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Abstract
Consider the following class of leaning schemes:

β̂ := arg min
β

∑n
j=1`(x

>
j β; yj) + λR(β), (1)

where xi ∈ Rp and yi ∈ R denote the ith fea-
ture and response variable respectively. Let ` and
R be the loss function and regularizer, β denote
the unknown weights, and λ be a regularization
parameter. Finding the optimal choice of λ is a
challenging problem in high-dimensional regimes
where both n and p are large. We propose two
frameworks to obtain a computationally efficient
approximation ALO of the leave-one-out cross
validation (LOOCV) risk for nonsmooth losses
and regularizers. Our two frameworks are based
on the primal and dual formulations of (1). We
prove the equivalence of the two approaches under
smoothness conditions. This equivalence enables
us to justify the accuracy of both methods under
such conditions. We use our approaches to ob-
tain a risk estimate for several standard problems,
including generalized LASSO, nuclear norm reg-
ularization, and support vector machines. We
empirically demonstrate the effectiveness of our
results for non-differentiable cases.

1. Introduction
1.1. Motivation

Consider a standard prediction problem in which a dataset
{(yj ,xj)}nj=1 ⊂ R× Rp is employed to learn a model for
inferring information about new datapoints that are yet to
be observed. One of the most popular classes of learning
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schemes, especially in high-dimensional settings, studies
the following optimization problem:

β̂ := arg min
β

n∑
j=1

`(x>j β; yj) + λR(β), (2)

where ` : R2 → R is the loss function, R : Rp → R is
the regularizer, and λ is the tuning parameter that specifies
the amount of regularization. By applying an appropriate
regularizer in (2), we are able to achieve better bias-variance
trade-off and pursue special structures such as sparsity and
low rank structure. However, the performance of such tech-
niques hinges upon the selection of tuning parameters.

The most generally applicable tuning method is cross vali-
dation (Stone, 1974). One common choice is k-fold cross
validation, which however presents potential bias issues in
high-dimensional settings where n is comparable to p. For
instance, the phase transition phenomena that happen in
such regimes (Amelunxen et al., 2014; Donoho et al., 2009;
Donoho & Tanner, 2005) indicate that any data splitting may
cause dramatic effects on the solution of (2) (see Figure 1
for an example). Hence, the risk estimates obtained from
k-fold cross validation may not be reliable. The bias issues
of k-fold cross validation may be alleviated by choosing
the number of folds k to be large. However, such schemes
are computationally demanding and may not be useful for
emerging high-dimensional applications. An alternative
choice of cross validation is LOOCV, which is unbiased
in high-dimensional problems. However, the computation
of LOOCV requires training the model n times, which is
unaffordable for large datasets.

The high computational complexity of LOOCV has moti-
vated researchers to propose computationally less demand-
ing approximations of the quantity. Early examples offered
approximations for the case R(β) = 1

2‖β‖
2
2 and the loss

function being smooth (Allen, 1974; O’sullivan et al., 1986;
Le Cessie & Van Houwelingen, 1992; Cawley & Talbot,
2008; Meijer & Goeman, 2013; Opper & Winther, 2000). In
(Beirami et al., 2017), the authors considered such approxi-
mations for smooth loss functions and smooth regularizers.
In this line of work, the accuracy of the approximations
was either not studied or was only studied in the n large,
p fixed regime. In a recent paper, (Rad & Maleki, 2018)
employed a similar approximation strategy to obtain approx-
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Figure 1. Risk estimates of LASSO based on 5-fold CV and ALO
proposed in this paper, compared with the true out-of-sample
prediction error (OOS). In this example, 5-fold CV exhibits sig-
nificant bias, wherease ALO is unbiased. Here we use n = 5000,
p = 4000 and iid Gaussian design.

imate leave-one-out formulas for smooth loss functions and
smooth regularizers. They show that under some mild condi-
tions, such approximations are accurate in high-dimensional
settings. Unfortunately, the approximations offered in (Rad
& Maleki, 2018) only cover twice differentiable loss func-
tions and regularizers. On the other hand, numerous modern
regularizers, such as generalized LASSO and nuclear norm,
and also many loss functions are not smooth.

In this paper, we propose two powerful frameworks for
calculating an approximate leave-one-out estimator (ALO)
of the LOOCV risk that are capable of offering accurate
parameter tuning even for non-differentiable losses and reg-
ularizers. Our first approach is based on the smoothing and
quadratic approximation of the primal problem (2). The
second approach is based on the approximation of the dual
of (2). While the two approaches consider different approxi-
mations that happen in different domains, we will show that
when both ` and r are twice differentiable, the two frame-
works produce the same ALO formulas, which are also the
same as the formulas proposed in (Rad & Maleki, 2018).

We use our platforms to obtain concise formulas for sev-
eral popular examples including generalized LASSO, sup-
port vector machine (SVM) and nuclear norm minimization.
As will be clear from our examples, despite of the equiv-
alence of the two frameworks for smooth loss functions
and regularizers, the technical aspects of the derivations
involved for obtaining ALO formulas have major variations
in different examples. Finally, we present extensive simu-
lations to confirm the accuracy of our formulas on various
important machine learning models. Code is available at
github.com/wendazhou/alocv-package.

1.2. Other Related Work

The importance of parameter tuning in learning systems has
encouraged many researchers to study the problem from
different perspectives. In addition to cross validation, other
approaches have been proposed including Stein’s unbiased
risk estimate (SURE), Akaike information criterion (AIC),
and Mallow’s Cp. While AIC is designed for smooth para-

metric models, SURE has been extended to emerging opti-
mization problems, such as generalized LASSO and nuclear
norm minimization (Candes et al., 2013; Dossal et al., 2013;
Tibshirani et al., 2012; Vaiter et al., 2017; Zou et al., 2007).

Unlike cross validation which approximates the out-of-
sample prediction error, SURE, AIC, and Cp offer estimates
for in-sample prediction error (Hastie et al., 2009). This
makes cross validation more appealing for many learning
systems. Furthermore, unlike ALO, both SURE andCp only
work on linear models (and not generalized linear models)
and their unbiasedness is only guaranteed under the Gaus-
sian model for the errors. There has been little success in
extending SURE beyond this model (Efron, 2004).

Another class of parameter tuning schemes are based on
approximate message passing (Bayati et al., 2013; Mousavi
et al., 2017; Obuchi & Kabashima, 2016). As pointed out in
(Obuchi & Kabashima, 2016), this approach is intuitively
related to LOOCV. It offers consistent parameter tuning
in high-dimensions (Mousavi et al., 2017), but the results
strongly depend on the independence of the elements ofX .

1.3. Notation

Lowercase and uppercase bold letters denote vectors and
matrices, respectively. For subsets A ⊂ {1, 2, . . . , n} and
B ⊂ {1, 2, . . . , p} of indices and a matrixX , letXA,· and
X·,B denote the submatrices that include only rows of X
in A, and columns of X in B respectively. Let {ai}i∈S
denote the vector whose components are ai for i ∈ S. We
may omit S, in which case we consider all indices valid
in the context. For a function f : R → R, let ḟ , f̈ denote
its 1st and 2nd derivatives. For a vector a, we use diag[a]
to denote a diagonal matrix A with Aii = ai. Finally, let
∇R and∇2R denote the gradient and Hessian of a function
R : Rp → R.

2. Preliminaries
2.1. Problem Description

In this paper, we study the statistical learning models in
form (2). For each value of λ, we evaluate the following
LOOCV risk estimate with respect to some error function d:

looλ :=
1

n

n∑
i=1

d(yi,x
>
i β̂

/i), (3)

where β̂/i is the solution of the leave-i-out problem

β̂/i := arg min
β

∑
j 6=i

`(x>j β; yj) + λR(β). (4)

Calculating (4) requires training the model n times, which
may be time-consuming in high-dimensions. As an alterna-
tive, we propose an estimator β̃/i to approximate β̂/i based
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on the full-data estimator β̂ to reduce the computational
complexity. We consider two frameworks for obtaining β̃/i,
and denote the corresponding risk estimate by:

aloλ :=
1

n

n∑
i=1

d(yi,x
>
i β̃

/i). (5)

The estimates we obtain will be called approximated leave-
one-out (ALO) throughout the paper.

2.2. Primal and Dual Correspondence

The objective function of penalized regression problem with
loss ` and regularizer R is given by:

P (β) :=

n∑
j=1

`(x>j β; yj) +R(β). (6)

Here and subsequently, we absorb the value of λ into R to
simplify the notation. We also consider the Lagrangian dual
problem, which can be written in the form:

min
θ∈Rn

D(θ) :=

n∑
j=1

`∗(−θj ; yj) +R∗(X>θ), (7)

where `∗ and R∗ denote the Fenchel conjugates 1 of ` and
R respectively. See the derivation in Appendix A.

It is known that under mild conditions, (6) and (7) are equiv-
alent (Boyd & Vandenberghe, 2004). In this case, we have
the primal-dual correspondence relating the primal optimal
β̂ and the dual optimal θ̂:

β̂ ∈ ∂R∗(X>θ̂), X>θ̂ ∈ ∂R(β̂),

x>j β̂ ∈ ∂`∗(−θ̂j ; yj), −θ̂j ∈ ∂`(x>j β̂; yj),
(8)

where ∂f denotes the set of subgradients of a function f .
Below we will use both primal and dual perspectives for
approximating looλ.

3. Approximation in the Dual Domain
3.1. The First Example: LASSO

Let us first start with a simple example that illustrates
our dual method in deriving an approximate leave-one-out
(ALO) formula for the standard LASSO. The LASSO esti-
mator, first proposed in (Tibshirani, 1996), can be formu-
lated as the penalized regression framework in (6) by setting
`(µ; y) = (µ− y)2/2, and R(β) = λ‖β‖1.

We recall the general formulation of the dual for penalized
regression problems (7), and note that in the case of the

1The Fenchel conjugate f∗ of a function f is defined as
f∗(x) := supy{〈x, y〉 − f(y)}.

LASSO we have:

`∗(θi; yi) =
1

2
(θi−yi)2, R∗(β) =

{
0 if ‖β‖∞ ≤ λ,
+∞ otherwise.

In particular, we note that the solution of the dual problem
(7) can be obtained from:

θ̂ = Π∆X
(y). (9)

Here Π∆X
denotes the projection onto ∆X , where ∆X is

the polytope given by:

∆X = {θ ∈ Rn : ‖X>θ‖∞ ≤ λ}.

Let us now consider the leave-i-out problem. Unfortunately,
the dimension of the dual problem is reduced by 1 for the
leave-i-out problem, making it difficult to leverage the in-
formation from the full-data solution to approximate the
leave-i-out solution. We augment the leave-i-out problem
with a virtual ith observation that does not affect the result
of the optimization, but restores the dimensionality of the
problem.

More precisely, let ya be the same as y, except that its
ith coordinate is replaced by ŷ/ii = x>i β̂

/i, the leave-i-out
predicted value. We note that the leave-i-out solution β̂/i is
also the solution for the following augmented problem:

min
β∈Rp

n∑
j=1

`(x>j β; ya,j) +R(β). (10)

Let θ̂/i be the corresponding dual solution of (10). Then,
by (9), we know that

θ̂/i = Π∆X
(ya).

Additionally, the primal-dual correspondence (8) gives that
θ̂/i = ya −Xβ̂/i, which is the residual in the augmented
problem, and hence that θ̂/ii = 0. These two features allow
us to characterize the leave-i-out predicted value ŷ/ii :

e>i Π∆X

(
y − (yi − ŷ/ii )ei

)
= 0 (11)

where ei denotes the ith standard vector. Solving exactly
for the above equation is in general a procedure that is com-
putationally comparable to fitting the model, which may be
expensive. However, we may attempt to obtain an approxi-
mate solution of (11) by linearizing the projection operator
at the full data solution θ̂, or equivalently performing a sin-
gle Newton step to solve the leave-i-out problem from the
full data solution. The approximate leave-i-out fitted value
ỹ
/i
i is thus given by:

ỹ
/i
i = yi −

θ̂i
Jii
, (12)
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where J denotes the Jacobian of the projection operator
Π∆X

at the full data problem y. We can substitute the
x>i β̃

/i in (5) with the ỹ/i found above to obtain our ALO
risk estimates. Note that ∆X is a polytope, and thus the
projection onto ∆X is almost everywhere locally affine
(Tibshirani et al., 2012). Furthermore, it is straightfor-
ward to calculate the Jacobian of Π∆X

. Let E = {j :

|X>j θ̂| = λ} be the equicorrelation set (where Xj de-
notes the jth column of X). Then the projection at the
full data problem y is locally given by a projection onto the
orthogonal complement of the span of X·,E , thus giving
J = I−X·,E(X>·,EX·,E)−1X>·,E . We can then obtain ỹ/i

by plugging J in (12). Finally, by replaceing x>i β̃
/i with

ỹ
/i
i in (5) we obtain an estimate of the risk.

3.2. General Case

In this section we extend the dual approach outlined in
Section 3.1 to more general loss functions and regularizers.

General regularizers Let us first extend the dual ap-
proach to other regularizers, while the loss function remains
`(µ, y) = (µ− y)2/2. In this case the dual problem (7) has
the following form:

min
θ

1

2

n∑
j=1

(θj − yj)2 +R∗(X>θ). (13)

We note that the optimal value of θ is by definition the value
of the proximal operator of R∗(X>·) at y:

θ̂ = proxR∗(X>·)(y).

Following the argument of Section 3.1, we obtain

ỹ
/i
i = yi −

θ̂i
Jii
, (14)

with J now denoting the Jacobian of proxR∗(X>·). We
note that the Jacobian matrix J exists almost everywhere,
because the non-expansiveness of the proximal operator
guarantees its almost-everywhere differentiability (Com-
bettes & Pesquet, 2011). In particular, if y has distribution
which is absolutely continuous with respect to the Lebesgue
measure, J exists with probability 1. This approach is par-
ticularly useful when R is a norm, as its Fenchel conjugate
is then the convex indicator of the unit ball of the dual norm,
and the proximal operator reduces to a projection operator.

General smooth loss Let us now assume we have a con-
vex smooth loss in (6), such as those that appear in gen-
eralized linear models. As we are arguing from a second-
order perspective by considering Newton’s method, we will
expand the loss as a quadratic form around the full data

solution. We will thus consider the approximate problem
obtained by expanding `∗ around the dual optimal θ̂:

min
θ

1

2

n∑
j=1

῭∗(−θ̂j ; yj)

(
θj−θ̂j−

˙̀∗(−θ̂j ; yj)
῭∗(−θ̂j ; yj)

)2

+R∗(X>θ).

(15)

The constant term has been removed from (15) for simplicity.
We have reduced the problem to that of a weighted `2 loss
which may be further reduced to a simple `2 problem by
a change of variable and a rescaling of X . Indeed, let K

be the diagonal matrix such that Kjj =
√

῭∗(−θ̂j ; yj), and

note that we have: ˙̀∗(−θ̂j ; yj) = x>j β̂ := ŷj by the primal-
dual correspondence (8). Consider the change of variable
u = Kθ to obtain:

min
u

1

2

n∑
j=1

uj − θ̂j ῭∗(−θ̂j ; yj) + ŷj√
῭∗(−θ̂j ; yj)

2

+R∗(X>K−1u).

We may thus reduce to the `2 loss case in (13) with a modi-
fiedX and y:

Xu = K−1X, yu =

 θ̂j ῭∗(−θ̂j ; yj) + ŷj√
῭∗(−θ̂j ; yj)


j

. (16)

Similar to (14), the ALO formula in the case of general
smooth loss can be obtained as ỹ/ii = Kiiỹ

/i
u,i, with

ỹ
/i
u,i = yu,i −

Kiiθ̂i
Jii

, (17)

where J is the Jacobian of proxR∗(X>u ·).

4. Approximation in the Primal Domain
4.1. Smooth Loss and Regularizer

To obtain looλ we need to solve

β̂/i := arg min
β

∑
j 6=i

`(x>j β; yj) +R(β). (18)

Assuming β̂/i is close to β̂, we can take a Newton step from
β̂ towards β̂/i to obtain its approximation β̃/i as:

β̃/i = β̂+
[∑
j 6=i

xjx
>
j

῭(x>j β̂; yj)+∇2R(β̂)
]−1

xi ˙̀(x>i β̂; yi).

(19)

We have by the matrix inversion lemma (Hager, 1989):

x>i β̃
/i = x>i β̂ +

Hii

1−Hii
῭(x>i β̂; yi)

˙̀(x>i β̂; yi), (20)

H = X[X>diag[{῭(x>i β̂; yi)}i]X +∇2R(β̂)]−1X>.
(21)
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This is the formula reported in (Rad & Maleki, 2018). By
calculating β̂ and H in advance, we can cheaply approxi-
mate the leave-i-out prediction for all i and efficiently eval-
uate the LOOCV risk. On the other hand, in order to use the
above strategy, twice differentiability of both the loss and the
regularizer is necessary in a neighborhood of β̂. However,
this assumption is violated for many machine learning mod-
els including LASSO, Nuclear norm, and SVM. In the next
two sections, we introduce a smoothing technique which
lifts the scope of the above primal approach to nondifferen-
tiable losses and regularizers.

4.2. Nonsmooth Loss and Smooth Regularizer

In this section we study the piecewise smooth loss functions
and twice differentiable regularizers. Such problems arise
in SVM (Cortes & Vapnik, 1995) and robust regression
(Huber, 1973). Before proceeding further, we clarify our
assumptions on the loss function.

Definition 4.1. A singular point of a function is called qth

order, if at this point the function is q times differentiable,
but its (q + 1)th order derivative does not exist.

Below we assume the loss ` is piecewise twice differentiable
with k zero-order singularities v1, . . . , vk ∈ R. The exis-
tence of singularities prohibits us from directly applying
strategies in (19) and (20), where twice differentiability of
` and R is necessary. A natural solution is to first smooth
the loss `, then apply the framework in Section 4.1 to the
smoothed version and finally reduce the smoothness to re-
cover the ALO formula for the original nonsmooth problem.

As the first step, consider the following smoothing idea:

`h(µ; y) =:
1

h

∫
`(u; y)φ((µ− u)/h)du,

where h > 0 is fixed and φ is a smooth symmetric function
with the following properties:

Normalization:
∫
φ(w)dw = 1, φ(w) ≥ 0, φ(0) > 0;

Compact support: supp(φ) = [−C,C] for some C > 0.

Now plug in this smooth version `h into (18) to obtain the
following formula from (19):

Gh :=
∑
j 6=i

xjx
>
j

῭
h(x>j β̂h; yj) +∇2R(β̂h),

β̃
/i
h := β̂h +G−1

h xi
˙̀
h(x>i β̂h; yi).

(22)

where β̂h is the minimizer on the full data from loss `h
and R. β̃/ih is a good approximation to the leave-i-out es-
timator β̂/ih based on smoothed loss `h. Setting h → 0,
we have `h(µ, y) converge to `(µ, y) uniformly in the re-
gion of interest (see Appendix C.1 for the proof), implying

that limh→0 β̃
/i
h serves as a good estimator of limh→0 β̂

/i
h ,

which is heuristically close to the true leave-i-out β̂/i. Equa-
tion (22) can be simplified in the limit h → 0. We define
the sets of indices V and S for the samples at singularities
and smooth parts respectively:

V := {j : x>j β̂ = vt for some t ∈ {1, . . . , k}},
S := {1, . . . , n} \ V.

We characterize the limit of x>i β̃
/i
h below.

Theorem 4.1. Under some mild conditions, as h→ 0,

x>i β̃
/i
h → x>i β̂ + aig`,i

where

ai =


Wii

1−Wii
῭(x>i β̂;yi)

if i ∈ S,
1

[(XV ·Y −1X>V ·)
−1]ii

if i ∈ V,

Y = ∇2R(β̂) +X>S·diag[{῭(x>j β̂)}j∈S ]XS·,

Wii = x>i Y
−1xi − x>i Y −1X>V,·(XV,·Y

−1X>V,·)
−1XV,·Y

−1xi.

For i ∈ S, g`,i = ˙̀(x>i β̂; yi), and for i ∈ V , we have:

g`,V = (XV,·X
>
V,·)
−1XV,·[∇R(β̂)−

∑
j∈S

xj ˙̀(x>j β̂; yj)].

We can obtain the ALO estimate of prediction error by plug-
ging x>i β̂ + aig`,i instead of x>i β̃

/i in (5). The conditions
and proof of Theorem 4.1 can be found in Appendix C.3.

4.3. Nonsmooth Regularizer and Smooth Loss

The smoothing technique proposed in the last section can
also handle many nonsmooth regularizers. In this sec-
tion we focus on separable regularizers R, defined as
R(β) =

∑p
l=1 r(βl), where r : R → R is piecewise

twice differentiable with finite number of zero-order sin-
gularities in v1, . . . , vk ∈ R. (Examples on non-separable
regularizers are studied in Section 6.) We further assume
the loss function ` to be twice differentiable and denote by
A = {l : β̂l 6= vt, for any t ∈ {1, . . . , k}} the active set.

For the coordinates of β̂ that lie inA, our objective function,
constrained to these coordinates, is locally twice differen-
tiable. Hence we expect β̂/iA to be well approximated by the
ALO formula using β̂A. On the other hand, components
not in A are trapped at singularities. As long as they are not
on the boundary of being in or out of the singularities, we
expect these locations of β̂/i to stay at the same values.

Technically, consider a similar smoothing scheme for r:

rh(w) =
1

h

∫
r(u)φ((w − u)/h)du,
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and let Rh(β) =
∑p
l=1 rh(βl). We then consider the ALO

formula of Model (18) with regularizer Rh:

Gh :=
∑
j 6=i

xjx
>
j

῭(x>j β̂h; yj) +∇2Rh(β̂h),

β̃
/i
h := β̂h +G−1

h xi
˙̀
h(x>i β̂; yi).

(23)

Setting h→ 0, (23) reduces to a simplified formula which
heuristically serves as a good approximation to the true
leave-i-out estimator β̂/i, stated as the following theorem:

Theorem 4.2. Under some mild conditions, as h→ 0,

x>i β̃
/i
h → x>i β̂ +

Hii
˙̀(x>i β̂; yi)

1−Hii
῭(x>i β̂; yi)

,

with

H =X·,A[X
>
·,Adiag[{῭(x>i β̂; yi)}i]X·,A+∇2R(β̂A)]

−1X>·,A.

The conditions and proof of Theorem 4.2 can be found in
the Appendix C.2.

Remark 4.1. For nonsmooth problems, higher order singu-
larities do not cause issues: the set of tuning values which
cause β̂l (for regularizer) or x>j β̂ (for loss) to fall at those
higher order singularities has measure zero.

Remark 4.2. For both nonsmooth losses and regularizers,
we need to invert some matrices in the ALO formula. Al-
though the invertibility does not seem guaranteed in the
general formula, as we apply ALO to specific models, the
structures of the loss and/or the regularizer ensures this
invertibility. For example, for LASSO, we have that the size
of the active set |E| ≤ min(n, p).

Remark 4.3. We note that the dual approach is typically
powerful for models with smooth losses and norm-type reg-
ularizers, such as the SLOPE norm and the generalized
LASSO. On the other hand, the primal approach is valuable
for models with nonsmooth loss or when the Hessian of the
regularizer is feasible to calculate. Such regularizers often
exhibit some type of separability or symmetry, such as in the
case of SVM or nuclear norm.

5. Equivalence Between Primal and Dual
Methods

Although the primal and dual methods may be harder or
easier to carry out depending on the specific problem at
hand, one may wonder if they always obtain the same result.
In this section, we outline a unifying view for both methods,
and state an equivalence theorem.

As both the primal and dual methods are based on a first-
order approximation strategy, we will study them not as
approximate solutions to the leave-i-out problem, but will

instead show that they are exact solutions to a surrogate
leave-i-out problem. Indeed, recall that the leave-i-out prob-
lem is given by (4), which cannot be solved in closed form.
However, we note that the solution does exist in closed form
in the case where both ` and R are quadratic functions.

We may thus consider the approximate leave-i-out problem,
where both ` and R have been replaced in the leave-i-out
problem (4) by their quadratic expansion at β̂:

min
β/i

∑
j 6=i

˜̀(x>j β
/i; yj) + R̃(β/i). (24)

When both ` and R are twice differentiable at the full data
solution, ˜̀and R̃ correspond to their respective second order
Taylor expansions at β̂. When ` or R is not twice differen-
tiable at the full data solution, we have seen that it is still pos-
sible to obtain an ALO estimator through the proximal map
(in the case of the dual) or through smoothing arguments
(in the case of the primal). The corresponding quadratic
surrogates may then be formulated as partial quadratic func-
tions, i.e. convex quadratic functions restricted to an affine
subspace. However, due to space limitations we only focus
on twice differentiable losses and regularizers here.

The way we obtain β̃/i in (19) indicates that the primal
formula in (20) and (21) are the exact leave-i-out solution
of the surrogate primal problem (24). On the other hand, we
may also wish to consider the surrogate dual problem, by
replacing `∗ andR∗ by their quadratic expansion at full data
dual solution θ̂ in the dual problem (7). One may possibly
worry that the surrogate dual problem is then different from
the dual of the surrogate primal problem (24). This does not
happen, and we have the following theorem.
Theorem 5.1. Let ` and R be twice differentiable convex
functions. Let ˜̀and R̃ denote the quadratic surrogates of
the loss and regularizer at β̂, and let ˜̀∗

D and R̃∗D denote the
quadratic surrogates of the conjugate loss and regularizer
at the dual full data solution θ̂. We have that the following
problems are equivalent (have the same minimizer):

minθ
∑n
j=1

˜̀∗(−θj ; yj) + R̃∗(X>θ), (25)

minθ
∑n
j=1

˜̀∗
D(−θj ; yj) + R̃∗D(X>θ). (26)

Additionally, we note that the dual method described in
Section 3 solves the surrogate dual problem (26).

Theorem 5.2. LetXu, yu be as in (16), and let ỹ/iu,i be the
transformed ALO obtained in (17). Let ỹa be the same as
yu except ỹa,i = ỹ

/i
u,i. Then ỹa satisfies

[proxg̃(ỹa)]i = 0, (27)

where g̃(u) = R̃∗(X>u u) and R̃ denotes the quadratic
surrogate of the regularizer. In particular, ỹ/ii = Kiiỹ

/i
u,i

is the exact leave-i-out predicted value for the surrogate
problem in Theorem 5.1.
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We refer the reader to Appendix B for the proofs. These
two theorems imply that for twice differentiable losses and
regularizers, the frameworks we laid out in Sections 3 and 4
lead to exactly the same ALO formulas.

6. Applications
6.1. Generalized LASSO

The generalized LASSO (Tibshirani & Taylor, 2011) is a
generalization of the LASSO problem which captures many
applications such as the fused LASSO (Tibshirani et al.,
2005), `1 trend filtering (Kim et al., 2009) and wavelet
smoothing in a unified framework. The generalized LASSO
problem solves the following penalized regression problem:

min
β

1

2

n∑
j=1

(yj − x>j β)2 + λ‖Dβ‖1. (28)

where the regularizer is parameterized by a fixed matrix
D ∈ Rm×p which captures the desired structure in the data.
We note that the regularizer is a semi-norm. Hence we can
formulate the dual problem as a projection. In fact, a dual
formulation of (28) can be obtained as (see Appendix D):

min
θ,u

1

2
‖θ − y‖22 s.t. ‖u‖∞ ≤ λ andX>θ = D>u.

The dual optimal solution satisfies θ̂ = Π∆X
(y), where

∆X is the polytope given by:

∆X = {θ ∈ Rn : ∃u, ‖u‖∞ ≤ λ andX>θ = D>u}.

The projection onto the polytope C = {D>u : ‖u‖∞ ≤
λ} is given in (Tibshirani & Taylor, 2011) as locally be-
ing the projection onto the affine space orthogonal to the
nullspace of D·,−E , where E = {i : |ûi| = λ} and
−E = {1, . . . , p} \ E. Since ∆X = [X>]−1C is the
inverse image of C under the linear map given byX>, the
projection onto ∆X is given locally by the projection onto
the affine space normal to the space spanned by the columns
of [X>]+nullD·,−E , provided X has full column rank.
Here, [X>]+ denotes the Moore-Penrose pseudoinverse
of X>. To obtain a spanning set of this space, we con-
sider A = XB, where B is a set of vectors spanning the
nullspace ofD·,−E . This allows us to computeH = AA+,
the projection onto the normal space required to compute
the ALO.

6.2. Nuclear Norm

Consider the following matrix sensing problem

B̂ := arg min
B

1

2

n∑
j=1

(yj − 〈Xj ,B〉)2 + λ‖B‖∗ (29)

with B,Xj ∈ Rp1×p2 . 〈X,B〉 = trace(X>B) denotes
the inner product. We use ‖ · ‖∗ for nuclear norm, which is
defined as the sum of the singular values of a matrix. The
nuclear norm is a unitarily invariant function of the matrix
(Lewis, 1995). Such functions are only indirectly related to
the components of the matrix, making their analysis difficult
even when they are smooth, and exacerbating the difficulties
when they are non-smooth such as in the case of the nuclear
norm. In particular, the smoothing framework described in
Section 4.3 cannot be applied directly.

We are nonetheless able to leverage the specific structure of
such functions and apply the smoothing trick to the singular
values to obtain the following theorem. For more details on
the derivation, please refer to Appendix E.3.
Theorem 6.1. Consider the nuclear-norm penalized matrix
regression problem (29), and let B̂ = Ûdiag[σ̂]V̂ > be
the SVD of the full data estimator B̂, with Û ∈ Rp1×p1 ,
V̂ ∈ Rp2×p2 . Let m = rank(B̂) be the number of nonzero
σ̂j’s for B̂. Let B̃/i

h denote the approximate of B̂/i obtained
from the smoothed problem. Then, as h→ 0

〈Xi, B̃
/i
h 〉 → 〈Xi, B̂〉+

Hii

1−Hii
(〈Xi, B̂〉 − yi),

H = X ·,E [X>·,EX ·,E + λG]−1X>·,E ,

with X ∈ Rn×p1p2 and G ∈ Rm(p1+p2−m)×m(p1+p2−m) a
symmetric matrix given by:

X j,kl =Û>·,kXjV̂·,l,

Gkl,st =



0 s = t = k = l ≤ m
1

σ̂s+σ̂t
1 ≤ s 6= t ≤ m, (k, l) = (s, t)

1
σ̂s

1 ≤ s ≤ m < t ≤ p2, (k, l) = (s, t)
1
σ̂t

1 ≤ t ≤ m < s ≤ p1, (k, l) = (s, t)

− 1
σ̂s+σ̂t

1 ≤ s 6= t ≤ m, (k, l) = (t, s)

− gr[σ̂t]
σ̂s

1 ≤ s ≤ m < t ≤ p2, (k, l) = (t, s)

− gr[σ̂s]
σ̂t

1 ≤ t ≤ m < s ≤ p2, (k, l) = (t, s)

0 otherwise.
(30)

where for t > m, σ̂t = 0 and gr[σ̂t] is the corresponding
subgradient at this singular value, which can be obtained
through the SVD of 1

λ

∑n
j=1(yj − 〈Xj , B̂〉)Xj . The set E

is then defined as:

E = {(k, l) : k ≤ m or l ≤ m}.

Note that the indices of G and the index set E are consistent.

6.3. Linear SVM

The linear SVM optimization can be written as

arg min
β

n∑
j=1

(1− yjx>j β)+ +
λ

2
‖β‖22,
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with yj ∈ {−1, 1} and (·)+ = max{·, 0}. Note that this is a
special case of the problem we studied in Section 4.2. Here,
`(u; yj) = (1− yju)+ has only one zero order singularity
at yj . Using Theorem 4.1 and simplifying the expressions,
we obtain the following ALO formula for SVM:

x>i β̃
/i = x>i β̂ + aig`,i,

where

ai =

{
1
λx
>
i (Ip −X>V,·(XV,·X

>
V,·)
−1XV,·)xi i ∈ S,(

λ[(XV,·X
>
V,·)
−1]ii

)−1
i ∈ V,

and for i ∈ S, g`,i = −yi if yix>i β̂ < 1, g`,i = 0 if
yix
>
i β̂ > 1, and for i ∈ V

g`,V = (XV,·X
>
V,·)
−1XV,·[λβ̂ +

∑
j:yjx>j β̂<1yjxj ].

Recall that V = {j : x>j β̂ = yj} and S = [1, . . . , n]\V .

7. Numerical Experiments
We illustrate the performance of ALO through three experi-
ments. The first two compare the ALO risk estimate with
that of LOOCV. The third experiment compares the com-
putational complexity of ALO with that of LOOCV. We
have also evaluated the performance of ALO on real-world
datasets. Due to lack of space, these results are presented in
Appendix F.2. For the first experiment (Figure 2a), we run
ALO and LOOCV for the three models studied in Section
6 (using fused LASSO (Tibshirani et al., 2005) as a special
case of generalized LASSO) and compare their risk esti-
mates under the settings n > p and n < p respectively. The
full details of the experiments are provided in Appendix F.

For the second experiment (Figure 2b), we consider the
risk estimates for LASSO from ALO and LOOCV under
settings with model mis-specification, heavy-tail noise and
correlated design. For all three cases, ALO approximates
LOOCV well.

Table 1. Timing (in sec) of one single fit, ALO and LOOCV. In the
upper and lower tables, we fix n = 800 and p = 800 respectively.

p 200 400 1600
single fit 0.035± 0.001 0.13± 0.01 0.60± 0.01
ALO 0.060± 0.001 0.21± 0.01 0.89± 0.01
LOOCV 27.52± 0.03 107.4± 0.5 479± 2

n 200 400 1600
single fit 0.055± 0.002 0.19± 0.01 0.76± 0.02
ALO 0.065± 0.001 0.24± 0.01 1.20± 0.01
LOOCV 11.44± 0.049 74.7± 0.5 1249± 3

In general, we observe that the estimates given by ALO are
close to LOOCV, although the performance may deteriorate

for very small values of λ, as is clear in the fused-LASSO
(n < p) example. These values of λ correspond to “dense”
solutions, and are far from the optimal choice. Hence, such
inaccuracies do not harm the parameter tuning algorithm.

Our last experiment compares the computational complexity
of ALO with that of LOOCV. In Table 1, we provide the
timing of LASSO for different values of n and p. The
time required by ALO, which involves a single fit and a
matrix inversion (in the construction ofH matrix), is in all
experiments no more than twice that of a single fit. We refer
the reader to Appendix F for the details of this experiment.

svm fused lasso nuclear norm
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Figure 2. Risk estimates from ALO versus LOOCV. The x-axis is
the tuning parameter value on log-scale, the y-axis is the risk esti-
mate. In part (a), the comparison is based on SVM, fused LASSO
and nuclear norm. For nuclear norm, p1, p2 are dimensions of a
matrix. In part (b), we consider the risk estimates of LASSO under
model mis-specification, heavy-tailed noise and correlated design
scenarios.

8. Discussion
ALO offers a highly efficient approach for parameter tuning
and risk estimation for a large class of statistical machine
learning models. We focus on nonsmooth models and pro-
pose two general frameworks for calculating ALO. One is
from the primal perspective, the other from the dual.

By approximating LOOCV, ALO inherits desirable proper-
ties of LOOCV in high-dimensional settings where n and p
are comparable. In particular, ALO can overcome the bias
issues that k-fold cross validation displays in these settings.
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