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Abstract

We consider the problem of configuring general-
purpose solvers to run efficiently on problem in-
stances drawn from an unknown distribution. The
goal of the configurator is to find a configuration
that runs fast on average on most instances, and
do so with the least amount of total work. It can
run a chosen solver on a random instance until
the solver finishes or a timeout is reached. We
propose LEAPSANDBOUNDS, an algorithm that
tests configurations on randomly selected prob-
lem instances for longer and longer time. We
prove that the capped expected runtime of the
configuration returned by LEAPSANDBOUNDS
is close to the optimal expected runtime, while
our algorithm’s running time is near-optimal. Our
results show that LEAPSANDBOUNDS is more ef-
ficient than the recent algorithm of Kleinberg et al.
(2017), which, to our knowledge, is the only other
algorithm configuration method with non-trivial
theoretical guarantees. Experimental results on
configuring a public SAT solver on a new bench-
mark dataset also stand witness to the superiority
of our method.

1. Introduction
For computational problems of major practical interest (sat-
isfiability, planning, etc.) the computing science commu-
nity has developed a large number of highly configurable
“solvers.” The reason is that while the hardest problem in-
stances take a long time to solve by any of the solvers, the
instances that one encounters in practical applications may
exhibit specific properties so that the appropriate solver
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with an appropriate configuration may finish much faster.
The plethora of solvers and their configurations, which for
simplicity of presentation we will just treat as configura-
tions from this point on, is explained by the diversity of
applications. Which configuration to use in a specific ap-
plication can then be treated as a learning problem, where
an application is identified with an unknown distribution
over problem instances that one can sample from, the learn-
ing algorithm can run any configuration on any sampled
instance until a timeout of its choice, and the goal is to find
a configuration with nearly optimal expected runtime while
using the least amount of time during the search.1 There
has been much practical success on designing such black-
box configuration search methods, especially in the context
of satisfiability problems. Examples of successful meth-
ods include ParamILS (Hutter, 2007; Hutter et al., 2009),
SMAC (Hutter et al., 2011; 2013), irace (Birattari et al.,
2002; López-Ibánez et al., 2011), and GGA (Ansótegui
et al., 2009; 2015). These methods themselves rely on many
heuristics and as such lack theoretical guarantees.

Recently, Kleinberg et al. (2017) explored this problem,
presenting a general-purpose configuration optimizer called
Structured Procrastination, with guarantees on both (i) how
close to the optimal configuration the algorithm’s result is,
and (ii) how long it takes to find such a configuration. For
(ii), Kleinberg et al. (2017) prove that the expected runtime
of their algorithm is within a logarithmic factor of the opti-
mal runtime in a worst-case sense. Furthermore, they show
that the gap between worst-case runtimes of existing algo-
rithms (SMAC, ROAR, ParamILS, GGA, irace) and their
solution can be arbitrarily large. Structured Procrastination
attempts to refine the runtime guarantee for the empirically
fastest solver and solves tasks in increasing order of diffi-
culty, postponing difficult tasks until all simpler tasks have
been solved. The main novelty of their work is that it comes
with theoretical guarantees (lower and upper bounds on the
runtime), but no empirical illustration is provided.

This paper builds on the results of Kleinberg et al. (2017),
and our problem statement closely follows theirs. Our

1Related, but different problems are considered, e.g., by Luby
et al. (1993); Adam (2001); Mnih et al. (2008); Audibert & Bubeck
(2010); György & Kocsis (2011); Li et al. (2016).
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main technical contributions are as follows: We present
an (arguably simpler) algorithm (LEAPSANDBOUNDS) that
finds an approximately optimal configuration with a worst-
case runtime bound that improves upon that of Kleinberg
et al. (2017), while we consider a broader class of prob-
lems (we don not need their global runtime cap). We also
present instance-dependent runtime bounds that show that
LEAPSANDBOUNDS finishes faster if the runtime of the
configurations over different problem instances has small
variance. Experiments were carried out to assess practical
performance of both Structured Procrastination and LEAP-
SANDBOUNDS on configuring the open-source minisat
solver. LEAPSANDBOUNDS runs every configuration for
less time than Structured Procrastination, and returns sig-
nificantly faster. Finally, to facilitate further research and
enable direct comparison to our results, our large-scale mea-
surements on running times of the minisat solver are
published together with the paper.2

The rest of the paper is organized as follows: The problem
is introduced formally in Section 2. For clarity, the most
basic version of our algorithm is presented first in Section 3,
and its performance is analyzed in Section 4. Improvements
to our method, together with their analyses, are presented
in Section 5. Experimental results are presented in Sec-
tion 6, followed by some notes on parallel implementation
in Section 7. Finally, conclusions are drawn in Section 8.

2. Problem Statement
Following Kleinberg et al. (2017), the algorithm configura-
tion problem is defined by a tuple (N ,Γ, R, κ0) as follows:3

Here, N is a family of configurations and Γ is a distribu-
tion over input instances.4 For now, we consider the case
when N is a finite set. If we have a benchmark set of in-
stances, we let Γ be the uniform distribution over these
benchmark instances. For configuration i ∈ N and instance
j, R(i, j) ∈ [0,∞] is the execution time of configuration i
on instance j. Finally, κ0 > 0 is the minimum runtime: For
all i, j pairs, R(i, j) ≥ κ0.

We let R(i) = EJ∼Γ [R(i, J)] denote the average runtime
of configuration i on instances distributed according to Γ,
and define OPT = miniR(i) as the mean runtime of an op-
timal configuration. Our goal is to find such an optimal, or
at least nearly optimal configuration while spending as little
time as possible–proportional to the runtime of the optimal
configuration–on this task. For this, a search algorithm can
(i) sample instances J at random from Γ; (ii) enumerate

2https://github.com/deepmind/
leaps-and-bounds

3Compared to their problem statement, we removed the global
runtime cap from the definition as it is not required for our results.

4For randomized solvers, input instances can mean (input in-
stance, random seed) pairs.

the configurations in N ; (iii) run a configuration i on an
instance j until it finishes, or the execution time exceeds a
fixed timeout τ ≥ 0, chosen by the search algorithm. Prac-
tically, this means observing R(i, j, τ)

.
= min(R(i, j), τ)

after time R(i, j, τ), and also whether the calculation has
finished with a solution or it timed out.

The main difficulty in organizing the search is that some
configurations may take a long, or even infinite time to exe-
cute on some instances. Since an algorithm that claims to
find a near-optimal configuration must verify that no other
configuration can finish significantly faster than the chosen
configuration, the total runtime is at least proportional to
n×OPT, where n = |N | is the number of configurations
to be tested. Since knowing the mean runtime up to a mul-
tiplicative accuracy of (1 + ε) requires Ω(1/ε2) samples
even when the runtime distributions are light-tailed, relax-
ing the requirement to find a configuration i with runtime
R(i) ≤ (1 + ε)OPT, we get that the total runtime is at least
Ω(n × OPT/ε2). The situation worsens for heavy-tailed
runtime distributions: If the runtime of an algorithm is b > 1
with probability 1/b and 0 otherwise, with b unknown, all
sampling methods need to see at least one positive runtime
to estimate the expected runtime up to any fixed accuracy.
Thus, any sampling method needs to use at least Ω(b) time,
despite that the expected runtime is constant 1 (indepen-
dently of b). This implies that in the face of heavy-tailed
runtime distributions, the runtime of any sound configura-
tion search algorithm would be unbounded in the worst-case,
regardless the value of OPT, n and ε. Since heavy tailed
runtime distributions are quite common in practice, rather
than constraining the problem by ruling these out, following
Kleinberg et al. (2017), we relax the search criterion to that
of finding an (ε, δ)-optimal configuration. Introducing the
τ -capped version of R(i) as Rτ (i) = EJ∼Γ [R(i, J, τ)], we
have the following definition for (ε, δ)-optimality:

Definition 1 ((ε, δ)-optimality). A configuration i∗ is (ε, δ)-
optimal if there exists some threshold τ such that Rτ (i∗) ≤
(1 + ε)OPT, and PrJ∼Γ (R(i∗, J) > τ) ≤ δ. Otherwise,
we say i∗ is (ε, δ)-suboptimal.

In words, given (ε, δ), a sound configuration search algo-
rithm must find a configuration i whose τ -capped mean
runtime is at most (1 + ε)OPT, with a τ larger than the δ-
quantile of the runtime distribution of configuration i. This
is a reasonable criterion when OPT is reasonably small.5

In this paper we introduce the algorithm LEAPSAND-
BOUNDS that identifies an (ε, δ)-optimal configuration with

5If some problem instances are hopelessly hard, the expected
runtime of even an optimal configuration can be infinite, in which
case any configuration becomes (ε, δ)-optimal. To alleviate this
problem, it would be more meaningful to define (ε, δ)-optimality
with respect to the optimal capped runtime; this is left for future
work (see Section 8 for more details).

https://github.com/deepmind/leaps-and-bounds
https://github.com/deepmind/leaps-and-bounds
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probability 1 − ζ for a failure parameter ζ and has an
expected runtime of O

(
OPT n

ε2δ log
(
n log OPT

ζ

))
. The

method of Kleinberg et al. (2017) has an additional assump-
tion that all runtimes of any configuration on any instance
sampled from Γ are below a maximum κ̄ that must also be
known by the algorithm. While this renders the runtime
distributions light-tailed, a nice feature of their method is
that its runtime O

(
OPT n

ε2δ log
(
n log κ̄
ζδε2

))
has only a mild

dependence on κ̄. LEAPSANDBOUNDS does not require a
runtime cap and we shave off a few terms from their bound:
We replace the doubly logarithmic dependence on κ̄ with an
identical dependence on the practically much smaller OPT,
and remove logarithmic terms that depend on δ−1 and ε−2.
Kleinberg et al. (2017) also prove that the minimum worst-
case runtime for any algorithm is Ω

(
OPT n

ε2δ

)
, so both

methods are within a logarithmic factor of the optimum.

The above results make sense when n = |N | is small
enough to allow running each algorithm configuration. Sim-
ilarly to Kleinberg et al. (2017), LEAPSANDBOUNDS can
be extended to the case of an arbitrarily large number of con-
figurations: by sampling n configurations randomly from
the set of all configurations, the probability that none of the
fastest γ fraction of configurations have been sampled is
at most Ce−nγ for a universal constant C > 0. Thus, by
letting n =

⌈
1
γ log(C/ζ)

⌉
, with probability 1− 2ζ, LEAP-

SANDBOUNDS returns an (ε, δ)-optimal configuration with
respect to a configuration from the fastest γ fraction of con-
figurations from the entire space.

3. Algorithm
The main problem in finding a near-optimal solver config-
uration is that solving some instances may take arbitrarily
long. To alleviate the problem, (ε, δ)-optimality only consid-
ers the mean of runtimes capped at a timeout, ensuring that
at most a δ fraction of the worst instances run longer than
this timeout. This makes estimating the average runtime of
a configuration (over random instances) possible through
sampling. The main issue with sampling is that computing
the average runtime over the samples can be slowed down
arbitrarily if we accidentally select a problem instance with
a very large running time. This could be avoided if an oracle
told us the runtime threshold τ in the definition of (ε, δ)-
optimality, but this is not available of course. To solve the
problem, we present a configuration optimization algorithm
called LEAPSANDBOUNDS (Algorithm 1).

LEAPSANDBOUNDS attempts to guess a rough value of
OPT, starting from a low value. Calling its guess θ, the
algorithm then tries to find a configuration with a mean
runtime less than θ. If this succeeds, it returns the configura-
tion with the smallest mean found. Otherwise, θ is doubled
and a new phase is started. The simplest way of measuring

Algorithm 1 LEAPSANDBOUNDS

1: Inputs:
Set N of n algorithm configurations
Precision parameter ε ∈ (0, 1

3 )
Quantile parameter δ ∈ (0, 1)
Failure probability parameter ζ ∈ (0, 1)
Lower runtime bound κ0 > 0
Instance distribution Γ

2: Initialize:
θ ← 16

7 κ0, k ← 0, J ← empty list
3: while True do
4: k ← k + 1 . phase count
5: b←

⌈
44 log

(
6nk(k+1)

ζ

)
1
δε2

⌉
. instance bound

6: Add b− |J | new instances sampled from Γ to J
7: for i ∈ N do
8: Q̄i ←RUNTIMEEST (i,J , δ, θ)
9: end for

10: if mini Q̄i < θ then
11: return argmini Q̄i
12: end if
13: θ ← 2θ
14: end while

the mean runtime while guaranteeing (ε, δ)-optimality is to
take runtime samples with timeout θδ and reject any algo-
rithm that times out for any instance. Then, a concentration
bound on the measurements could be used to ensure that
the mean is close to the empirical mean. If the mean is less
than θ, Markov’s inequality can be used to bound the tail
probability for (ε, δ)-optimality. However, by rejecting any
configuration that ever times out, we fail to measure the
capped mean–which could be significantly lower–, and thus
the algorithm may not stop at the right time. To fix this, we
would ideally allow a δ fraction of runs to time out, but we
use 3

4δ instead, to achieve a high-confidence tail bound with
a Chernoff bound (replacing Markov’s inequality). Still,
the measurements could take a long time: if we perform b
measurements for a reliable mean estimation with timeout
τ , then we spend up to bτ time. A key observation is that
if we spend more than bθ time on measurements, the av-
erage would have to be above θ, and we would reject the
configuration. Thus, we can specify an overall time budget
of T = bθ, and reject any configuration early if they run
over this limit. These ideas are embodied in our algorithm
(RUNTIMEEST).

4. Theoretical Analysis
In this section we explore the theoretical properties of LEAP-
SANDBOUNDS. We show that the estimates computed by
the algorithm are reliable with high probability. Then we
prove that if the estimates are reliable, the running time can-
not be too large and the algorithm returns an (ε, δ)-optimal
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Algorithm 2 The RUNTIMEEST subroutine
1: Inputs:

Configuration i
Instance list J = (J1, . . . , Jb) of length b
Quantile parameter δ ∈ (0, 1)
Average runtime bound θ

2: Initialize:
T ← bθ . overall runtime budget
τ ← 4θ

3δ . individual runtime budget
j ← 1 . instance index

3: while True do
4: Run configuration i on Jj with timeout min{T, τ}
5: Qj ← R(i, Jj ,min{T, τ})
6: T ← T −Qj
7: // Stopping rules:
8: if T = 0 then . Stop if overall budget zero
9: return θ

10: else if j = b then . Stop after b = |J | samples
11: return Q̄ = 1/b

∑b
m=1Qm . Return mean

12: end if
13: j ← j + 1
14: end while

solution. We start with a few important observations about
RUNTIMEEST.

4.1. Guarantees for algorithm RUNTIMEEST

Consider the execution of RUNTIMEEST with the inputs
(i,J , θ, b). Noting that the loop is stopped if the budget
T0 = bθ gets exhausted, it follows that the total runtime of
the (optimized) algorithm is bounded by bθ:

Lemma 2. The runtime of one call to RUNTIMEEST is
O(bθ).

With T0 = bθ, for j ≥ 1, define Tj = Tj−1 − Qj =
bθ − (Q1 + · · · + Qj). If the budget bθ is not exhausted
(i.e., Tb = bθ − (Q1 + · · · + Qb) > 0), each instance Jj
runs within its min{Tj−1, τ} ≤ τ individual budget, and
so Qj = R(i, Jj) = R(i, Jj , τ) =: Rj . Clearly, Tb > 0
is equivalent to Q̄ < θ. Furthermore, in any case, Qj =
R(i, Jj ,min(Tj−1, τ)) ≤ Rj . Defining R̄ = (R1 + · · · +
Rb)/b, we can summarize these findings as follows:

Lemma 3. If RUNTIMEEST returns with Q̄<θ, then
∀j,Qj=Rj and Q̄=R̄. Otherwise, ∀j,Qj≤Rj and Q̄≤R̄.

Let us now turn to analyzing Algorithm 1. For this, we need
some extra notation.

4.2. Notation

Let θk, τk and bk denote the respective values of θ, τ and b
in phase k (Line 6 of Algorithm 1), noting that τk = 4θk

3δ .
Let Jj denote the jth instance (ever) sampled in Line 6 of

Algorithm 1. Note that for k large enough so that bk ≥ j,
Jj is the jth instance that is passed on to RUNTIMEEST
by Algorithm 1 in phase k (for any configuration i). Let
Ri,j,k = R(i, Jj , τk) be the τk-capped runtime of configu-
ration i on instance Jj and let R̄i,k be the average of these
values: R̄i,k = 1

bk

∑bk
j=1Ri,j,k. Similarly, let Q̄i,k be the re-

turn value of algorithm RUNTIMEEST in phase k for config-
uration i, which is also the mean of (Qi,j,k)j , the runtimes
observed at Line 5 of RUNTIMEEST. Let σ̂2

i,k be the empiri-

cal variance of (Ri,j,k)j : σ̂2
i,k = 1

bk

∑bk
j=1(Ri,j,k − R̄i,k)2.

4.3. Good events

Let pi,k = PrJ∼Γ (R(i, J) > τk) denote the probability
that configuration i does not finish on instance j in time τk.
Next we define two events that ensure that the algorithm
works well. First, let

E1,i,k = {Q̄i,k = θk} ∪ {pi,k ≤ δ};

if E1,i,k holds then if Algorithm 1 returns, the probability
that the corresponding configuration fails to solve a random
task within τk time is small (note that Q̄i,k ≤ θk).

The next event guarantees that the average capped running
time is close to its expectation: let

E2,i,k = {|R̄i,k −Rτk(i)| ≤ Ci,k}
with

Ci,k = σ̂i,k

√
2 log(6nk(k+1)

ζ )

bk
+

3τk log( 6nk(k+1)
ζ )

bk
.

The main result of this section is to show that E1,i,k and
E2,i,k hold with high probability for all i and k simultane-
ously:

Lemma 4. Let E =
⋂
i∈{1,...,n},k∈Z+

(E1,i,k ∩ E2,i,k).
Then, Pr(E) ≥ 1− ζ.

To prove the lemma, we individually bound the probabilities
that the events do not hold:

Lemma 5. Pr(Ec1,i,k) ≤ ζ
2nk(k+1) .

Proof. If pi,k ≤ δ, then Pr(Ec1,i,k) = 0 and the state-
ment holds trivially. For the rest of this proof, we as-
sume that pi,k > δ. From the algorithm, we have that
bk ≥ 32

δ log( 2nk(k+1)
ζ ). Define Bi,j,k as the Bernoulli ran-

dom variable indicating whether configuration i on input Jj
takes more time than τk to finish (value 1), or not (value 0).
For δ̂i,k = 1

bk

∑bk
j=1Bi,j,k, observe that E(δ̂i,k) = pi,k. If

the algorithm returns with Q̄i,k < θ, as necessary for event
Ec1,i,k, then R̄i,k = Q̄i,k according to Lemma 3. Noting that
Bi,j,k = I [Ri,j ≥ τk], we have 4θ

3δ

∑
j Bi,j,k ≤

∑
j Ri,j

(since τk = 4θ
3δ ). Therefore, 4θ

3δ δ̂i,k ≤ R̄i,k = Q̄i,k < θ, so
δ̂i,k ≤ 3

4δ.
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Applying a Chernoff bound on the bk independent Bernoulli
random variables Bi,j,k, the probability of the latter event
can be bounded, giving

Pr(Ec1,i,k) = Pr(Q̄i,k < θ) ≤ Pr

(
δ̂i,k ≤

3

4
δ

)
≤ Pr

(
δ̂i,k ≤

3

4
E(δ̂i,k)

)
≤ exp

(
−E(δ̂i,k)bk

32

)

< exp

(
− 1

32
δbk

)
≤ ζ

2nk(k + 1)
,

where the second and second to last inequalities follow from
E(δ̂i,k) > δ.

Lemma 6. Pr(Ec2,i,k) ≤ ζ
2nk(k+1) .

Proof. The samples (Ri,j,k)j are independent and identi-
cally distributed with mean R̄i,k and expectation Rτk(i).
Thus, the lemma holds by the empirical Bernstein bound (cf.
Audibert et al., 2009, Theorem 1 and Appendix A).

Now Lemma 4 follows from Lemmas 5 and 6 and the union
bound (details are given in Appendix B).

4.4. Bounding the average runtime

Note that when the algorithm finishes, Q̄i,k = R̄i,k. Hence,
in this section we focus on R̄i,k and its deviation from
its mean. In particular, we show that |Rτk(i) − R̄i,k| ≤
3
7εRτk(i) holds on event E when phase k is preterm. Here,
a phase k is called preterm if miniRτk(i) ≥ 7

16θk. The idea
is that if a phase is preterm then the best capped expected
runtime is large compared to the guess on the optimal run-
time. We then show that on E, any phase executed by the
algorithm is preterm.

Since on E, |Rτk(i) − R̄i,k| ≤ Ci,k by the definition of
E, we need to bound Ci,k. We start with a bound on the
empirical variance σ̂2

i,k.

Lemma 7. For any preterm phase k, σ̂2
i,k ≤ 32

21δ (R̄i,k +

Rτk(i))2.

Proof. First we show that for any c > 0,

σ̂2
i,k ≤ c

(
R̄i,k +

τk
2c

)2

. (1)

Notice that σ̂2
i,k = 1

bk

∑bk
j=1(Ri,j,k − R̄i,k)2 ≤

1
bk

∑bk
j=1R

2
i,j,k ≤ 1

bk

∑bk
j=1 τk Ri,j,k = τk R̄i,k because

R̄i,k ≤ τk by definition. Now (1) follows from the obvious
R̄i,kτk ≤ c

(
R̄i,k + τk

2c

)2
.

By the assumption on k, θk ≤ 16
7 Rτk(i). Since τk =

4θk
3δ , this means that τk ≤ 64

21δRτk(i). Thus, apply-
ing (1) with c = 32

21δ completes the proof as σ̂2
i,k ≤

32
21δ

(
R̄i,k + 21δ

64 τk
)2 ≤ 32

21δ

(
R̄i,k +Rτk(i)

)2
.

Combining the above result with the upper bound τk =
4θk
3δ ≤

64
21δRτk(i), which holds for any preterm phase k,

simple algebra yields the following bound on Ci,k (the full
proof is given in Appendix C):6

Lemma 8. For any preterm phase k, it holds that Ci,k ≤
ε
3 (R̄i,k +Rτk(i)).

Now we give the promised bound on |Rτk(i)− R̄i,k|.
Lemma 9. Assume E holds and Ci,k ≤ ε

3 (R̄i,k +Rτk(i)).
Then, |Rτk(i)− R̄i,k| ≤ 3

7εRτk(i) for all configurations i.

Proof. Let us define x such that R̄i,k = (1 + x)Rτk(i). Be-
cause E2,i,k holds, |x|Rτk(i) = |Rτk(i)− R̄i,k| ≤ Ci,k ≤
ε
3 (R̄i,k +Rτk(i)) = ε

3 (1 + 2x)Rτk(i). So |x| ≤ ε
3 (1 + 2x).

If x < 0, then x ≥ − ε/3
1+2ε/3 > − 3

7ε. If x ≥ 0, then

x ≤ ε/3
1−2ε/3 ≤

3
7ε because ε ≤ 1

3 .

In the analysis of the correctness and the running time of
the algorithm, we only need the slightly weaker corollary
of Lemma 8 and Lemma 9 (which also holds for another
variant of our algorithm, as opposed to Lemma 8):

Corollary 10. Assume E holds and phase k is preterm.
Then, for each i, if R̄i,k < θk, then |Rτk(i) − R̄i,k| ≤
3
7εRτk(i); otherwise, if R̄i,k≥θk, then θk< (1+ 3

7ε)Rτk(i).

4.5. Correctness and runtime

In this section we show that Algortihm 1 returns an (ε, δ)-
optimal configuration, and give an upper bound on its run-
ning time. First we show the following result promised
earlier:

Lemma 11. If E holds then every phase k executed is
preterm.

Proof. The first phase is preterm as 7
16θ1 = κ0 ≤ Rτ1(i).

For a phase k ≥ 2 that is executed, since the algorithm
did not return in phase k − 1, by Lemma 3, R̄i,k−1 ≥
Q̄i,k−1 = θk−1. If E holds and phase k − 1 was preterm,
by Corollary 10, θk−1 < (1 + 3

7ε)Rτk−1
(i). Moreover,

7
16θk = 7

8θk−1 ≤ 7
8 (1+ 3

7ε)Rτk−1
(i) ≤ Rτk−1

(i) ≤ Rτk(i),

since ε ≤ 1
3 . By induction, any phase executed is preterm.

Lemma 12. If E holds and Algorithm 1 returns with a
configuration I in phase K, then I is (ε, δ)-optimal.

Proof. We prove the statement by contradiction. Thus, as-
sume I is (ε, δ)-suboptimal. At stopping, Q̄I,K < θK ,
hence on E, pI,K = PrJ∼Γ(R(I, J) > τK) ≤ δ must hold.

6The multiplicative constant in the proof is not optimized care-
fully to promote simplicity. Nevertheless, in our experiments the
empirical effect of this constant is negligible.



LEAPSANDBOUNDS: A Method for Approximately Optimal Algorithm Configuration

Since I is (ε, δ)-suboptimal, it follows that there exists an in-
stance j such thatRτK (I) > (1+ε)R(j) > (1+ε)RτK (j).
Take such an index j. Since Algorithm 1 returned I instead
of j, Q̄I,K ≤ Q̄j,K . By Lemma 3, θk > Q̄I,K = R̄I,K and
R̄j,K ≥ Q̄j,K . Applying Corollary 10 and Lemma 11, if
R̄j,K < θk, then (1+ 3

7ε)RτK (j) ≥ R̄j,K ≥ Q̄j,K ≥ Q̄I,K .
Otherwise, (1 + 3

7ε)Rτk(i) ≥ θk ≥ Q̄I,K . Using this,

RτK (j)(1 + 3
7ε) ≥ Q̄I,K = R̄I,K > RτK (I)(1− 3

7ε)

> RτK (j)(1 + ε)(1− 3
7ε).

Therefore, 1 + 3
7ε > (1 + ε)(1 − 3

7ε) which leads to a
contradiction since ε ≤ 1

3 .

Theorem 13. Algorithm 1 identifies an (ε, δ)-optimal solu-

tion in time O
(

OPT n
ε2δ log(n log OPT

ζ )
)

with probability

at least 1− ζ, where OPT = miniR(i).

Proof. By Lemma 4, E holds with probability at least 1− ζ .
The rest of the proof assumes that E holds.

Let i∗ = argminiR(i). If θk ≥ (1 + 3
7ε)OPT ≥ (1 +

3
7ε)Rτk(i∗), then only the first case of Corollary 10 can hold.
Together with Lemma 11, we have that Q̄i∗,k ≤ R̄i∗,k ≤
(1 + 3

7ε)Rτk(i∗) ≤ θk, so Algorithm 1 terminates for θk ≥
(1 + 3

7ε)OPT. Let the total number of phases of the outer
loop of Algorithm 1 be L. Then L = O(log OPT).

The for loop on Line 7 of Algorithm 1 adds a fac-
tor of n to the runtime. By Lemma 2, calling algo-
rithm RUNTIMEEST on Line 8 adds a factor of bkθk to
the runtime. Now bk ≤

⌈(
44 log(6nL(L+1)

ζ ) 1
δε2

)⌉
=

O
(

1
ε2δ log( 6n log2 OPT

ζ )
)

= O
(

1
ε2δ log( 6n log OPT

ζ )
)

, so

substituting θk = 16
7 κ02k, the total runtime becomes

O


⌈
log2

(
(1+ 3

7 ε)
OPT
κ0

)⌉∑
k=1

κ02k · n
ε2δ

log

(
6n log OPT

ζ

)
= O

(
OPT

n

ε2δ
log

(
n log OPT

ζ

))
.

By Lemma 12, when the algorithm returns, it returns with
an (ε, δ)-optimal configuration.

5. Optimizing RUNTIMEEST

Our runtime analysis presented in the previous section used
a worst-case upper bound for σ̂i,k. Some instances may
allow faster runtimes if we modify RUNTIMEEST to stop
earlier in scenarios where the empirical variance is lower
than this worst case bound. To do this, building on the
approach of Mnih et al. (2008), we change the stopping
rules of algorithm RUNTIMEEST and add two more rules as

Algorithm 3 Stopping rules

1: Q̄← 1
j

∑j
m=1Qm

2: σ̂2 ← 1
j

∑j
m=1

(
Qm − Q̄

)2
3: dj,k ← 4nk(k + 1)j(j + 1)/ζ

4: c←
√
σ̂2 2 log(3dj,k)

j +
3τ log(3dj,k)

j

5: LB← Q̄− c
6: if T = 0 then . Stop if overall budget zero
7: return θ
8: end if
9: if j = b then . Stop after b = |J | samples

10: return Q̄ . Return mean of Q
11: end if
12: if (1 + 3

7ε)LB ≥ θ and Q̄ > θ then . LB too large
13: return θ
14: end if
15: if j ≥

⌈
32
δ log dj,k

⌉
and c ≤ ε

3

(
Q̄+ LB

)
then

16: return Q̄ . Return mean of Q
17: end if

given in Algorithm 3. The code shown here should replace
Lines 8–12 of RUNTIMEEST.

We outline a proof sketch that this algorithm is still correct
and has the same runtime bound. We define the running
averages in iteration j of RUNTIMEEST as Q̄i,j,k and R̄i,j,k.
As before, we define an event, as a union of other events,
that guarantees that the empirical estimates behave well. We
keep the previously defined events E1,i,k and E2,i,k; note
that E1,i,k corresponds to the estimate Q̄i,b,k. However, we
need a similar event to E1,i,k for all iterations j: E′i,j,k =

{Q̄i,k ≥ θk} ∪ {pi,k ≤ δ} ∪ {j <
⌈

32
δ log dj,k

⌉
}.

Let E =
⋂
i∈{1,...,n},j,k∈Z+

(
E1,i,k ∩ E2,i,k ∩ E′i,j,k

)
.

Similarly to the previous section, it is easy to show that
Pr(E) ≥ 1 − 3ζ/2. If E holds and the algorithm returns
with an average runtime less than θk, then E1,i,k and E′i,j,k
guarantee that Pr(R(i, j) > τk) ≤ δ (independently of
which stopping condition was activated). Since the original
stopping rule is still in place, the runtime of algorithm RUN-
TIMEEST with the additional stopping rules is still O(bkθk).
Similarly, it is easy to verify that Lemma 3 still holds.

Furthermore, by a slight modification of Theorem 2 of Mnih
(2008), one can show that with probability at least 1− ζ/2,
|Rτk(i) − R̄i,j,k| ≤ ci,j,k holds for all i, j, k, and ci,j,k ≤
ε
3

(
Q̄i,j,k + LBi,j,k

)
≤ ε

3

(
R̄i,j,k +Rτk(i)

)
holds7 for all

j ≥ C·max

(
σ2
i,k

ε2R2
τk

(i)
,

τk
εRτk(i)

)(
log

1

ζ ′
+ log

1

εRτk(i)

)
,

whereC is a universal constant, and Q̄i,j,k ≤ R̄i,j,k. Denote

7Here, Lemma 3 was used additionally in the last inequality.
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this event by E′; then Pr(E′) ≥ 1− ζ/2.8

Applying Lemma 9, E′ also implies that

|Rτk(i)− R̄i,j,k| ≤ 3
7εRτk(i).

Thus, if E ∪ E′ holds, then Corollary 10 holds: if Algo-
rithm 3 returns either because it went through all the bk
samples or because of Line 12, then |Rτk(i) − R̄i,k| ≤
3
7εRτk(i), which implies the first part of the corollary; oth-
erwise Algorithm 3 returns in line 10, implying that the
algorithm returns with θk and (1 + 3

7ε)Rτk > θk. Then the
runtime bound and the correctness guarantee of Theorem 13
follows as before.

On the other hand, if the variances of the runtimes over
instances are low enough, it is possible to prove an im-
proved runtime bound for the whole algorithm. For
ζ ′ = ζ

4nk(k+1) , there exists a constant C such that if

j ≥ C · 1
δ

(
log 1

δ + log 1
ζ′

)
, then j ≥

⌈
32
δ log dj,k

⌉
holds.

Together with the previous lower bound on j and by upper
bounding τk ≤ 64

21δRτk(i), by the definition of a preterm
phase (see Lemma 8), with probability at least 1− 2ζ , RUN-
TIMEEST evaluates at most

C·max

(
σ2
i,k

ε2R2
τk

(i)
,

1

εδ
,

1

δ
log

1

δ

)(
log

1

ζ ′
+ log

1

εRτk(i)

)
samples in any phase k for configuration i before the
stopping conditions on Line 15 are be satisfied. This
bound is usually much lower than the previous bk =⌈
44 log

(
6nk(k+1)

ζ

)
1
δε2

⌉
: if the variance of runtimes is

sufficiently low, this scales as ε−1 rather than ε−2 (the
δ−1 log δ−1 term is negligible).

Mnih et al. (2008) also describe EBGStop, a slightly im-
proved version of empirical Bernstein stopping, which ap-
plies Bernstein inequalities to bound the means of an ex-
ponentially increasing number of samples. This allows us
to effectively replace log 1

εRτk (i) with log log 1
εRτk (i) in the

bound presented above. We use this version of the algorithm
in our experiments. For completeness, the pseudocode of
this version is given in Appendix D.

6. Experiments
To run experiments, we gathered a benchmark set of run-
times of different configurations on generated SAT prob-
lems. We used minisat9 (Sorensson & Een, 2005) as
the SAT solver. The SAT problems were generated using
CNFuzzDD,10 of which only those 20118 were kept that

8The original event behind E′ guarantees, via Bernstein’s in-
equality, that the estimates for the means and variances are accurate
enough.

9We used version 2013/09/25. http://minisat.se/
10http://fmv.jku.at/cnfuzzdd/
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Figure 1. Average of runtimes, capped at the timeout, disregarding
the worst δ fraction of samples. Configurations on the x-axis are
sorted according to this value. Note the log scale on the y-axis.
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Figure 2. Histogram of runtimes of configuration 898 over the
instances in our data. Note the log scale on the x-axis.

took at least about a second to solve for minisat with the
default parameters. This was done so that the data reflects
what happens when instances are nontrivial to solve. 972
different configurations were tested for minisat, which
are described in Appendix E. The solver minisat was run
with each configuration and instance combination. The unit
of computation, κ0, is one second of CPU time, and the
experiments were ran with a timeout of 15 CPU minutes.11

To get a sense of this data, the capped mean runtimes Rτ (i)
for each configuration are shown in Fig. 1 in a sorted order.
Here, the timeout τ was set separately for each configura-
tion so that the tail probability PrJ∼Γ(R(i, J) > τ) was
approximately δ; the running times are shown for different
values of δ (δ = 0 corresponds to the mean runtimes). From
this, we can see a large difference between configurations.
For a particularly “fast” configuration, Fig. 2 shows the
distribution of runtimes on different instances. Note that
because of the global time limit for executions, the final
bucket includes runs that may take arbitrarily long.

The benchmark set of runtimes is used to quickly simulate
runs of Structured Procrastination and LEAPSANDBOUNDS,
as follows. A simulated environment acts as an oracle,

11Our measurements have been scaled such that the unit of com-
putation roughly corresponds to a second on commodity hardware
as of 2018 rather than our machines. In this unit, about 83 CPU
years were spent in total to generate this data.
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Figure 3. Amount of time LEAPSANDBOUNDS runs each configu-
ration compared to Structural Procrastination on a log scale, in an
environment that allows resuming runs.

returning precomputed values of R(i, j, τ) when queried,
accumulating the total time the algorithm under test would
have run for.

Both LEAPSANDBOUNDS and Structured Procrastination
often run the same configuration on the same instance with
an increased time limit. Thus, both algorithms can benefit
largely when the environment allows pausing and resuming
of executions. This can be implemented either by saving
the state of the execution when the actual runtime limit is
reached, or by reloading the state from automatically saved
checkpoints. However, resuming execution comes with
an additional memory requirement, and may not always
be feasible or preferable to restarts. Thus, we report our
experiments for both cases.

After each phase, in Line 13 of LEAPSANDBOUNDS, we
double θ. In fact, this multiplier is arbitrary, and changing it
only affects the worst-case runtime up to a constant factor.
In practice, a smaller multiplier, making smaller steps in θ,
typically overshoots the best average runtime less, thereby
decreasing the total runtime for environments that allow
resuming runs. On the other hand, a smaller multiplier leads
to more phases, introducing more overheads in resuming
jobs and increasing the total runtime if resuming is not
allowed by rerunning portions of jobs more frequently. The
value of the multiplier can be optimized by taking these
effects into account, e.g., by measuring the overheads related
to switching and resuming jobs. For simplicity, and since
this information is not included in our benchmark dataset,
in the experiments below the value of the multiplier was set
to 1.25 (see Appendix F for more details).

We simulated LEAPSANDBOUNDS and Structured Procras-
tination on our benchmark dataset with parameters ε = 0.2,
δ = 0.2, and ζ = 0.1. Fig. 3 shows that LEAPSAND-
BOUNDS runs every configuration for a significantly shorter
amount of time than Structured Procrastination. The config-
urations are sorted in the same order as in Fig. 1, for δ = 0.2.
Paradoxically, both algorithms run the faster configurations
significantly longer. This is because both algorithms quickly

reject slow configurations, whereas they both run fast con-
figurations many more times to ensure (ε, δ)-optimality. In
total, LEAPSANDBOUNDS runs for 933.50 CPU days in the
environment that does not support resuming execution, and
368.50 days in one that does. The corresponding runtime
measurements for Structured Procrastination are 1850.46
and 1169.36, respectively. Both algorithms return with con-
figuration 898, which has the best average runtime below a
δ = 0.2 quantile, out of all configurations.

7. Parallelization
One benefit of the simplicity of LEAPSANDBOUNDS is that
it is embarrassingly parallel. This is due to the fact that there
is little dependency between the runtime measurements that
need to be carried out. In phase k, when θk = 16

7 κ02k, runs

of the form R
(
i, j, κ02k+6

21δ

)
are carried out. The core of

our argument is that this parallelizes over i, j, and k, but
there are three further considerations. First, to implement
the overall runtime bound of RUNTIMEEST, for any fixed
i and k, the runs of R

(
i, j, κ02k+6

21δ

)
should be terminated

once the summed running times of these reach the overall
budget bkθk. This could be implemented either via inter-
process communication or by starting these runs at once on p
processors and terminating them after bkθk/p time. Second,
a new phase k of Algorithm 1 should only be started once
Q̄i,k is available for all i ∈ N . Thus, runs should be started
in increasing order of k, for each i. Third, the optional
empirical Bernstein stopping, as described in Section 5,
adds a dependency between runs of different j. This could
be resolved either by not parallelizing over j, or by running
only a small number of parallel runs over j and checking
the stopping conditions after they finish.

8. Conclusions and Future Work
We have introduced an algorithm applying empirical Bern-
stein stopping with the goal of finding approximately opti-
mal configurations, and provided guarantees for its worst-
case runtime as well as correctness. Our runtime guarantee
is tighter than that of Structured Procrastination, which,
to our knowledge, is the only other method solving this
problem. Empirical evaluations suggest that LEAPSAND-
BOUNDS outperforms Structured Procrastination in realistic,
non-adversarial scenarios too, which depends crucially on
leveraging the gap between worst-case and realistic scenar-
ios by using empirical Bernstein stopping.

The optimality of the configuration returned by LEAPSAND-
BOUNDS is, in fact, with respect to configurations with
timeout τK for the final phase K. An important direction
of future work is to get guarantees with respect to the best
configuration for the fastest (1− δ′)-proportion of instances
for any δ′ < δ.
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rattari, M. The irace package, iterated race for automatic
algorithm configuration. Technical report, Technical Re-
port TR/IRIDIA/2011-004, IRIDIA, Université Libre de
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