Consider a unitarily invariant function with form R(B) =
∑min(p1,p2)
j=1 f(σj), where

f is a smooth function on R and B = Udiag[σ]V > is its SVD with U ∈ Rp1×p1 , V ∈ Rp2×p2 .
Further assume that all the σj’s are different from each other and nonzero. Let p3 = min(p1, p2),
p4 = max(p1, p2). Then the Hessian matrix ∇2R(B) ∈ Rp1p2×p1p2 takes the following form

∇2R(B) = Q

[
A1 0 0
0 A2 0
0 0 A3

]
Q> (50)

where the first block A1 ∈ Rp3×p3 . A1 is diagonal with A1,(ss,ss) = f ′′(σs), 1 ≤ s ≤ p3. The

second block A2 ∈ Rp3(p3−1)×p3(p3−1). For 1 ≤ s 6= t ≤ p3, A2,(st,st) = A2,(ts,ts) = σsf
′(σs)−σtf ′(σt)
σ2
s−σ2

t
,

A2,(st,ts) = A2,(ts,st) = −σsf
′(σt)−σtf ′(σs)
σ2
s−σ2

t
; The third block A3 ∈ R(p4−p3)p3×(p4−p3)p3 ; A3,(st,st) =

f ′(σt)
σt

for 1 ≤ t ≤ p3 < s ≤ p4. Except for these specified locations, all other components of

A1, A2, A3 are zero. Q is an orthogonal matrix with Q·,st = vec(usv
>
t ) where us, vt are the sth

column of U and tth column of V respectively. vec(·) denotes the vectorization operator, which
aligns all the components of a matrix into a long vector.

Remark E.1. Since here we are talking about the Hessian matrix of functions on matrix space,
we linearize these matrices and treat them as vectors. It would be helpful if we visualize the
correspondence between each blocks in (50) and the component indices in the original matrix B.
Specifically we have Figure 3.

Proof. First by Lemma E.1, the gradient ∇R(B) takes the following form

∇R(B) = Udiag[{f ′(σj)}j ]V >

In order to find the differential of ∇R(B), we use the similar techniques and notations described
in Lemma IV.2 and Theorem IV.3 in [Candes et al., 2013]. To simplify our derivation, we assume
p1 ≥ p2. This does not affect the correctness of our final conclusion.

We characterize the differential of the gradient as a linear form. Specifically, along a certain
direction ∆ ∈ Rp1×p2 , by Lemma IV.2 in [Candes et al., 2013], we have

dU [∆] = UΩU [∆], dV [∆] = V ΩV [∆]>, dσs[∆] = [U>∆V ]ss (51)

12



(s1, s1)

(s2, t2)

(t2, s2)

(s3, t3)

(s1, s1)

(
s
1
,
s
1
)

(s2, t2)

(
s
2
,
t
2
)

(t2, s2)

(
t
2
,
s
2
)

(s3, t3)

(
s
3
,
t
3
)

a

b

b

c

c

d

A1

A2

A3

U>BV = diag[σ] Q>∇2R(B)Q

Figure 3: An illustration of the correspondence between the structure of the original matrix and
the structure of the Hessian matrix of R. As we have mentioned in Theorem E.1, a = f ′′(σs1),

b =
σs2f

′(σs2 )−σt2f
′(σt2 )

σ2
s2
−σ2

t2

, c = −σs2f
′(σt2 )−σt2f

′(σs2 )

σ2
s2
−σ2

t2

; d =
f ′(σt3 )

σt3
.

where ΩU and ΩV are assymmetric matrices (thus their diagonal values are 0) which can be found
by solving the following equation systems:[

ΩU ,st[∆]
ΩV ,st[∆]

]
= − 1

σ2
s − σ2

t

[
σt σs
−σs −σt

] [
(U>∆V )st
(U>∆V )ts

]
, if s 6= t, s ≤ p2 (52)

and

ΩU ,st[∆] =
(U>∆V )st

σt
, if s 6= t, s > p2 (53)

The differential of ∇R(B) along a certian direction ∆ can then be calculated through the chain
rule as that

d∇R(B)[∆]

=dU [∆]diag[{f ′(σj)}j ]V > +Udiag[{f ′′(σj)dσj [∆]}j ]V > +Udiag[{f ′(σj)}j ]dV [∆]>

=U
(
ΩU [∆]diag[{f ′(σj)}j ] + diag[{f ′′(σj)dσj [∆]}j ] + diag[{f ′(σj)}j ]ΩV [∆]

)
V > (54)

In the original formula obtained from the primal approach, the Hessian is calculated under the
canonical bases 2 {Est}s,t. In order to simplify the calculation of the Hessian, we instead use the
orthonormal bases {usv>t }s,t, and then transform back to {Est}s,t.

The (kl, st) location of the Hessian matrix under {usvt}s,t bases can be calculated by

〈ukv>l , d∇R(B)[usv
>
t ]〉 (55)

Pluggin equation (54) into (55) we obtain that

〈ukvl, d∇R(B)[usv
>
t ]〉

=〈Ekl,ΩU [usv
>
t ]diag[{f ′(σj)}j ] + diag[{f ′′(σj)dσj [usv>t ]}j ] + diag[{f ′(σj)}j ]ΩV [usv

>
t ]〉

=

 f ′′(σt)dσt[utv
>
t ] s = t = k = l

ΩU ,kl[usv
>
t ]f ′(σl) + f ′(σk)ΩV ,kl[usv

>
t ] k 6= l, k ≤ p2

ΩU ,kl[usv
>
t ]f ′(σl) 1 ≤ l ≤ p2 < k ≤ p1

2Est is defined as a p1 × p2 matrix with all of its components being 0 except the (s, t) location being 1.

13



By (51), we have dσj [usv
>
t ] = [Est]jj = δsjδtj . In addition, (U>usv

>
t V

>)kl = (Est)kl = δskδtl,
(U>usv

>
t V

>)lk = (Est)lk = δslδtk. Hence by (52) and (53), we have that

ΩU ,kl[usv
>
t ] = −δskδtlσl + δslδtkσk

σ2
k − σ2

l

, ΩV ,kl[usv
>
t ] =

δskδtlσk + δslδtkσl
σ2
k − σ2

l

, if s 6= t, s ≤ p2

and

ΩU ,kl[usv
>
t ] =

δskδtl
σl

, if s 6= t, s > p2

Based on all these, we can obtain that

〈ukvl, d∇R(B)[usv
>
t ]〉 =



f ′′(σt) s = t = k = l
σsf
′(σs)−σtf ′(σt)
σ2
s−σ2

t
s 6= t, s ≤ p2, (k, l) = (s, t)

−σsf
′(σt)−σtf ′(σs)
σ2
s−σ2

t
s 6= t, s ≤ p2, (k, l) = (t, s)

f ′(σt)
σt

s 6= j, s > p2, (k, l) = (s, t)

0 otherwise.

Notice that we obtained the above expressions under the orthonormal bases {usv>t }s,t. In order
to get the Hessian form under the canonical bases {Est}s,t, let Q ∈ Rp1p2×p1p2 , with each column
Q·,st = vec(usv

>
t ). Denote the matrix form under the canonical bases by ∇2R(B) and that under

{usv>t }s,t by ∇̃2R(B). We then have that

∇2R(B) = Q∇̃2R(B)Q>

This completes our proof.

E.2 ALO for Smooth Unitarily Invariant Penalties

In this following two sections, we discuss ALO formula for unitarily invariant regularizer R of the
form:

R(B) =

min(p1,p2)∑
j=1

r(σj),

where r is a convex and even scalar function. The nuclear norm, Frobenius and numerous other
matrix norms all fall in this category. For this section, we consider r as a smooth function. In the
next section, we consider the case of the nuclear norm where r is nonsmooth.

Consider the matrix regression problem:

B̂ = arg min
B

n∑
j=1

`(〈Xj ,B〉; yj) + λR(B).

Let B̂ = Ûdiag[σ̂]V̂ >. By pluggin the Hessian form we obtained in Theorem E.1 into (20), (21),
we have the following ALO formula

〈Xi, B̃
/i〉 = 〈Xi, B̂〉+

Hii

1−Hii
῭(〈Xi, B̂〉; yi)

˙̀(〈Xi, B̂〉; yi). (56)

where

H := X̃
[
X̃
>

diag[῭(〈Xj , B̂〉; yj)]X̃ + λQGQ>
]−1

X̃
>

with the matrix X̃ ∈ Rn×p1p2 , G ∈ Rp1p2×p1p2 . Each row X̃ j,· = vec(Xj). G is defined by

Gkl,st =



r′′(σ̂t) s = t = k = l
σ̂sr
′(σ̂s)−σ̂tr′(σ̂t)
σ̂2
s−σ̂2

t
i 6= t, s ≤ p2, (k, l) = (s, t)

− σ̂sr
′(σ̂t)−σ̂tr′(σ̂s)
σ̂2
s−σ̂2

t
s 6= t, s ≤ p2, (k, l) = (t, s)

r′(σ̂t)
σ̂t

s 6= t, s > p2, (k, l) = (s, t)

0 otherwise.

(57)

14



Notice that [X̃Q]j,st = 〈Xj , ûsv̂
>
t 〉 = û>s Xj v̂t, we have [X̃Q]j,· = vec(Û>XjV̂ ). Let X = X̃Q.

This gives us the following nicer form of the H matrix:

H := X
[
X>diag[῭(〈Xj , B̂〉; yj)]X + λG

]−1

X>

E.3 Proof of Theorem 6.1: ALO for Nuclear Norm

For the nuclear norm, we have:

`(u; y) =
1

2
(u− y)2, R(B) =

min(p1,p2)∑
j=1

σj

Let P (B) = 1
2

∑n
j=1(yj − 〈Xj ,B〉)2 + λ‖B‖∗ denote the primal objective. For the full data

optimizer B̂ with SVD B̂ = Ûdiag[σ̂]V̂ , let m = rank(B̂), the number of nonzero σ̂j ’s. Furthermore,

suppose that we have the following assumption on the full data solution B̂.

Assumption E.1. Let B̂ be the full-data minimizer, and let B̂ = Ûdiag[σ̂]V̂ > be its SVD.

1. B̂ is the unique optimizer of the nuclear norm minimization problem,

2. For all j such that σ̂j = 0, the subgradient gr[σ̂j ] at σ̂j satisfies gr[σ̂j ] < 1.

Since the nuclear norm is nonsmooth, we consider a smoothed version of it. For a matrix and its
SVD B = Udiag[σ]V >, and a smoothing parameter ε > 0, define the following smoothed version of
nuclear norm as

Rε(B) =

min(p1,p2)∑
j=1

rε(σj), where rε(x) =
√
x2 + ε2.

Let Pε(B) = 1
2

∑n
j=1(yj − 〈Xj ,B〉)2 + λRε(B) denote the smoothed primal objective, and let

B̂ε be the minimizer of Pε. Note that instead of using the general kernel smoothing strategy we
mentioned in the previous section, in this specific case we consider this choice Rε for technical
convenience. There are no essential differences between the two smoothing schemes. Finally, let
r(x) = |x|

Lemma E.1 guarantees the smoothness and convexity of the function Rε. Additionally, rε verifies
several desirable properties:

1. ṙε(x) = x√
x2+ε2

, r̈ε(x) = ε2

(x2+ε2)
3
2

;

2. r(x) < rε(x) < r(x) + ε.

In particular, we note that the second property implies that supx |r(x) − rε(x)| ≤ ε and that
supB |R(B)−Rε(B)| ≤ εmin(p1, p2).

We now go through a similar strategy as in Appendix C.2 to consider the limit case as ε→ 0.

Convergence of the optimizer (B̂ε → B̂) By definition of B̂ as the minimizer of the primal
objective, we have that:

λ‖B̂‖∗ ≤
1

2

∑
j

(yj − 〈Xj , B̂〉)2 + λ‖B̂‖∗ ≤
1

2
‖y‖22.

Similarly, we have that B̂ε verifies:

λ‖B̂ε‖∗ ≤ λR(B̂ε) ≤ λRε(B̂ε) + λεmin(p1, p2)

≤ 1

2

∑
j

(yj − 〈Xj , B̂ε〉)2 + λRε(B̂ε) + λεmin(p1, p2)

≤ 1

2
‖y‖22 + λεmin(p1, p2).

15



Thus, for all ε ≤ 1 both B̂ and B̂ε are contained in a compact set given by λ‖B‖∗ ≤ 1
2‖y‖

2
2 +

λmin(p1, p2).

In particular, any subsequence of B̂ε contains a convergent sub-subsequence, let us abuse
notations and still use B̂ε for this convergent sub-subsequence. The uniform bound between R and
Rε implies that:

P (lim
ε→0

B̂ε) = lim
ε→0

P (B̂ε) = lim
ε→0

Pε(B̂ε) ≤ lim
ε→0

Pε(B̂) = P (B̂).

By the uniqueness of the optimizer B̂, we have

lim
ε→0

B̂ε = B̂.

This is true for all such subsequences, which confirms what we want to prove.

Convergence of the gradient (∇Rε(B̂ε)→ g‖·‖∗(B̂)) Let g‖·‖∗ denote the subgradient of the

nuclear norm ‖ · ‖∗ in the first order optimality condition of B̂. By the continuity of ˙̀ and the first
order condition, we have:∥∥g‖·‖∗(B̂)−∇Rε(B̂ε)

∥∥
F

=

∥∥∥∥∥
n∑
j=1

〈Xj , B̂ − B̂ε〉Xj

∥∥∥∥∥
F

→ 0. (58)

Let B̂ε = Ûεdiag[σ̂ε]V̂ε denote the SVD of B̂ε. By Lemma E.1 we have:

g‖·‖∗(B̂) = Ûdiag({gr[σ̂j ]}j)V̂ >,

∇Rε(B̂ε) = Ûεdiag({ṙε(σ̂ε,j)}j)V̂ >ε .

where gr[x] = 1 if x > 0 and 0 ≤ gr[x] ≤ 1 if x = 0.
We wish to translate the limit in matrix norm (58) to a limit on their singular values. In order

to do this, we use the following lemma from Weyl [Weyl, 1912] or Mirsky [Mirsky, 1960]. We note
that our conclusion may follow from either, although we include both for completeness.

Lemma E.2 ([Weyl, 1912],[Mirsky, 1960]). Let A and B be two rectangular matrices of the same
shape. Let σj denote the jth largest eigenvalue, then we have that for all j:

|σj(A)− σj(B)| ≤ ‖A−B‖2,√∑
j

(σj(A)− σj(B))2 ≤ ‖A−B‖F .

By Lemma E.2, we have that σ̂ε,j → σ̂j and
σ̂ε,j√
σ̂2
ε,j+ε

2
→ gr[σ̂j ] as ε→ 0. Additionally, by the

assumption gr[σ̂j ] < 1 if σ̂j = 0, we have that:

σ̂ε,j
ε
→

{
+∞ if σ̂j > 0,

< +∞ if σ̂j = 0.
(59)

This further implies the matrices Gε defined as in (57) for Rε satisifies:

lim
ε→0

Gε,kl,ij =



0 s = t = k = l ≤ m
∞ s = t = k = l > m

1
σ̂s+σ̂t

1 ≤ s 6= t ≤ m, (k, l) = (s, t)
1
σ̂s

1 ≤ s ≤ m < t ≤ p2, (k, l) = (s, t)
1
σ̂t

1 ≤ t ≤ m < s ≤ p2, (k, l) = (s, t)

− 1
σ̂s+σ̂t

1 ≤ s 6= t ≤ m, (k, l) = (t, s)

− gr[σ̂t]
σ̂s

1 ≤ s ≤ m < t ≤ p2, (k, l) = (t, s)

− gr[σ̂s]
σ̂t

1 ≤ t ≤ m < s ≤ p2, (k, l) = (t, s)
1
σ̂t

1 ≤ t ≤ m ≤ p2 < s ≤ p1, (k, l) = (s, t)

∞ m < t ≤ p2 < s ≤ p1, (k, l) = (s, t)
0 otherwise.

(60)

16



Notice that in (60) we missed a piece of blocks corresponding to m < s 6= t ≤ p2, (k, l) = (s, t)
or (k, l) = (t, s). We need to process this blocks separately. We will show that the inverse of the
corresponding blocks in Gε converges to 0. As a result, we can ignore this part according to Lemma
C.6.

Each 2× 2 sub-matrix within that blocks in Gε takes the form

1

σ̂2
ε,s − σ̂2

ε,t

[
σ̂ε,sṙε(σ̂ε,s)− σ̂ε,tṙε(σ̂ε,t) −σ̂ε,sṙε(σ̂ε,t) + σ̂ε,tṙε(σ̂ε,s)
−σ̂ε,sṙε(σ̂ε,t) + σ̂ε,tṙε(σ̂ε,s) σ̂ε,sṙε(σ̂ε,s)− σ̂ε,tṙε(σ̂ε,t)

]
It is easy to verify that the inverse of the above matrix takes the following form

1

ṙ2(σ̂ε,s)− ṙ2(σ̂ε,t)

[
σ̂ε,sṙε(σ̂ε,s)− σ̂ε,tṙε(σ̂ε,t) σ̂ε,sṙε(σ̂ε,t)− σ̂ε,tṙε(σ̂ε,s)
σ̂ε,sṙε(σ̂ε,t)− σ̂ε,tṙε(σ̂ε,s) σ̂ε,sṙε(σ̂ε,s)− σ̂ε,tṙε(σ̂ε,t)

]
(61)

For the two distinct component values in the matrix in (61), we have that

σ̂ε,sṙε(σ̂ε,s)− σ̂ε,tṙε(σ̂ε,t)
ṙ2(σ̂ε,s)− ṙ2(σ̂ε,t)

=

σ̂2
ε,s√

σ̂ε,s+ε2
− σ̂2

ε,t√
σ̂ε,t+ε2

σ̂2
ε,s

σ̂ε,s+ε2
− σ̂2

ε,t

σ̂ε,t+ε2

= ε

uε,s√
1−uε,s

− uε,t√
1−uε,t

uε,s − uε,t
= ε

1− 1
2 ũε

(1− ũε)
3
2

→ 0

where we did a change of variable u = σ̂2

σ̂2+ε2 and ũε is a value between uε,s and uε,t where we
apply Taylor expansion to function x√

1−x . The last convergence to 0 is obtained by noticing that

limε→0 uε,s, limε→0 uε,t ∈ [0, 1) due to (59).
Similarly we have the following analysis for the off-diagonal term

σ̂ε,sṙε(σ̂ε,t)− σ̂ε,tṙε(σ̂ε,s)
ṙ2(σ̂ε,s)− ṙ2(σ̂ε,t)

=

σ̂ε,sσ̂ε,t√
σ̂ε,t+ε2

− σ̂ε,sσ̂ε,t√
σ̂ε,s+ε2

σ̂2
ε,s

σ̂ε,s+ε2
− σ̂2

ε,t

σ̂ε,t+ε2

=
σ̂ε,sσ̂ε,t

ε

√
1− uε,t −

√
1− uε,s

uε,s − uε,t
=
σ̂ε,sσ̂ε,t
ε2

ε

2
√

1− ūε
→ 0

where ūε is a value between uε,s and uε,t where we use Taylor expansion to
√

1− x. The last
convergence to 0 is obtained based on the same reason as the previous one.

Let E := {kl : k ≤ m or l ≤ m}, by Lemma C.6, we have

Hε → X ·,E
[
X>·,EX ·,E + λG

]−1

X>·,E := H

where G is defined in (30).
Finally, we obtain our approximation of leave-i-out prediction by substituting the above formula

of H into the general formula (56).

Remark E.2. Similar to what we did in Figure 3, it is helpful to visualize the structure of G in
correspondence to the blocks of the original matrix. Specifically we have Figure 4.

F Details of the Numerical Experiments

F.1 Simulated Data

F.1.1 Support Vector Machine

For all SVM simulations the data is generated according to a Gaussian logistic model: the design
matrix X is generated as a matrix of i.i.d. N (0, 1); the true parameter β is i.i.d. N (0, 9), and each
response yi is generated as an independent Bernoulli with probability pi given by the following
logistic model:

log
pi

1− pi
= x>i β.

17



(s1, s1)

(s2, t2)

(t2, s2)

(s3, t3)

(t3, s3)

(s4, t4)

(s5, t5)

(s1, s1)

(
s
1
,
s
1
)

(s2, t2)

(
s
2
,
t
2
)

(t2, s2)

(
t
2
,
s
2
)

(s3, t3)

(
s
3
,
t
3
)

(t3, s3)

(
t
3
,
s
3
)

(s4, t4)

(
s
4
,
t
4
)

a

b
bc

c

d
de

e

f

G

removed

Û>B̂V̂ Q>∇2R(B)Q

Figure 4: An illustration of the correspondence between the structure of the original matrix and the
structure of the G matrix. As we have mentioned in Theorem E.1, a = 0, b = 1

σ̂s2+σ̂t2
, c = − 1

σ̂s2+σ̂t2
,

d = 1
σ̂t3

, e = − gr[σ̂s3 ]

σ̂t3
, f = 1

σ̂t4
.

The n > p scenario is generated with n = 300 and p = 80, and the n < p scenario is generated
with n = 300 and p = 600. We consider a sequence of 40 different values of λ ranging between
e4 ∼ e12, with their logarithm equally spaced between [4, 12].

The model is fitted using the sklearn.svm.linearSVC function in Python package scikit-learn
[Pedregosa et al., 2011], which is implemented by the LibSVM package [Chang and Lin, 2011].

For using the sklearn.svm.linearSVC, we set tolerance=10−6 and max iter=10000. We
identify an observation as a support vector if |1− yix>i β̂| < 10−5.

F.1.2 Fused LASSO

For all fused LASSO, each component of the design matrix X is generated from i.i.d. N (0, 0.05).
For the true parameter β, we generated it through the following process: given a number k < p, we
generate a sparse vector β0 with a random sample of k of its components i.i.d. from N (0, 1). Then

we construct a new vector β1 as the cumulative sum of β0: β1,i =
∑i
j=1 β0,j ; Finally we normalize

β1 such that it has standard deviation 1. Note that β1 is a piecewise constant vector. The response
y is generated as y = Xβ+ε, where ε denotes i.i.d. random gaussian noise from N (0, 0.25). For our
simulation, we use k = 20 (so piecewise constant with 20 pieces). The n > p scenario is generated
with n = 200 and p = 100, whereas the n < p scenario is generated with n = 200 and p = 400.

The model is fitted through a direct translation of the generalized LASSO model into the package
CVX [Grant and Boyd, 2014]. We use the default tolerance and maximal iteration. We identify the

location i such that β̂i+1 = β̂i by checking if |β̂i+1 − β̂i| < 10−8. For n > p, we consider a sequence
of 40 tuning parameters from 10−2 ∼ 102; For n < p, we consider a sequence of 30 tuning parameters
from 10−1 ∼ 10. Both are equally spaced on the log-scale.

F.1.3 Nuclear Norm Minimization

For all nuclear norm simulations the data is generated according to the Gaussian low-rank model;
each observation matrix Xj is generated as an i.i.d. N (0, 1) matrix. The true parameter matrix B
is generated as a low rank matrix, by setting k = 1 in the following formula

B =

k∑
l=1

zlw
>
l ,

18



where z,w are independent of each other. z ∼ N (0, Ip1), w ∼ N (0, Ip2). Hence, the rank of B in
our experiments is equal to 1. The response y is generated as yj = 〈Xj ,B〉+ εj , where εj is i.i.d.
N (0, 0.25).

The n > p scenario is generated with n = 600, and B ∈ R20×20 (i.e. p = 400). The n < p
scenario is generated with n = 200, and B ∈ R20×20 again. For both settings, we consider a sequence
of 30 tuning parameters from 5× 10−1 ∼ 5× 10, equally spaced on the log-scale.

The model is fitted using an implementation of a proximal gradient algorithm as described in
[Lan et al., 2011], implemented using the Matlab package TFOCS [Becker et al., 2011]. The threshold

we use to identify singular values with value 0 is 10−3 × λmax(B̂), where λmax is the maximal

singular value of B̂.

F.1.4 LASSO Experiment

In our LASSO simulations, we use the setting where n = 300, p = 600, and the true model is sparse
with k = 60 non-zeros. These non-zeros are i.i.d. N (0, 1).

In the misspecification example, the elements of X are i.i.d. N (0, 1/k). y is generated according
to the following non-linear model:

yj = f(x>j β + εj),

where ε ∼ N (0, 0.25In), and the function f is given by:

f(x) =

{√
x if x ≥ 0,

−
√
−x otherwise.

In the heavy-tailed noise example, the elements of X are i.i.d. N (0, 1/k). y is generated
according to

y = Xβ + ε,

where the “heavy-tailed” noise εj is generated according to a Student-t distribution with three
degrees of freedom, and rescaled such that its variance is σ2 = 0.25.

In the correlated design example, y is generated according to

y = Xβ + ε,

where ε ∼ N (0, 0.25I), and the “correlated design” X is generated with each row xj being sampled
independently according to a multivariate normal distribution xj ∼ N (0,C/k), where C is the
Toeplitz matrix, given by:

C =


ρ ρ2 . . . ρp

ρ2 ρ . . . ρp−1

... . . .
. . .

...
ρp ρp−1 . . . ρ

 .

ρ is set to 0.8 in our experiments. For all settings, we consider a sequence of 25 tuning parameters
from 3.16× 10−3 ∼ 3.16× 10−2, equally spaced under log-scale.

All models were solved using the glmnet package in Matlab [Qian et al., 2013]. We identify the

zero locations of β̂ by checking |βj | > 10−8.

F.1.5 Timing of ALO

For comparing the timing of ALO with that of LOOCV, we consider the LASSO problem with
correlated design similar to the one we introduced in Section F.1.4. Specifically, each row of the
design matrix has a Toeplitz covariance matrix with ρ = 0.8. The true coefficient vector β has
min(n,p)

2 nonzero components, with each nonzero component of β being selected independently from
±1 with probability 0.5. The noise ε ∼ N (0, 0.5In). For each pair of (n, p), we choose a sequence of
50 tuning parameters ranging from λ0 to 10−2.5λ0, where λ0 = ‖X>y‖∞. Note that for this choice
of λ all the regression coefficients are equal to zero.

19



The timing of one single fit on the full dataset, the ALO risk estimates and the LOOCV risk
estimates are reported in Table 1 of the main paper. To obtain the timing of a single fit we run
the corresponding function of glmnet along the entire tuning parameter path and record the total
time consumed. This process is then repeated for 10 random seeds to obtain the average timing.
Every time an estimate is obtained we use our formula to obtain ALO. Hence, the time reported
for ALO in Table 1 is again obtained from an average of 10 Monte Carlo samples. To obtain the
computation time of LOOCV, we only use 5 random seeds.

As expected, averaged time for LOOCV is close to n times the time required for a single fit. On
the other hand, among all the settings we considered in Table 1, ALO takes less than twice the time
of a single fit.

F.2 Real-World Data

In this section, we apply our ALO methods to three real-world datasets: Gisette digit recognition
[Guyon et al., 2005], the tumor colon tissues gene expression [Alon et al., 1999] and the South
Africa heart disease data. All the three datasets have binary response, so we consider classification
algorithms. The information of the three datasets is listed in Table 2 below. The column of number
of effective features records the number of features after data preprocessing, including removing
duplicates and missing columns.

Table 2: Information of the three datasets.

dataset # samples # features # effective
features

model used

gisette 6000 5000 4955 SVM
tumor colon 62 2000 1909 logistic + LASSO
heart disease 462 9 9 logistic + LASSO

For gisette, since n = 6000 is too large for LOOCV, we randomly subsample 1000 observations
and apply linear SVM on it. For the tumor colon tissues and South Africa heart disease dataset, we
apply logistic regression with LASSO penalty. The results are shown in Figure 5. The accuracy of
ALO is verified on gisette and the heart disease dataset. However, the behavior of ALO is more
complicated for the tumor colon tissues dataset. First ALO gives very close estimates to LOOCV
for relatively large tuning values, but deviates from LOOCV risk estimates and bends upward after
λ decreases to a certain value. Second, we note that the optimal tuning is still correctly captured by
ALO.

gisette heart disease colon tumor

la
ss

o
ri

sk

102 103

0.055

0.060

0.065

0.070

0.075

0.080

0.085

0.090

10−1 100 101

0.29

0.30

0.31

0.32

0.33

0.34

10−2 10−1 100 101

0.2

0.3

0.4

0.5

0.6
ALO
LOO

Figure 5: Risk estimates of from ALO versus LOOCV for the three datasets: gisette, South Africa
coronary heart disease and colon tumor gene expression. The x-axis is the tuning parameter value λ
on log-scale, the y-axis is the risk estimates under 0-1 loss.

There are a few factors which may affect the performance of ALO. First, as implied by the
theoretical guarantee on smooth models, the closeness between ALO and LOOCV is a high-
dimensional phenomenon, which takes place for relatively large n and p. This requirement of

20



high-dimensionality is less stringent for n > p, when strong convexity of the loss function is to some
extent guaranteed, but becomes more significant for n < p. On the other hand, from our simulation
in Section 7 and the real-data examples in this section, we can see that when n

p is not much smaller

than 1 (compared to the n
p -ratio in the colon tissue dataset), a few hundreds of observation and

features are enough to guarantee the accuracy of ALO risk estimates. Finally, the deviation of ALO
estimates tends to happen when the tuning λ becomes smaller than a certain value, typically in
the case of n < p. As we have mentioned in the main text, for most nonsmooth regularizers, small
tuning values induce dense solutions. In most high dimensional datasets, these dense solutions are
not favorable in n < p case. From our experiments, this deviation mostly happens after correctly
capturing the optimal tuning values.

21


