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Abstract

One of the most challenging machine learning
problems is a particular case of data classifica-
tion in which classes are hierarchically structured
and objects can be assigned to multiple paths of
the class hierarchy at the same time. This task is
known as hierarchical multi-label classification
(HMC), with applications in text classification,
image annotation, and in bioinformatics problems
such as protein function prediction. In this paper,
we propose novel neural network architectures for
HMC called HMCN, capable of simultaneously
optimizing local and global loss functions for dis-
covering local hierarchical class-relationships and
global information from the entire class hierar-
chy while penalizing hierarchical violations. We
evaluate its performance in 21 datasets from four
distinct domains, and we compare it against the
current HMC state-of-the-art approaches. Results
show that HMCN substantially outperforms all
baselines with statistical significance, arising as
the novel state-of-the-art for HMC.

1. Introduction
The main focus of research in machine learning has been
towards the induction of models for typical classification
problems, where an object is associated with a single class
from a set of disjoint classes. There is, however, a niche
of tasks in which classes are not disjoint but organized into
a hierarchical structure, namely hierarchical classification
(HC). In HC, objects are associated with a given superclass
and its corresponding subclasses. Depending on the task,
the correspondence may be with all subclasses or with only
a subset of them. The hierarchical structure that formalizes
the relationship among classes can assume the form of a
tree or of a Directed Acyclic Graph (DAG).
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In a more challenging scenario, there are HC problems in
which each object can be associated to several different
paths of the class hierarchy, namely hierarchical multi-label
classification (HMC). Typical HMC problems are text clas-
sification (Rousu et al., 2006; Cesa-Bianchi et al., 2006;
Mayne & Perry, 2009; Lewis et al., 2004; Klimt & Yang,
2004), image annotation (Dimitrovski et al., 2011), and
bioinformatics tasks such as protein function prediction
(Otero et al., 2010; Valentini, 2011; Bi & Kwok, 2011; Bar-
ros et al., 2013; Cerri et al., 2015; Triguero & Vens, 2016),
which are the application domains we focus in this paper.

Algorithms that perform HMC must be capable of labeling
objects as belonging to one or multiple paths in the class hi-
erarchy. For such, they must optimize a loss function either
locally or globally (Silla & Freitas, 2010). Algorithms that
perform local learning attempt to discover the specificities
that dictate the class relationships in particular regions of
the class hierarchy, later combining the local predictions in
order to generate the final classification. The idea is to gen-
erate a hierarchy of classifiers following a top-down strategy
(Costa et al., 2007), in which each classifier is responsible
for the prediction of either particular nodes (Kiritchenko
et al., 2004) or particular hierarchical levels. Global ap-
proaches for HMC, on the other hand, usually consist of
a single classifier capable of associating objects with their
corresponding classes in the hierarchy as a whole (Cerri
et al., 2012; 2013b). There are advantages and disadvan-
tages of using either global or local approaches. Global
approaches are usually cheaper than local approaches, and
they do not suffer from the well-known error-propagation
problem, though they are less likely to capture local infor-
mation from the hierarchy, eventually underfitting. Local
approaches are much more computationally expensive since
they rely on a cascade of classifiers, but they are much more
suitable for extracting information from regions of the class
hierarchy, eventually overfitting.

In order to combine the advantages of both HMC approaches
and to careful avoid their downfalls, we propose a paradigm
shift: instead of choosing a particular strategy, we argue
in favor of a hybrid method capable of simultaneously op-
timizing both local and global loss functions. Our novel
approach, namely HMCN, implements recurrent and non-
recurrent neural network architectures. In both versions it
comprises multiple outputs, with one output layer per hi-
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erarchical level of the class hierarchy plus a global output
layer for the entire network. The rationale is that each local
loss function reinforces the propagation of gradients leading
to proper local-information encoding among classes of the
corresponding hierarchical level. At the same time, the loss
function optimized in the global output layer keeps track
of the label dependency in the hierarchy as a whole. In
addition, we introduce a hierarchical violation penalty for
encouraging predictions that obey the hierarchical structure.
We show that HMCN comfortably establishes itself as the
novel state-of-the-art for HMC problems.

2. HMCN
We propose HIERARCHICAL MULTI-LABEL CLASSIFICA-
TION NETWORKS (HMCN), which is a multiple-output
deep neural network specially designed to perform both
local and global optimization in HMC problems. For that,
HMCN propagates gradients from multiple network out-
puts. It comprises one local output per hierarchical level,
and a local loss function is used for backpropagating the
gradients from the classes in the corresponding level. The
global output captures the cumulative relationships that were
forwarded across the entire network, backpropagating the
gradients from all classes of the hierarchy. We present both
a feed-forward (HMCN-F) and a recurrent (HMCN-R)
architecture of HMCN.

2.1. HMCN-F

HMCN-F is specifically designed for maximizing the learn-
ing capacity regarding the hierarchical structure of the la-
beled data. In HMCN-F, information flows in two ways:
i) the main flow, which begins with the input layer and tra-
verses all fully-connected (FC) layers until it reaches the
global output; and ii) the local flows, which also begin in the
input layer and pass by their respective global FC layers but
also through specific local FC layers, finally ending at the
corresponding local output. For generating the final predic-
tion, all local outputs are then concatenated and pooled with
the global output for a consensual prediction. The global
flow is responsible to carry information from the ith level to
the (i+ 1)th hierarchical level. It is influenced by the local
outputs that reinforce local level-wise relationships within
the global information flow by backpropagating gradients
specific to the set of classes from each level. Figure 1 depicts
a graphical illustration of the structure of HMCN-F along
with its respective notation.

Formally, let x ∈ R|D|×1 be the input feature vector, Ch

be the set of classes of the hth hierarchical level, |D| be
the number of features, |H| the total number of hierarchical
levels, and |C| the total number of classes. Let A1

G denote
the activations in the first level of the global flow (first level
of the class hierarchy) and is given by:

Figure 1. HMCN-F architecture.

A1
G = φ(W1

Gx + b1
G) (1)

where W1
G ∈ R|A1

G|×|D| is a weight matrix and b1
G ∈

R|A1
G|×1 is the bias vector, which are the parameters for

learning global information directly from the input, and φ
is a non-linear activation function (e.g., ReLU). The subse-
quent global activations are given by

Ah
G = φ(Wh

G(Ah−1
G � x) + bh

G) (2)

where Wh
G ∈ R|A

h
G|×|A

h−1
G
| is the weight matrix for the hth

level of the hierarchy, bh
G ∈ R|Ah

G|×1 is the corresponding
bias vector, and � denotes vector concatenation. The HMC
prediction based on global information PG ∈ R|C|×1 is
then calculated by

PG = σ(W|H|+1
G A|H|G + b|H|+1

G ) (3)

where W|H|+1
G ∈ R|C|×|A

|H|
G
| is the weight matrix that

connects the activations of the last hierarchical level with the
global output that has |C| neurons, b|H|+1

G ∈ R|C|×1 is the
corresponding bias vector, and σ is the sigmoidal activation.
Note that PG is a continous vector for which each position
P

(i)
G denotes the probability P (Ci|x) for Ci ∈ C. With

respect to the local flows, let Ah
L denote the activations in

the hth layer of the local flow, which is calculated by

Ah
L = φ(Wh

T Ah
G + bh

T ) (4)

where Wh
T ∈ R|Ah

L|×|A
h
G| is a transition weight matrix that

maps a global hidden layer to a local hidden layer, and
bh

T ∈ R|Ah
L|×1 is the transition bias vector. The local infor-

mation of each hierarchical level is learned by parameters
Wh

L ∈ R|Ch|×|Ah
L| and bL ∈ R|Ch|×1. Hence, the local

predictions for level h, Ph
L ∈ R|Ch|, are given by

Ph
L = σ(Wh

LAh
L + bh

L) (5)
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where once again σ is necessarily sigmoidal and the ith

position of Ph
L denotes probability P (Ci|x) for Ci ∈ Ch.

Note that WL is a set of weight matrices that perform linear
mappings from a hidden space vector into hierarchical multi-
label classes. Given that each level may comprise a distinct
number of classes, we use a distinct weight matrix per level.
In order to use both local and global information, the final
predictions PG ∈ R|C|×1 are calculated by

PF = β
(

P1
L �P2

L�, . . . ,P
|H|
L

)
+ (1− β)PG (6)

where β ∈ [0, 1] is the parameter that regulates the trade-off
regarding local and global information. We set β = 0.5 as
the default option in order to give equal importance to both
local and global information from the class hierarchy.

To the best of our knowledge, this is the first work to pro-
pose a conjoint local-global optimization approach for HMC
problems. Recent neural network approaches for HMC
(Cerri et al., 2013a; 2016; Wehrmann et al., 2017) optimize
exclusively local information. Recall that global approaches
are better-suited to discover overall relationships by captur-
ing information from all hierarchical layers at once. The
global output in HMCN-F is a FC layer with |C| neurons,
where |C| is the number of classes in the dataset. For a
6-level HMC problem, the sixth layer of the global flow
receives as input the cumulative information from feature
space and maps it at once to all classes of the hierarchy,
hence defining HMCN-F as a global approach. Notwith-
standing, we argue that also employing local outputs within
the architecture is beneficial for three main reasons: (i) it
feeds the network with specific local information that would
otherwise be ignored; (ii) it prevents dead neurons by in-
creasing the gradient signal; and (iii) it accelerates con-
vergence, which is a direct consequence of increasing the
gradient signal. Recall that multiple-output networks have
also been applied with success to flat single-label and multi-
label classification (see (Lee et al., 2015; Cissé et al., 2016)
and references therein).

HMCN-F comprises l local outputs (one per hierarchical
level) and virtually two global outputs: the main global
output and the weight-average output. For instance, if one
has prior knowledge that global information is much more
relevant than local relationships in a given dataset, one can
control that by decreasing the value of β. Such a decision
automatically enforces the loss function to prioritize global
features during learning, and the same could be done for
each local output. There are no gradients flowing back from
the trade-off output, only from the local and global outputs.

Another important architectural choice in HMCN-F is the
reuse of the original input features in each layer of the main
flow. By reusing the original features, HMCN-F improves

the process of learning local information. More specifically,
each layer becomes specialized in finding relationships be-
tween the original features and the information required for
classifying classes in a given hierarchical level. Such an in-
tuition is empirically demonstrated in Section 4.1, in which
we show the gains in reusing the input features throughout
the global flow. Input reuse is a choice often used in RNNs
for keeping the input features easily accessible (which helps
in tasks such as image captioning). In our work, this choice
is grounded with an even stronger intuition: it allows each
local network to learn features directly related to a given hi-
erarchical level, which can be seen as specialist two-layered
neural networks that are capable of leveraging information
from the previous levels as well.

2.2. HMCN-R

One of the main problems of HMCN-F is that the amount
of parameters grow with the number of hierarchical levels.
Hence, we developed a modification over HMCN-F where
the global flow shares weights throughout the hierarchy, act-
ing as a recurrent path within the network. This modification
resulted in a very unstable training process, making such
an architecture unfeasible for practical use. Notwithstand-
ing, we realized that HCMN could be properly modeled
as a fully-recurrent network, even though HMC is not a
case of sequential learning. Hence, we developed a recur-
rent version of HMCN inspired on Long Short-Term Mem-
ory (LSTM) networks (Hochreiter & Schmidhuber, 1997),
hereafter called HMCN-R. In HMCN-R, each iteration
resulting from unrolling the recurrent network concerns a
hierarchical level. For instance, an HMC problem with 6
levels is modeled as a recurrent network that is unrolled into
6 iterations. We argue that the sequential flow of shared pa-
rameters in a recurrent network naturally acts as the global
learning flow in HMCN-F, with the advantage of keeping
the number of parameters virtually unchanged even for very
deep class hierarchies.

In HMCN-R, gradients flow from not only the recurrent
general flow, which is capturing global information, but also
from the unrolled local outputs generated in each iteration.
Recall that the local outputs are specialized in a particular
level of the class-hierarchy, conceptually achieving the same
desired behavior as in HMCN-F. In HMCN-R, the input
reuse occurs naturally since the objects do not vary over
time (i.e., they do not constitute a sequence). Therefore, the
input of each iteration is the same original input, yielding
the same effect of input reuse previously discussed. As
in HMCN-F, HMCN-R weights the global output with
the local outputs for balancing global and local informa-
tion. Finally, modeling HMCN-R with an LSTM-based
architecture provides the further advantage of gradient reg-
ulation, preventing the vanishing problem. Nevertheless,
we still have to clip gradients so as to avoid the gradients
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Figure 2. HMCN-R architecture.

from exploding. For such, we guarantee that the norm of
the gradient vector does not exceed 1 (this constraint is ap-
plied in both HMCN versions). A graphical illustration of
HMCN-R is depicted in Figure 2

Our implementation is based on the original LSTM incar-
nation. It encapsulates long-term dependencies of the hth

hierarchical level (i.e., recurrent iteration) in a cell state
Ch−1 that is accessed (and modified) via forget Fh and
input Ih gates. Similarly to HMCN-F, we concatenate �
the input features in each iteration for easier access to the
original data.

Fh = σ
(
WF (Ah−1 � x) + bF

)
(7)

Ih = σ
(
WI(Ah−1 � x) + bI

)
(8)

Ĉh = H
(
WC(Ah−1 � x) + bC

)
(9)

Ch = FhCh−1 + IhĈh (10)

The output gate Oh is calculated by using activations from
the previous level Ah−1 and the input features x. The acti-
vation Ah for the current hth hierarchical level is generated
by modulating the output gate with the current cell state Ch

that is capable of carrying information from previous layers:

Oh = σ
(
WO(Ah−1 � x) + bO

)
(11)

Ah = OhH(Ch) (12)

Similarly to HMCN-F, we use a transition weight matrix
to project global features Ah into local ones, and individual
weight matrices for providing level-specific class predic-
tions. To the best of our knowledge, this is the first approach
to use independent weight matrices along with recurrent
layers for improving HMC performance.

2.3. Loss Function

HMCN minimizes the sum of the local (LL) and global
(LG) loss functions.

LL =
|H|∑
h=1

[
E(Ph

L,Yh
L)
]

(13)

LG = E(PG,YG) (14)

Since classes are not mutually exclusive, for learning both
global and local information, we minimize the binary cross-
entropy E(Ŷ,Y)

− 1
N

N∑
i=1

|C|∑
j=1

[
Yij × log(Ŷij)

+ (1−Yij)× log(1− Ŷij)
]

(15)

where YG is the binary class vector (expected output) con-
taining all classes in the hierarchy and Yh

L is the binary
class vector (expected output) containing only the classes of
the hth hierarchical level. By minimizing the proposed loss
function, one cannot guarantee that a consistent hierarchical
path would be predicted by the network. To circumvent this
issue we propose penalizing predictions with hierarchical vi-
olations, and also the execution of a post-processing step to
ensure that all predictions respect the hierarchy constraints.

A hierarchical violation happens when the generated pre-
diction score of a node Yin is larger than the score of its
parent node Yip. Those violations, which are conveniently
threshold-independent, are applied according Equation 16.
We employ λ ∈ R for regulating the importance of the
penalty for hierarchical violations in the final loss function.
When λ is too large, the network is biased towards pre-
dicting smaller values within deeper layers, which might



Hierarchical Multi-Label Classification Networks

Table 1. SUMMARY OF THE 21 DATASETS: NUMBER OF ATTRIBUTES (|A|), NUMBER OF CLASSES (|C|), TOTAL NUMBER OF OBJECTS

(TOTAL), AND NUMBER OF MULTI-LABEL OBJECTS (MULTI).

TAXONOMY DATASET |A| |C| TRAINING VALIDATION TEST
TOTAL MULTI TOTAL MULTI TOTAL MULTI

TREE ENRON 1000 56 692 692 296 296 660 660
TREE DIATOMS 371 398 1085 1031 464 436 1054 998
TREE IMCLEF07A 80 96 7000 7000 3000 3000 1006 1006
TREE IMCLEF07D 80 46 7000 7000 3000 3000 1006 1006
TREE REUTERS 1000 102 2100 2032 900 865 3000 2905

FUNCAT (TREE) CELLCYCLE 77 499 1628 1323 848 673 1281 1059
FUNCAT (TREE) DERISI 63 499 1608 1309 842 671 1275 1055
FUNCAT (TREE) EISEN 79 461 1058 900 529 441 837 719
FUNCAT (TREE) EXPR 551 499 1639 1328 849 674 1291 1064
FUNCAT (TREE) GASCH1 173 499 1634 1325 846 672 1284 1059
FUNCAT (TREE) GASCH2 52 499 1639 1328 849 674 1291 1064
FUNCAT (TREE) SEQ 478 499 1701 1344 879 679 1339 1079
FUNCAT (TREE) SPO 80 499 1600 1301 837 666 1266 1047

GENE ONTOLOGY CELLCYCLE 77 4122 1625 1625 848 848 1278 1278
GENE ONTOLOGY DERISI 63 4116 1605 1605 842 842 1272 1272
GENE ONTOLOGY EISEN 79 3570 1055 1055 528 528 835 835
GENE ONTOLOGY EXPR 551 4128 1636 1636 849 849 1288 1288
GENE ONTOLOGY GASCH1 173 4122 1631 1631 846 846 1281 1281
GENE ONTOLOGY GASCH2 52 4128 1636 1636 849 849 1288 1288
GENE ONTOLOGY SEQ 478 4130 1692 1692 876 876 1332 1332
GENE ONTOLOGY SPO 80 4116 1597 1597 837 837 1263 1263

constraint too much the optimization process. Conversely,
if λ is too small the network is allowed to learn inconsistent
paths more easily, i.e., it can be more influenced by statisti-
cal characteristics of the data rather than by the hierarchical
structure at hand. Similarly to (Wehrmann & Barros, 2018;
Wehrmann et al., 2018), the violation is given by

LHi
= λmax{0,Yin −Yip}2 (16)

The final loss function we optimize is thus given by

min
W

(LL + LG + LH) (17)

3. Experimental Methodology
We compare HMCN-(F/R) with four HMC algorithms
which are considered the state-of-the-art for HMC: Clus-
HMC (Vens et al., 2008), Clus-HMC-Ens (Schietgat et al.,
2010), CSSA (Bi & Kwok, 2011), and HMC-LMLP (Cerri
et al., 2016). All algorithms are executed over 21 freely-
available datasets related to either protein function predic-
tion (Vens et al., 2008), annotation of medical or microal-
gae images (Dimitrovski et al., 2011), or text classification
(Lewis et al., 2004). Those datasets are structured as either
trees (MIPS Functional Catalogue, for protein function pre-
diction) or directed acyclic graphs (Gene Ontology). The
following pre-processing step is performed before running
HMCN over these datasets: all nominal attribute values
were transformed into numeric values using the binary one-
attribute-per-value approach. The attributes were then stan-
dardized (zero-centered with unit variance). All missing
values were replaced by the corresponding mean or mode.
Table 1 presents the characteristics of the employed datasets.

They present challenging characteristics for deep neural net-
works: i) they comprise a rather limited amount of training
samples; ii) they have a large variation in the number of
features (varying from 52 to 1000); iii) they present a wide
range on the number of hierarchical levels and classes (some
present up to 4200 classes distributed in 13 hierarchical lay-
ers). There are several cases in which the classes are very
sparse, making the optimization even more challenging.

The outputs of HMCN and baseline algorithms are probabil-
ity values for each class. Hence, the final predictions (binary
vector indicating the presence or absence of each class) are
generated after thresholding those probabilities. The choice
of optimal threshold is difficult and often subjective, thus
we follow the trend of HMC research in which we avoid
choosing thresholds by employing precision-recall curves
(PR-curves) as the evaluation criterion for comparing the
different approaches, and the single-value criterion we an-
alyze is the area under the average precision-recall curve
(AU(PRC)). We run all experiments 10× and report aver-
ages of those runs as final results. For simplicity, we omit
the standard deviation given that our networks have shown
to be very stable with standard deviation varying between
[1× 10−3, 3× 10−3]. Finally, when training for evaluation
in test data, we re-train the models with both training and
validation data. Hence, we evaluate models generated at the
end of the final epoch.

3.1. Hyper-Parameters

We are dealing with relatively small datasets (though with a
very large number of classes), which makes the choice of
hyper-parameters harder and more important than it usually
is. For training our networks, we use the Adam optimizer
with learning rate of 1 × 10−3 and remaining parameters
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Table 2. IMPACT OF INPUT REUSE AND LOCAL OUTPUTS ON THE PERFORMANCE OF HMCN-F. THE VALUES PRESENTED ARE OF

AU(PRC) REGARDING FUNCAT VALIDATION DATA. AVERAGE RANKING IS ALSO PROVIDED (LOWER IS BETTER).

DATASET HMCN (GLOBAL ONLY) HMCN-F (INPUT REUSE) HMCN-F (LOCAL OUTPUTS) HMCN-F

CELLCYCLE 0.200 0.212 0.216 0.228
DERISI 0.164 0.166 0.173 0.168
EISEN 0.253 0.263 0.266 0.280
EXPR 0.220 0.242 0.238 0.271
GASH1 0.217 0.243 0.241 0.261
GASH2 0.210 0.215 0.211 0.227
SEQ 0.109 0.258 0.236 0.279
SPO 0.158 0.167 0.174 0.170

AVERAGE RANKING 5.25 3.38 3.00 1.25

as suggested in (Kingma & Ba, 2014). For the HMCN-
F version, the fully-connected layers comprise 384 ReLU
neurons, followed by a batch normalization, residual con-
nections, and dropout of 60%. Dropout is important given
that these models could easily overfit the small training sets.
For the HMCN-R models, we use independent dropout
masks for the local outputs, though no dropout is used in
the recurrent layers.

All networks minimize the loss function proposed in Sec-
tion 2.3 via mini-batch gradient descent, where each it-
eration is computed over a mini-batch of 2 training ob-
jects. Even though the use of larger mini-batch sizes (e.g.,
4, 8, 12, 16, 24) yields similar results, we noticed that
one can achieve better results by training HMCN models
with smaller batches. We do not perform per-dataset hyper-
parameter optimization unlike the current state-of-the-art
approaches. We kept the same hyper-parameters across
all datasets to evaluate our method’s capability of learning
from distinct datasets with varying characteristics. The only
hyper-parameter that we vary across datasets is regulariza-
tion, which is regulated over validation data in order to
mitigate eventual overfitting.

4. Experimental Analysis
We perform two distinct sets of experiments. First, we
analyze the performance of different architectural choices
for HMCN-F on validation data in all 8 FunCat protein
function prediction datasets. Our goal is to show to the
reader the impact of critical components such as input reuse
and the local outputs within HMCN. In the second set of
experiments, we compare HMCN-F and HMCN-R with
the current state-of-the-art approaches on test data of all the
21 datasets employed in this paper.

4.1. Impact of the Architectural Components

We analyze the impact that the local outputs and input fea-
tures reuse produce on HMCN-F. We show the results of

the architecture when using only the global flow with no
local outputs as a baseline (HMCN-F-Global Only). Such
baseline version is a deep neural network with |H| layers
with ReLU (Nair & Hinton, 2010), batch normalization
(Ioffe & Szegedy, 2015), and residual connections (He et al.,
2016). Table 2 shows the results regarding AU(PRC) on
validation data of the Funcat datasets. Note that the best
performance is achieved when using the proposed incar-
nation of HMCN-F that combines both input reuse and
local outputs. The single most important design choice is
the inclusion of local outputs, which indeed seems to be
providing extra local information with respect to inter-class
relationships. Input reuse also seems to largely increase the
performance of the network. With those results in mind, we
use only the full version of HMCN in both feedforward and
recurrent versions (namely HMCN-Fand HMCN-R) for
comparing with the state-of-the-art for the test sets of all 21
datasets in the following set of experiments.

4.2. Effect of Hierarchical Violation Penalty

Table 3 depicts the effect of λ for weighting hierarchical
violations. By using λ = 0.1 in HMCN-F we can achieve
slightly better results, while for HMCN-R the improve-
ments are more significant due to more consistent predic-
tions. In addition, a side effect of this penalty is the re-
duction in magnitude of the weights, which has an implicit
regularizer effect. We have found that even with no penalty
(λ = 0.0) the networks were capable of learning consistent
hierarchical paths. However, λ indeed helps in mitigating
consistency problems by reducing the amount of updates
performed in the final post-processing step.

4.3. HMCN vs. State-of-the-Art

We compare the best HMCN-F version from the previous
subsections (i.e., the complete version with λ = 0.1) with
both HMCN-R and the current state-of-the-art approaches,
this time on the test sets of all datasets from Table 1. Ta-
ble 4 presents the results of the experiments with HMCN-F,
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Table 3. IMPACT OF HIERARCHICAL VIOLATIONS IN HMCN. VALUES PRESENTED ARE OF AU(PRC) ON VALIDATION DATA.

HMCN-F HMCN-R
DATASET λ = 0.0 λ = 0.1 λ = 1.0 λ = 0.0 λ = 0.1
CELLCYCLE 0.250 0.252 0.233 0.245 0.249
DERISI 0.191 0.193 0.185 0.188 0.189
EISEN 0.293 0.298 0.264 0.292 0.298
EXPR 0.296 0.301 0.263 0.295 0.300
GASCH1 0.281 0.284 0.259 0.278 0.283
GASCH2 0.252 0.254 0.232 0.244 0.249
SEP 0.283 0.291 0.262 0.285 0.290
SPO 0.210 0.211 0.197 0.205 0.207

HMCN-R, and the baseline approaches Clus-HMC-Ens,
Clus-HMC, CSSA, and HMC-LMLP. Note that we do not
compare with the recent PLS+OPP approach (Sun et al.,
2016) since it does not generate probabilistic outputs, pre-
venting the correct generation of precision-recall curves,
which is the standard evaluation measure for experiments
in this research area. We highlight the best absolute values
(underlined) of AU(PRC) that were obtained per dataset.
HMC-LMLP (Cerri et al., 2016) does not provide results
for the GO datsets.

The first analysis we perform is regarding HMCN-F and its
performance when compared with the current state-of-the-
art. Note that HMCN-F is the algorithm with the greatest
number of wins (it reaches top performance in all datasets
but one) and best average ranking (1.07), comfortably out-
performing the state-of-the-art approaches. It is the first time
that a method in the literature outperforms the ensemble of
Clus-HMC and CSSA in all FunCat and GO datasets of pro-
tein function. Moreover, note that the only draws of HMCN-
F are regarding our own recurrent network. HMCN-R, in
turn, also provides better average ranking than the baseline
approaches, outperforming them in 19 out of 21 datasets.
HMCN-R demonstrates similar performance to HMCN-F,
being slightly overperformed on most datasets. Even though
HMCN-F seems to be better than HMCN-R, recall that
HMCN-R is much lighter in terms of total amount of pa-
rameters. For instance, HMCN-R has≈ 3M parameters for
the Cellcyle GO dataset, whereas HMCN-F has ≈ 7M. For
very large hierarchies, HMCN-R is probably a better choice
than HMCN-F considering the trade-off performance vs.
computational cost.

We also verify the statistical significance of the results fol-
lowing the recommendation of (Demšar, 2006). First, we
execute the Friedman test, which indicates the existence of
significant differences with a p-value of 1.58× 10−32. We
then move to the post-hoc Nemenyi test, which is presented
in Figure 3. For this particular analysis, we employ the
graphical representation suggested in (Demšar, 2006), the
so-called critical diagrams. In this diagram, a horizontal

CD

1 2 3 4 5 6

HMCN-F
HMCN-R
Clus-Ens

LMLP
Clus-HMC

CSSA

Figure 3. Critical diagram for the Nemenyi’s statistical test.

line represents the axis on which we plot the average rank
values of the methods. We connect the groups of algorithms
that do not differ significantly through a horizontal line. We
also show the critical difference given by the test, which
is CD = 1.645. Observe that HMCN-F outperforms all
baseline approaches with statistical significance. The test
does not show, however, a significant difference between
HMCN-R and Clus-HMC-Ens, between Clus-HMC-Ens
and CSSA, nor between CSSA and Clus-HMC.

5. Related Work
Vens et al. (Vens et al., 2008) proposed three classification
algorithms based on the concept of Predictive Clustering
Trees (PCT). The best of them, Clus-HMC, is a global ap-
proach that induces a single decision tree to deal with the
entire class hierarchy. Schietgat et al. (Schietgat et al., 2010)
proposed a bagging strategy for generating ensembles of
Clus-HMC trees, namely Clus-HMC-Ens, considerably im-
proving over Clus-HMC. Cesa-Bianchi et al. (Cesa-Bianchi
et al., 2011) investigated the synergy between different local-
based strategies related to gene function prediction in Fun-
Cat annotated genes. They integrated kernel-based data
fusion tools and ensemble algorithms with cost-sensitive
HMC methods (Cesa-Bianchi & Valentini, 2010; Valentini,
2011). Cerri et al. (Cerri et al., 2011; 2013a; 2016) proposed
HMC-LMLP, a local HMC approach based on a chain of
Multi-Layer Perceptrons (MLPs) with a single hidden layer
each. Each MLP is responsible for predicting the classes in
a given level of the hierarchy, and the input of a given MLP
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Table 4. COMPARISON OF HMCN WITH THE BASELINE METHODS. THE VALUES PRESENTED ARE OF AU(PRC). VALUES IN BOLD

OUTPERFORM THE BEST RESULTS PUBLISHED SO FAR, AND UNDERLINED ARE THE NOVEL STATE-OF-THE-ART FOR EACH DATASET.
DATASET HMCN-F HMCN-R CLUS-HMC CSSA CLUS-ENS HMC-LMLP

CELLCYCLE (FUNCAT) 0.252 0.247 0.172 0.188 0.227 0.207
DERISI (FUNCAT) 0.193 0.189 0.175 0.186 0.188 0.183
EISEN (FUNCAT) 0.298 0.298 0.204 0.212 0.271 0.245
EXPR (FUNCAT) 0.301 0.300 0.210 0.220 0.271 0.243
GASCH1 (FUNCAT) 0.284 0.283 0.205 0.208 0.267 0.236
GASCH2 (FUNCAT) 0.254 0.249 0.195 0.210 0.227 0.211
SEQ (FUNCAT) 0.291 0.290 0.211 0.218 0.284 0.236
SPO (FUNCAT) 0.211 0.210 0.186 0.208 0.210 0.186

CELLCYCLE (GO) 0.400 0.395 0.357 0.366 0.387 -
DERISI (GO) 0.369 0.368 0.355 0.357 0.363 -
EISEN (GO) 0.440 0.435 0.380 0.401 0.433 -
EXPR (GO) 0.452 0.450 0.368 0.384 0.418 -
GASCH1 (GO) 0.428 0.416 0.371 0.383 0.415 -
GASCH2 (GO) 0.465 0.463 0.369 0.373 0.395 -
SEQ (GO) 0.447 0.443 0.386 0.387 0.435 -
SPO (GO) 0.376 0.375 0.345 0.352 0.372 -

DIATOMS 0.530 0.514 0.167 - 0.379 -
ENRON 0.724 0.710 0.638 - 0.681 -
IMCLEF07A 0.950 0.904 0.574 - 0.777 -
IMCLEF07D 0.920 0.897 0.749 - 0.863 -
REUTERS 0.649 0.610 0.562 - 0.703 -

AVERAGE RANKING 1.07 2.04 5.12 3.96 3.57 -

is given by the output of the previous MLP in the chain. All
MLPs are trained separately with distinct strategies of data
augmentation, and the results are presented for FunCat an-
notated protein data. Bi and Kwok (Bi & Kwok, 2011) pro-
posed a problem transformation approach for tree and DAG
hierarchies that can be used with any classifier. It employs
kernel dependency estimation (KDE) to reduce the number
of labels to a manageable number of single-label learning
problems. To preserve the hierarchical information among
labels, they developed a generalised Condensing Sort and
Select Algorithm (CSSA), which finds optimal approxima-
tion subtrees. They project the labels to a 50-dimensional
space and then use ridge regression in the learning step.
Triguero and Vens (Triguero & Vens, 2016) studied alterna-
tives to perform the final labelling in HMC problems. The
authors evaluated the Clus-HMC-Ens method when using
single and multiple thresholds to transform the continuous
prediction scores into actual binary labels. To choose thresh-
olds, two approaches were proposed: to optimize a given
evaluation measure or to simulate training set properties
within the test set. They concluded that selecting thresholds
for each class is a good alternative, resulting in improved
label-sets and faster execution time. Sun et al. (Sun et al.,
2016) proposed PLS+OPP, in which the classification task
is formulated as a path selection problem. They used partial
least squares to transform the label prediction problem into
an optimal-path prediction strategy. Each multi-label predic-

tion is a connected subgraph that comprises a small number
of paths, and the optimal paths are found and merged to
provide the final predictions.

6. Conclusions and Future Work
We proposed novel deep neural network architectures for
hierarchical multi-label classification in tree-structured and
DAG-structured hierarchies, namely HMCN. We designed
two distinct versions of HMCN: a more robust feedforward
version (though with the potential of having much more
parameters), namely HMCN-F, and a more efficient recur-
rent version that leverages shared weights and an LSTM-
like structure for encoding hierarchical information, namely
HMCN-R. To the best of our knowledge, HMCN is the
first HMC method that benefits from both local and global
information at the same time, while penalizing hierarchi-
cal violations. We performed several experiments using 21
datasets from four distinct domains. Results show that both
HMCN-R and HMCN-R were capable of comfortably out-
performing the state-of-the-art methods, establishing them-
selves as the novel state-of-the-art for HMC tasks. As future
work, we intend to evaluate HMCN models for hierarchical
classification based on raw images (e.g., using the ImageNet
synsets), to further explore better text encoding strategies
in HMC datasets, and provide visualization techniques for
HMCN models.
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