
Towards Fast Computation of Certified Robustness for ReLU Networks

A. Hardness
In this section we show that finding the minimum adversarial distortion with a certified approximation ratio is hard. We first
introduce some basic definitions and theorems in Section A.1. We provide some backgrounds about in-approximability
reduction in Section A.2. Section A.3 gives a warmup proof for boolean case and then Section A.4 provides the proof of our
main hardness result (for network with real inputs).

A.1. Definitions

We provide some basic definitions and theorems in this section. First, we define the classic 3SAT problem.
Definition A.1 (3SAT problem). Given n variables and m clauses in a conjunctive normal form CNF formula with the size
of each clause at most 3, the goal is to decide whether there exists an assignment to the n Boolean variables to make the
CNF formula to be satisfied.

For the 3SAT problem in Definition A.1, we introduce the Exponential Time Hypothesis (ETH), which is a common concept
in complexity field.
Hypothesis A.2 (Exponential Time Hypothesis (ETH) (Impagliazzo et al., 1998)). There is a δ > 0 such that the 3SAT
problem defined in Definition A.1 cannot be solved in O(2δn) time.

ETH had been used in many different problems, e.g. clustering (Ailon et al., 2018; Cohen-Addad et al., 2018), low-rank
approximation (Razenshteyn et al., 2016; Song et al., 2017a;b; 2018). For more details, we refer the readers to a survey
(Lokshtanov et al., 2013).

Then we define another classical question in complexity theory, the SET-COVER problem, which we will use in our proof.
The exact SET-COVER problem is one of Karp’s 21 NP-complete problems known to be NP-complete in 1972:
Definition A.3 (SET-COVER). The inputs are U, S; U = {1, 2, · · · , n} is a universe, P (U) is the power set of U , and
S = {S1, · · · , Sm} ⊆ P (U) is a family of subsets, ∪j∈[m]Sj = U . The goal is to give a YES/NO answer to the follow
decision problem:

Does there exist a set-cover of size t, i.e., ∃C ⊆ [m], such that ∪j∈CSj = U with |C| = t?

Alternatively, we can also state the problem as finding the minimum set cover size t0, via a binary search on t using the
answers of the decision problem in A.3. The Approximate SET-COVER problem is defined as follows.
Definition A.4 (Approximate SET-COVER). The inputs are U, S; U = {1, 2, · · · , n} is a universe, P (U) is the power
set of U , and S = {S1, · · · , Sm} ⊆ P (U) is a family of subsets, ∪j∈[m]Sj = U . The goal is to distinguish between the
following two cases:
(I): There exists a small set-cover, i.e., ∃C ⊆ [m], such that ∪j∈CSj = U with |C| ≤ t.
(II): Every set-cover is large, i.e., every C ⊆ [m] with ∪j∈CSj = U satisfies that |C| > αt, where α > 1.

An oracle that solves the Approximate SET-COVER problem outputs an answer tU ≥ t0 but tU ≤ αt0 using a binary
search, where tU is an upper bound of t0 with a guaranteed approximation ratio α. For example, we can use a greedy (rather
than exact) algorithm to solve the SET-COVER problem, which cannot always find the smallest size of set cover t0, but the
size tU given by the greedy algorithm is at most α times as large as t0.

In our setting, we want to investigate the hardness of finding the lower bound with a guaranteed approximation ration, but an
approximate algorithm for SET-COVER gives us an upper bound of t0 instead of an lower bound of t0. However, in the
following proposition, we show that finding an lower bound with an approximation ratio of α is as hard as finding an upper
bound with an approximation ratio of α.
Proposition A.5. Finding a lower bound tL for the size of the minimal set-cover (that has size t0) with an approximation
ratio α is as hard as finding an upper bound tU with an approximation ratio α.

Proof. If we find a lower bound tL with t0
α ≤ tL ≤ t0, by multiplying both sides by α, we also find an upper bound

tU = αtL which satisfies that t0 ≤ tU ≤ αt0. So finding an lower bound with an approximation ratio α is at least as hard as
finding an upper bound with an approximation ratio α. The converse is also true.

SET-COVER is a well-studied problem in the literature. Here we introduce a theorem from (Raz & Safra, 1997; Alon et al.,
2006; Dinur & Steurer, 2014) which implies the hardness of approximating SET-COVER.



Towards Fast Computation of Certified Robustness for ReLU Networks

Theorem A.6 ((Raz & Safra, 1997; Alon et al., 2006; Dinur & Steurer, 2014)). Unless NP = P, there is no polynomial
time algorithm that gives a (1− o(1)) lnn-approximation to SET-COVER problem with universe size n.

We now formally define our neural network robustness verification problems.

Definition A.7 (ROBUST-NET(R)). Given an n hidden nodes ReLU neural network F (x) : Rd → R where all weights
are fixed, for a query input vector x ∈ Rd with F (x) ≤ 0. The goal is to give a YES/NO answer to the following decision
problem:

Does there exist a y with �x− y�1 ≤ r such that F (y) > 0?

With an oracle of the decision problem available, we can figure out the smallest r (defined as r0) such that there exists a
vector y with �x− y�1 ≤ r and F (y) > 0 via a binary search.

We also define a binary variant of the ROBUST-NET problem, denoted as ROBUST-NET(B). The proof for this variant is
more straightforward than the real case, and will help the reader understand the proof for the real case.

Definition A.8 (ROBUST-NET(B)). Given an n hidden nodes ReLU neural network F (x) : {0, 1}d → {0, 1} where
weights are all fixed, for a query input vector x ∈ {0, 1}d with F (x) = 0. The goal is to give a YES/NO answer to the
following decision problem:

Does there exist a y with �x− y�1 ≤ r such that F (y) = 1?

Then, we define the approximate version of our neural network robustness verification problems.

Definition A.9 (Approximate ROBUST-NET(B)). Given an n hidden nodes ReLU neural network F (x) : {0, 1}d → {0, 1}
where weights are all fixed, for a query input vector x ∈ {0, 1}d with F (x) = 0. The goal is to distinguish the following
two cases :
(I): There exists a point y such that �x− y�1 ≤ r and F (y) = 1.
(II): For all y satisfies �x− y�1 ≤ αr, the F (y) = 0, where α > 1.

Definition A.10 (Approximate ROBUST-NET(R)). Given an n hidden nodes ReLU neural network F (x) : Rd → R
where weights are all fixed, for a query input vector x ∈ Rd with F (x) ≤ 0. The goal is to distinguish the following two
cases :
(I): There exists a point y such that �x− y�1 ≤ r and F (y) > 0.
(II): For all y satisfies �x− y�1 ≤ αr, the F (y) ≤ 0, where α > 1.

As an analogy to SET-COVER, an oracle that solves the Approximate ROBUST-NET(R) problem can output an answer
r ≥ r0 but r ≤ αr0, which is an upper bound of r0 with a guaranteed approximation ratio α. With a similar statement as in
Proposition A.5, if we divide the answer r by α, then we get a lower bound r� = r

α where r� ≥ r0
α , which is a lower bound

with a guaranteed approximation ratio. If we can solve Approximate ROBUST-NET(R), we can get a lower bound with a
guaranteed approximation ratio, which is the desired goal of our paper.

A.2. Background of the PCP theorem

The famous Probabilistically Checkable Proofs (PCP) theorem is the cornerstone of the theory of computational hardness
of approximation, which investigates the inherent difficulty in designing efficient approximation algorithms for various
optimization problems.2 The formal definition can be stated as follows,

Theorem A.11 ((Arora & Safra, 1998; Arora et al., 1998)). Given a SAT formula φ of size n we can in time polynomial in
n construct a set of M tests satisfying the following:
(I) : Each test queries a constant number d of bits from a proof, and based on the outcome of the queries it either acceptes or
reject φ.
(II) : (Yes Case / Completeness) If φ is satisfiable, then there exists a proof so that all tests accept φ.
(III) : (No Case / Soundness) If φ is not satifiable, then no proof will cause more than M/2 tests to accept φ.

Note that PCP kind of reduction is slightly different from NP reduction, for more examples (e.g. maximum edge biclique,
sparsest cut) about how to use PCP theorem to prove inapproximibility results, we refer the readers to (Ambühl et al., 2011).

2https://en.wikipedia.org/wiki/PCP_theorem



Towards Fast Computation of Certified Robustness for ReLU Networks

A.3. Warm-up

We state our hardness result for ROBUST-NET(B) (boolean inputs case) in this section. The reduction procedure for
network with boolean inputs is more straightforward and easier to understand than the real inputs case.

Theorem A.12. Unless NP = P, there is no polynomial time algorithm to give a (1 − o(1)) lnn-approximation to
ROBUST-NET(B) problem (Definition A.9) with n hidden nodes.

Proof. Consider a set-cover instance, let S denote a set of sets {S1, S2, · · · , Sd} where sj ⊆ [n], ∀j ∈ [d].

For each set Sj we create an input node uj . For each element i ∈ [n], we create a hidden node vi. For each i ∈ [n] and
j ∈ [d], if i ∈ Sj , then we connect uj and vi. We also create an output node w, for each i ∈ [n], we connect node vi and
node w.

Let 1i∈Sj
denote the indicator function that it is 1 if i ∈ Sj and 0 otherwise. Let Ti denote the set that Ti = {j | i ∈

Sj , ∀j ∈ [d]}. For each i ∈ [n], we define an activation function φi satisfies that

φi =

�
1, if

�
j∈Ti

uj ≥ 1,

0, otherwise.

Since uj ∈ {0, 1}, φi can be implemented in this way using ReLU activations:

φi = 1−max


0, 1−

�

j∈Ti

uj


 .

Note that
�d

j=1 1i∈Sj
=

�d
j=1 uj , because uj = 1 indicates choosing set Sj and uj = 0 otherwise.

For final output node w, we define an activation function ψ satisfies that

ψ =

�
1, if

�n
i=1 vi ≥ n,

0, otherwise.

Since vi ∈ [n], ψ can be implemented as

ψ = max

�
0,

n�

i=1

vi − n+ 1

�
.

We use vector x to denote {0}d vector and it is to easy to see that F (x) = 0. Let α > 1 denote a fixed parameter. Also, we
have F (y) > 0 if and only if C = {j|yj = 1} is a set-cover. According to our construction, we can have the following two
claims,

Claim A.13 (Completeness). If there exists a set-cover C ⊆ [d] with ∪j∈CSj = [n] and |C| ≤ r, then there exists a point
y ∈ {0, 1}d such that �x− y�1 ≤ r and F (y) > 0.

Claim A.14 (Soundness). If for every C ⊆ [d] with ∪j∈CSj = U satisfies that |C| > α · t, then for all y ∈ {0, 1}d satisfies
that �x− y�1 ≤ αr, F (y) ≤ 0 holds.

Therefore, using Theorem A.11, Theorem A.6, Claim A.13 and Claim A.14 completes the proof.

A.4. Main result

With the proof for ROBUST-NET(B) as a warm-up, we now prove our main hardness result for ROBUST-NET(R) in this
section.

Theorem A.15. Unless NP = P, there is no polynomial time algorithm to give an (1 − o(1)) lnn-approximation to
ROBUST-NET(R) problem (Definition A.10) with n hidden nodes.



Towards Fast Computation of Certified Robustness for ReLU Networks

Proof. Consider a set-cover instance, let S denote a set of sets {S1, S2, · · · , Sd} where Sj ⊆ [n], ∀j ∈ [d]. For each set Sj

we create an input node uj . For each j ∈ [d], we create a hidden node tj and connect uj and tj .

For each element i ∈ [n], we create a hidden node vi. For each i ∈ [n] and j ∈ [d], if i ∈ Sj , then we connect uj and vi.
Finally, we create an output node w and for each i ∈ [n], we connect node vi and node w.

Let δ = 1/d. For each j ∈ [n], we apply an activation function φ1,j on tj such that

φ1,j = −max(0, δ − uj) + max(0, uj − 1 + δ)

It is easy to see that

tj = φ1,j =





uj − δ if uj ∈ [0, δ]

uj − (1− δ) if uj ∈ [1− δ, 1]

0 otherwise .

Let Ti denote the set that Ti = {j | i ∈ Sj , ∀j ∈ [d]}. For each i ∈ [n], we need an activation function φ2,i on node vi
which satisfies that

φ2,i ∈
�
[−δ, 0], if ∀j ∈ Ti, tj ∈ [−δ, 0],

[0, δ], if ∃j ∈ Ti, tj ∈ [0, δ].

This can be implemented in the following way,

φ2,i = max
j∈Ti

tj .

For the final output node w, we define it as
w = min

i∈[n]
vi.

We use vector x to denote {0}d vector and it is to easy to see that F (x) = −δ < 0. Let α > 1 denote a fixed parameter.

According to our construction, we can have the following two claims.

Claim A.16 (Completeness). If there exists a set-cover C ⊆ [d] with ∪j∈CSj = [n] and |C| ≤ r, then there exists a point
y ∈ [0, 1]d such that �x− y�1 ≤ r and F (y) > 0.

Proof. Without loss of generality, we let the set cover to be {S1, S2, ..., Sr}. Let y1 = y2 = · · · = yr = 1 and
yr+1 = yr+2 = ... = yd = 0. By the definition of tj , we have t1 = t2 = · · · = tr = δ. Since {S1, S2, · · · , Sr} is a
set-cover, we know that vi = δ for all i ∈ [n]. Then F (y) = w = mini∈[n] vi = δ > 0. Since we also have �y�1 = r, the
adversarial point is found.

Claim A.17 (Soundness). If for every C ⊆ [d] with ∪j∈CSj = U satisfies that |C| > α · r, then for all y ∈ [0, 1]d satisfies
that �x− y�1 ≤ αr(1− 1/d), F (y) ≤ 0 holds.

Proof. Proof by contradiction. We assume that there exists y such that F (y) > 0 and �y�1 ≤ αr(1−1/d). Since F (y) > 0,
we have for all i, vi > 0. Thus there exists j ∈ Ti such that tj > 0. Let π : [n] → Q denote a mapping (Q ⊆ [d] will be
decided later). This means that for each i ∈ [n], there exists j ∈ Ti, such that 1− δ < yj ≤ 1, and we let π(i) denote that j.

We define set Q ⊆ [d] as follows

Q = {j | ∃i ∈ [n], s.t. π(i) = j ∈ Ti and tj > 0}.

Since
�

j∈[d] |yj | = �y�1 ≤ αr(1− 1/d), we have

�

j∈Q

|yj | ≤
�

j∈[d]

|yj | ≤ αr(1− 1/d),



Towards Fast Computation of Certified Robustness for ReLU Networks

where the first step follows by |Q| ≤ d.

Because for all j ∈ Q, |yj | > 1− δ = 1− 1/d, we have

|Q| ≤ αr(1− 1/d)

(1− 1/d)
= α · r.

So {Sj}j∈Q is a set-cover with size less than or equal to α · r, which is a contradiction.

Therefore, using Theorem A.11, Theorem A.6, Claim A.16 and Claim A.17 completes the proof.

By making a stronger assumption of ETH, we can have the following stronger result which excludes all 2o(n
c) time

algorithms, where c > 0 is some fixed constant:

Corollary A.18. Assuming Exponential Time Hypothesis (ETH, see Hypothesis A.2), there is no 2o(n
c) time algorithm that

gives a (1− o(1)) lnn-approximation to ROBUST-NET problem with n hidden nodes, where c > 0 is some fixed constant.

Proof. It follows by the construction in Theorem A.15 and (Moshkovitz, 2012a;b).

Note that in (Moshkovitz, 2012a), an additional conjecture, Projection Games Conjecture (PGC) is required for the proof,
but the result was improved in (Moshkovitz, 2012b) and PGC is not a requirement any more.



Towards Fast Computation of Certified Robustness for ReLU Networks

B. Proof of Theorem 3.5
For a m-layer ReLU network, assume we know all the pre-ReLU activation bounds l(k) and u(k), ∀k ∈ [m − 1] for a
m-layer ReLU network and we want to compute the bounds of the the j th output at m th layer.

The j th output can be written as

fj(x) =

nm−1�

k=1

W
(m)
j,k [φm−1(x)]k + b

(m)
j , (15)

=

nm−1�

k=1

W
(m)
j,k σ(W

(m−1)
k,: φm−2(x) + b

(m−1)
k ) + b

(m)
j , (16)

=
�

k∈I+
m−1,I

−
m−1,Im−1

W
(m)
j,k σ(W

(m−1)
k,: φm−2(x) + b

(m−1)
k ) + b

(m)
j . (17)

For neurons belonging to category (i), i.e., k ∈ I+
m−1,

σ(W
(m−1)
k,: φm−2(x) + b

(m−1)
k ) = W

(m−1)
k,: φm−2(x) + b

(m−1)
k .

For neurons belonging to category (ii), i.e., k ∈ I−
m−1,

σ(W
(m−1)
k,: φm−2(x) + b

(m−1)
k ) = 0.

Finally, for neurons belonging to Category (iii), i.e., k ∈ Im−1, we bound their outputs. If we adopt the linear upper and

lower bounds in (1) and let d(m−1)
k :=

u
(m−1)
k

u
(m−1)
k −l

(m−1)
k

, we have

d
(m−1)
k (W

(m−1)
k,: φm−2(x)+b

(m−1)
k ) ≤ σ(W

(m−1)
k,: φm−2(x)+b

(m−1)
k ) ≤ d

(m−1)
k (W

(m−1)
k,: φm−2(x)+b

(m−1)
k −l

(m−1)
k ).

(18)

B.1. Upper bound

The goal of this section is to prove Lemma B.1.

Lemma B.1 (Upper bound with explicit function). Given an m-layer ReLU neural network function f : Rn0 → Rnm ,
parameters p, �, there exists two explicit functions fL : Rn0 → Rnm and fU : Rn0 → Rnm (see Definition 3.4) such that
∀j ∈ [nm],

fj(x) ≤ fU
j (x), ∀x ∈ Bp(x0, �).

Notice that (18) can be used to construct an upper bound and lower bound of fj(x) by considering the signs of the weights
W

(m)
j,k . Let fU,m−1

j (x) be an upper bound of fj(x); f
U,m−1
j (x) can be constructed by taking the right-hand-side (RHS) of



Towards Fast Computation of Certified Robustness for ReLU Networks

(18) if W(m)
j,k > 0 and taking the left-hand-side (LHS) of (18) if W(m)

j,k < 0:

fU,m−1
j (x)

=
�

k∈I+
m−1

W
(m)
j,k (W

(m−1)
k,: φm−2(x) + b

(m−1)
k ) (19)

+
�

k∈Im−1,W
(m)
j,k >0

W
(m)
j,k d

(m−1)
k (W

(m−1)
k,: φm−2(x) + b

(m−1)
k − l

(m−1)
k )

+
�

k∈Im−1,W
(m)
j,k <0

W
(m)
j,k d

(m−1)
k (W

(m−1)
k,: φm−2(x) + b

(m−1)
k ) + b

(m)
j

=

nm−1�

k=1

W
(m)
j,k d

(m−1)
k (W

(m−1)
k,: φm−2(x) + b

(m−1)
k )−

�

k∈Im−1,W
(m)
j,k >0

W
(m)
j,k d

(m−1)
k l

(m−1)
k + b

(m)
j , (20)

=

nm−1�

k=1

W
(m)
j,k d

(m−1)
k W

(m−1)
k,: φm−2(x) (21)

+




nm−1�

k=1

W
(m)
j,k d

(m−1)
k b

(m−1)
k −

�

k∈Im−1,W
(m)
j,k >0

W
(m)
j,k d

(m−1)
k l

(m−1)
k + b

(m)
j


 ,

where we set d(m−1)
k = 1 for k ∈ I+

m−1 and set d(m−1)
k = 0 for k ∈ I−

m−1 from (19) to (20) and collect the constant terms
(independent of x) in the parenthesis from (20) to (21).

If we let A(m−1) = W(m)D(m−1), where D(m−1) is a diagonal matrix with diagonals being d
(m−1)
k , then we can rewrite

fU,m−1
j (x) into the following:

fU,m−1
j (x) =

nm−1�

k=1

A
(m−1)
j,k W

(m−1)
k,: φm−2(x) +

�
A

(m−1)
j,: b(m−1) −A

(m−1)
j,: T

(m−1)
:,j + b

(m)
j

�
(22)

=

nm−1�

k=1

A
(m−1)
j,k (

nm−2�

r=1

W
(m−1)
k,r [φm−2(x)]r) +

�
A

(m−1)
j,: b(m−1) −A

(m−1)
j,: T

(m−1)
:,j + b

(m)
j

�
(23)

=

nm−2�

r=1

nm−1�

k=1

A
(m−1)
j,k W

(m−1)
k,r [φm−2(x)]r +

�
A

(m−1)
j,: b(m−1) −A

(m−1)
j,: T

(m−1)
:,j + b

(m)
j

�
(24)

=

nm−2�

r=1

�W (m−1)
j,r [φm−2(x)]r + �b(m−1)

j . (25)

From (21) to (22), we rewrite the summation terms in the parenthesis into matrix-vector multiplications and for each
j ∈ [nm] let

T
(m−1)
k,j =

�
l
(m−1)
k if k ∈ Im−1, A

(m−1)
j,k > 0

0 otherwise

since 0 ≤ d
(m−1)
k ≤ 1, W(m)

j,k > 0 is equivalent to A
(m−1)
j,k > 0.

From (22) to (23), we simply write out the inner product W(m−1)
k,: φm−2(x) into a summation form, and from (23) to (24),

we exchange the summation order of k and r. From (24) to (25), we let

�W (m−1)
j,r =

nm−1�

k=1

A
(m−1)
j,k W

(m−1)
k,r (26)

�b(m−1)
j =

�
A

(m−1)
j,: b(m−1) −A

(m−1)
j,: T

(m−1)
:,j + b

(m)
j

�
(27)



Towards Fast Computation of Certified Robustness for ReLU Networks

and now we have (25) in the same form as (15).

Indeed, in (15), the running index is k and we are looking at the m th layer, with weights W
(m)
j,k , activation functions

φm−1(x) and bias term b
(m)
j ; in (25), the running index is r and we are looking at the m − 1 th layer with equivalent

weights �W (m−1)
j,r , activation functions φm−2(x) and equivalent bias �b(m−1)

j . Thus, we can use the same technique from
(15) to (25) and obtain an upper bound on the fU,m−1

j (x) and repeat this procedure until obtaining fU,1
j (x), where

fj(x) ≤ fU,m−1
j (x) ≤ fU,m−2

j (x) ≤ . . . ≤ fU,1
j (x).

Let the final upper bound fU
j (x) = fU,1

j (x), and now we have

fj(x) ≤ fU
j (x),

where fU
j (x) = [fU (x)]j ,

fU
j (x) = A

(0)
j,: x+ b

(m)
j +

m−1�

k=1

A
(k)
j,: (b

(k) −T
(k)
:,j )

and for k = 1, . . . , m− 1,

A(m−1) = W(m)D(m−1), A(k−1) = A(k)W(k)D(k−1),

D(0) = In0

D(k)
r,r =





u(k)
r

u
(k)
r −l

(k)
r

if r ∈ Ik
1 if r ∈ I+

k

0 if r ∈ I−
k

T
(k)
r,j =

�
l
(k)
r if r ∈ Ik, A(k)

j,r > 0

0 otherwise

B.2. Lower bound

The goal of this section is to prove Lemma B.2.

Lemma B.2 (Lower bound with explicit function). Given an m-layer ReLU neural network function f : Rn0 → Rnm ,
parameters p, �, there exists two explicit functions fL : Rn0 → Rnm and fU : Rn0 → Rnm (see Definition 3.4) such that
∀j ∈ [nm],

fL
j (x) ≤ fj(x), ∀x ∈ Bp(x0, �).

Similar to deriving the upper bound of fj(x), we consider the signs of the weights W(m)
j,k to derive the lower bound. Let

fL,m−1
j (x) be a lower bound of fj(x); f

L,m−1
j (x) can be constructed by taking the right-hand-side (RHS) of (18) if

W
(m)
j,k < 0 and taking the left-hand-side (LHS) of (18) if W(m)

j,k > 0. Following the procedure in (19) to (25) (except that

now the additional bias term is from the set k ∈ Im−1,W
(m)
j,k < 0), the lower bound is similar to the upper bound we have

derived but but replace T(m−1) by H(m−1), where for each j ∈ [nm],

H
(m−1)
k,j =

�
l
(m−1)
k if k ∈ Im−1, A

(m−1)
j,k < 0

0 otherwise.

It is because the linear upper and lower bounds in (1) has the same slope u
u−l on both sides (i.e. σ(y) is bounded by two

lines with the same slope but different intercept), which gives the same A matrix and D matrix in computing the upper



Towards Fast Computation of Certified Robustness for ReLU Networks

bound and lower bound of fj(x). This is the key to facilitate a faster computation under this linear approximation (1). Thus,
the lower bound for fj(x) is:

fL
j (x) ≤ fj(x),

where fL
j (x) = [fL(x)]j ,

fL
j (x) = A

(0)
j,: x+ b

(m)
j +

m−1�

k=1

A
(k)
j,: (b

(k) −H
(k)
:,j )

and for k = 1, . . . , m− 1,

H
(k)
r,j =

�
l
(k)
r if r ∈ Ik, A(k)

j,r < 0

0 otherwise.



Towards Fast Computation of Certified Robustness for ReLU Networks

C. Proof of Corollary 3.7
By Theorem 3.5, for x ∈ Bp(x0, �), we have fL

j (x) ≤ fj(x) ≤ fU
j (x). Thus,

fj(x) ≤ fU
j (x) ≤ max

x∈Bp(x,�)
fU
j (x), (28)

fj(x) ≥ fL
j (x) ≥ min

x∈Bp(x,�)
fL
j (x). (29)

Since fU
j (x) = A

(0)
j,: x+ b

(m)
j +

�m−1
k=1 A

(k)
j,: (b

(k) −T
(k)
:,j ),

γU
j := max

x∈Bp(x0,�)
fU
j (x) = max

x∈Bp(x0,�)

�
A

(0)
j,: x+ b

(m)
j +

m−1�

k=1

A
(k)
j,: (b

(k) −T
(k)
:,j )

�

=

�
max

x∈Bp(x0,�)
A

(0)
j,: x

�
+ b

(m)
j +

m−1�

k=1

A
(k)
j,: (b

(k) −T
(k)
:,j ) (30)

= �

�
max

y∈Bp(0,1)
A

(0)
j,: y

�
+A

(0)
j,: x0 + b

(m)
j +

m−1�

k=1

A
(k)
j,: (b

(k) −T
(k)
:,j ) (31)

= ��A(0)
j,: �q +A

(0)
j,: x0 + b

(m)
j +

m−1�

k=1

A
(k)
j,: (b

(k) −T
(k)
:,j ). (32)

From (30) to (31), we do a transformation of variable y := x−x0

� and therefore y ∈ Bp(0, 1). By the definition of dual
norm � · �∗:

�z�∗ = {sup
y

z�y | �y� ≤ 1},

and the fact that �q norm is dual of �p norm for p, q ∈ [1,∞], the term
�
maxy∈Bp(0,1) A

(0)
j,: y

�
in (31) can be expressed as

�A(0)
j,: �q in (32). Similarly,

γL
j := min

x∈Bp(x0,�)
fL
j (x) = min

x∈Bp(x0,�)

�
A

(0)
j,: x+ b

(m)
j +

m−1�

k=1

A
(k)
j,: (b

(k) −H
(k)
:,j )

�

=

�
min

x∈Bp(x0,�)
A

(0)
j,: x

�
+ b

(m)
j +

m−1�

k=1

A
(k)
j,: (b

(k) −H
(k)
:,j )

= �

�
min

y∈Bp(0,1)
A

(0)
j,: y

�
+A

(0)
j,: x0 + b

(m)
j +

m−1�

k=1

A
(k)
j,: (b

(k) −H
(k)
:,j )

= −�

�
max

y∈Bp(0,1)
−A

(0)
j,: y

�
+A

(0)
j,: x0 + b

(m)
j +

m−1�

k=1

A
(k)
j,: (b

(k) −H
(k)
:,j ) (33)

= −��A(0)
j,: �q +A

(0)
j,: x0 + b

(m)
j +

m−1�

k=1

A
(k)
j,: (b

(k) −H
(k)
:,j ). (34)

Again, from (33) to (34), we simply replace
�
maxy∈Bp(0,1) −A

(0)
j,: y

�
by � −A

(0)
j,: �q = �A(0)

j,: �q. Thus, if we use νj to

denote the common term A
(0)
j,: x0 + b

(m)
j +

�m−1
k=1 A

(k)
j,: b

(k), we have

γU
j = ��A(0)

j,: �q −
m−1�

k=1

A
(k)
j,: T

(k)
:,j + νj , (upper bound)

γL
j = −��A(0)

j,: �q −
m−1�

k=1

A
(k)
j,: H

(k)
:,j + νj . (lower bound)



Towards Fast Computation of Certified Robustness for ReLU Networks

D. Algorithms
We present our full algorithms, Fast-Lin in Algorithm 1 and Fast-Lip in Algorithm 2.

Algorithm 1 Fast Bounding via Linear Upper/Lower Bounds for ReLU (Fast-Lin)

Require: weights and biases of m layers: W(1), · · · ,W(m), b(1), · · · , b(m), original class c, target class j
1: procedure FAST-LIN(x0, p, �0)
2: Replace the last layer weights W(m) with a row vector w̄ ← W

(m)
c,: −W

(m)
j,: (see Section 3.3.3)

3: Initial � ← �0
4: while � has not achieved a desired accuracy and iteration limit has not reached do
5: l(0),u(0) ← don’t care
6: for k ← 1 to m do � Compute lower and upper bounds for ReLU unis for all m layers
7: l(k),u(k) ←COMPUTETWOSIDEBOUNDS(x0, �, p, l

(1:k−1),u(1:k−1), k)
8: if l(m) > 0 then � l(m) is a scalar since the last layer weight is a row vector
9: � is a lower bound; increase � using a binary search procedure

10: else
11: � is not a lower bound; decrease � using a binary search procedure
12: ��j ← �
13: return ��j � ��j is a certified lower bound βL

14: procedure COMPUTETWOSIDEBOUNDS(x0, �, p, l
(1:m�−1),u(1:m�−1),m�)

15: � x0 ∈ Rn0 : input data vector, p : �p norm, � : maximum �p-norm perturbation
16: � l(k),u(k), k ∈ [m�] : layer-wise bounds
17: if m� = 1 then � Step 1: Form A matrices
18: A(0) ← W(1) � First layer bounds do not depend on l(0),u(0)

19: else
20: for k ← m� − 1 to 1 do
21: if k = m� − 1 then � Construct D(m�−1),A(m�−1),H(m�−1),T(m�−1)

22: Construct diagonal matrix D(k) ∈ Rnk×nk using l(k),u(k) according to Eq. (5).
23: A(m�−1) ← W(m�)D(m�−1)

24: else � Multiply all saved A(k) by A(m�−1)

25: A(k) ← A(m�−1)A(k) � We save A(k) for next function call
26: T(k) ← 0, H(k) ← 0 � Initialize T(k) and H(k)

27: for all r ∈ Ik do
28: for j ← 1 to nk do
29: if A(k)

j,r > 0 then
30: T

(k)
r,j ← l

(k)
r

31: else
32: H

(k)
r,j ← l

(k)
r

33: for j = 1 to nm� do � Step 2: Compute γU and γL

34: νj ← A
(0)
j,: x0 + b

(m�)
j , µ+

j ← 0, µ−
j ← 0 � Initialize νj , µ

+
j , µ

−
j

35: for k = 1 to m� − 1 do � This loop is skipped when m� = 1

36: µ+
j ← µ+

j −A
(k)
j,: T

(k)
:,j , µ−

j ← µ−
j −A

(k)
j,: H

(k)
:,j � According to Eq. (6)

37: νj ← νj +A
(k)
j,: b

(k) � According to Eq. (7)

38: � νj , µ
+
j , µ

−
j satisfy Definition 3.6

39: γU
j ← µ+

j + νj + ��A(0)
j,: �q

40: γL
j ← µ−

j + νj − ��A(0)
j,: �q � Definition 3.6

41: return γL, γU



Towards Fast Computation of Certified Robustness for ReLU Networks

Algorithm 2 Fast Bounding via Upper Bounding Local Lipschitz Constant (Fast-Lip)

Require: Weights of m layers: W(1), · · ·W(m), original class c, target class j
1: procedure FAST-LIP(x0, p, �)
2: Replace the last layer weights W(m) with a row vector w̄ ← W

(m)
c,: −W

(m)
j,: (see Section 3.3.3)

3: Run FAST-LIN to find layer-wise bounds l(i),u(i), and form I+
i , I−

i , Ii fo all i ∈ [m]
4: C(0) ← W(1), L(0) ← 0, U(0) ← 0
5: for l ← 1 to m− 1 do
6: C(l),L(l),U(l) = BOUNDLAYERGRAD(C(l−1),L(l−1),U(l−1),W(l+1), nl+1, I+

l , I−
l , Il)

7: � v ∈ Rn0 because the last layer is replaced with a row vector w̄
8: v ← max(|C(m−1) + L(m−1)|, |C(m−1) +U(m−1)|) � All operations are element-wise;
9: ��j ← min( g(x0)

�v�q
, �) � q is the dual norm of p, 1

p + 1
q = 1

10: return ��j � ��j is a certified lower bound βL. We can also bisect ��j (omitted).
11: procedure BOUNDLAYERGRAD(C,L,U,W, n�, I+, I−, I)
12: for k ∈ [n0] do � n0 is the dimension of x0

13: for j ∈ [n�] do
14: C

�
j,k ← �

i∈I+

Wj,iCi,k

15: U
�
j,k ← �

i∈I+,Wj,i>0

Wj,iUi,k +
�

i∈I+,Wj,i<0

Wj,iLi,k +

16:
�

i∈I,Wj,i<0,Ci,k+Li,k<0

Wj,i(Ci,k + Li,k) +
�

i∈I,Wj,i>0,Ci,k+Ui,k>0

Wj,i(Ci,k +Ui,k)

17: L
�
j,k ← �

i∈I+,Wj,i>0

Wj,iLi,k +
�

i∈I+,Wj,i<0

Wj,iUi,k +

18:
�

i∈I,Wj,i>0,Ci,k+Li,k<0

Wj,i(Ci,k + Li,k) +
�

i∈I,Wj,i<0,Ci,k+Ui,k>0

Wj,i(Ci,k +Ui,k)

19: return C
�
,L

�
,U

�

E. An alternative bound on the Lipschitz constant
Using the property of norm, we can derive an upper bound of the gradient norm of a 2-layer ReLU network in the following:

�∇fj(x)�q
= �W(2)

j,: Λ
(1)W(1)�q

= �W(2)
j,: (Λ

(1)
a +Λ(1)

u )W(1)�q (35)

≤ �W(2)
j,: Λ

(1)
a W(1)�q + �W(2)

j,: Λ
(1)
u W(1)�q (36)

≤ �W(2)
j,: Λ

(1)
a W(1)�q +

�

r∈I1

�W(2)
j,rW

(1)
r,: �q (37)

where with a slight abuse of notation, we use Λ
(1)
a to denote the diagonal activation matrix for neurons who are always

activated, i.e. its (r, r) entry Λ
(1)
a(r,r) is 1 if r ∈ I+

1 and 0 otherwise, and we use Λ
(1)
u to denote the diagonal activation

matrix for neurons whose status are uncertain because they could possibly be active or inactive, i.e. its (r, r) entry Λ
(1)
u(r,r) is

1 if r ∈ I1 and 0 otherwise. Therefore, we can write Λ(1) as a sum of Λ(1)
a and Λ

(1)
u .

Note that (35) to (36) is from the sub-additive property of a norm, and (36) to (37) uses the sub-additive property of a norm
again and set the uncertain neurons encoding all to 1 because

�W(2)
j,: Λ

(1)
u W(1)� = �

�

r∈I1

W
(2)
j,rΛ

(1)
u(r,r)W

(1)
r,: � ≤

�

r∈I1

�W(2)
j,rΛ

(1)
u(r,r)W

(1)
r,: � ≤

�

r∈I1

�W(2)
j,rW

(1)
r,: �.

Notice that (37) can be used as an upper bound of Lipschitz constant and is applicable to compute a certified lower bound
for minimum adversarial distortion of a general �p norm attack. However, this bound is expected to be less tight because we
simply include all the uncertain neurons to get an upper bound on the norm in (37).



Towards Fast Computation of Certified Robustness for ReLU Networks

F. Details of Experiments in Section 4
F.1. Methods

Below, we give detailed descriptions on the methods that we compare in Table 1, Table F.1 and Table F.2:

• Fast-Lin: Our proposed method of directly bounding network output via linear upper/lower bounds for ReLU, as
discussed in Section 3.3 and Algorithm 1;

• Fast-Lip: Our proposed method based on bounding local Lipschitz constant, in Section 3.4 and Algorithm 2;

• Reluplex: Reluplex (Katz et al., 2017) is a satisfiability modulo theory (SMT) based solver which delivers a true
minimum distortion, but is very computationally expensive;

• LP-Full: A linear programming baseline method with formulation borrowed from (Wong & Kolter, 2018). Note that
we solve the primal LP formulation exactly to get a best possible bound. This variant solves full relaxed LP problems
at every layer to give a final “adversarial polytope”. Similar to our proposed methods, it only gives a lower bound.
We extend this formulation to p = 2 case, where the input constraint becomes quadratic and requires a quadratic
constrained programming (QCP) solver, which is usually slower than LP solvers.

• LP: Similar to LP-Full, but this variant solves only one LP problem for the full network at the output neurons and the
layer-wise bounds for the neurons in hidden layers are solved by Fast-Lin. We also extend it to p = 2 case with QCP
constraints on the inputs. LP and LP-Full are served as our baselines to compare with Fast-Lin and Fast-Lip;

• Attacks: Any successful adversarial example gives a valid upper bound for the minimum adversarial distortion. For
larger networks where Reluplex is not feasible, we run adversarial attacks and obtain an upper bound of minimal
adversarial distortions to compare with. We apply the �2 and �∞ variants of Carlini and Wagner’s attack (CW) (Carlini
& Wagner, 2017c) to find the best �2 and �∞ distortions. We found that the CW �∞ attack usually finds adversarial
examples with smaller �∞ distortions than using PGD (projected gradient descent). We use EAD (Chen et al., 2018b),
a Elastic-Net regularized attack, to find adversarial examples with small �1 distortions. We run CW �2 and �∞ attacks
for 3,000 iterations and EAD attacks for 2,000 iterations;

• CLEVER: CLEVER (Weng et al., 2018) is an attack-agnostic robustness score based on local Lipschitz constant
estimation and provides an estimated lower-bound. It is capable of performing robustness evaluation for large-scale
networks but is not a certified lower bound;

• Op-norm: Operator norms of weight matrices were first used in (Szegedy et al., 2013) to give a robustness lower
bound. We compute the �p induced norm of weight matrices of each layer and use their product as the global Lipschitz
constant Lj

q . A valid lower bound is given by g(x0)/L
j
q (see Section 3.4). We only need to pre-compute the operator

norms once for all the examples.

F.2. Setup

We use MNIST and CIFAR datasets and evaluate the performance of each method in MLP networks with up to 7 layers
or over 10,000 neurons, which is the largest network size for non-trivial and guaranteed robustness verification to date.
We use the same number of hidden neurons for each layer and denote a m-layer network with n hidden neurons in each
layer as m× [n]. Each network is trained with a grid search of learning rates from {0.1, 0.05, 0.02, 0.01, 0.005} and weight
decays from {10−4, 10−5, 10−6, 10−7, 10−8} and we select the network with the best validation accuracy. We consider
both targeted and untargeted robustness under �p distortions (p = 1, 2,∞); for targeted robustness, we consider three target
classes: a random class, a least likely class and a runner-up class (the class with second largest probability). The reported
average scores are an average of 100 images from the test set, with images classified wrongly skipped. Reported time is per
image. We use binary search to find the certified lower bounds in Fast-Lin, Fast-Lip, LP and LP-Full, and the maximum
number of search iterations is set to 15.

We implement our algorithm using Python (with Numpy and Numba)3, while for the LP based method we use the highly
efficient Gurobi commercial LP solver with Python Interface. All experiments are conducted in single thread mode (we

3https://github.com/huanzhang12/CertifiedReLURobustness



Towards Fast Computation of Certified Robustness for ReLU Networks

disable the concurrent solver in Gurobi) on a Intel Xeon E5-2683v3 (2.0 GHz) CPU. Despite the inefficiency of Python,
we still achieve two orders of magnitudes speedup compared with LP, while achieving a very similar lower bound. Our
methods are automatically parallelized by Numba and can gain further speedups on a multi-core CPU, but we disabled this
parallelization for a fair comparison to other methods.

F.3. Discussions

In Table 1a (full Table: Table F.1), we compare the lower bound βL computed by each algorithm to the true minimum
distortion r0 found by Reluplex. We are only able to verify 2 and 3 layer MNIST with 20 neurons per hidden layer within
reasonable time using Reluplex. It is worth noting that the input dimension (784) is very large compared to the network
evaluated in (Katz et al., 2017) with only 5 inputs. Lower bounds found by Fast-Lin is very close to LP, and the gaps are
within 2-3X from the true minimum distortion r0 found by Reluplex. The upper bound given by CW �∞ are also very close
to r0.

In Table 1b (full Table: Table F.2), we compare Fast-Lin, Fast-Lip with LP and Op-norm on larger networks with up to
over ten thousands hidden neurons. Fast-Lin and Fast-Lip are significantly faster than LP and are able to verify much
larger networks (LP becomes very slow to solve exactly on 4-layer MNIST with 4096 hidden neurons, and is infeasible for
even larger CIFAR models). Fast-Lin achieves a very similar bound comparing with results of LP over all smaller models,
but being over two orders of magnitude faster. We found that Fast-Lip can achieve better bounds when p = 1 in two-layers
networks, and is comparable to Fast-Lin in shallow networks. Meanwhile, we also found that Fast-Lin scales better than
Fast-Lip for deeper networks, where Fast-Lin usually provides a good bound even when the number of layers is large.
For deeper networks, neurons in the last few layers are likely to have uncertain activations, making Fast-Lip being too
pessimistic. However, Fast-Lip outperforms the global Lipschitz constant based bound (Op-norm) which quickly goes
down to 0 when the network goes deeper, as Fast-Lip is bounding the local Lipschitz constant to compute robustness lower
bound. In Table F.2, we also apply our method to MNIST and CIFAR models to compare the minimum distortion for
untargeted attacks. The computational benefit of Fast-Lin and Fast-Lip is more significant than LP because LP needs to
solve nm objectives (where nm is the total number of classes), whereas the cost of our methods stay mostly unchanged as
we get the bounds for all network outputs simultaneously.

In Table 2, we compute our two proposed lower bounds on neural networks with defending techniques to evaluate the
effects of defending techniques (e.g. how much robustness is increased). We train the network with two defending methods,
defensive distillation (DD) (Papernot et al., 2016) and adversarial training (Madry et al., 2018) based on robust optimization.
For DD we use a temperature of 100, and for adversarial training, we train the network for 100 epochs with adversarial
examples crafted by 10 iterations of PGD with � = 0.3. The test accuracy for the adversarially trained models dropped from
98.5% to 97.3%, and from 98.6% to 98.1%, for 3 and 4 layer MLP models, respectively. We observe that both defending
techniques can increase the computed robustness lower bounds, however adversarial training is significantly more effective
than defensive distillation. The lower bounds computed by Fast-Lin are close to the desired robustness guarantee � = 0.3.



Towards Fast Computation of Certified Robustness for ReLU Networks

Table F.1. Comparison of our proposed certified lower bounds Fast-Lin and Fast-Lip, LP and LP-Full, the estimated lower bounds by
CLEVER, the exact minimum distortion by Reluplex, and the upper bounds by Attack algorithms (CW �∞ for p = ∞, CW �2 for
p = 2, and EAD for p = 1) on 2, 3 layers toy MNIST networks with only 20 neurons per layer. Differences of lower bounds and speedup
are measured on the two corresponding bold numbers in each row, representing the best answer from our proposed algorithms and LP
based approaches. Reluplex is designed to verify �∞ robustness so we omit results for �2 and �1. Note that LP-Full and Reluplex are
very slow and cannot scale to any practical networks, and the purpose of this table is to show how close our fast bounds are compared to
the true minimum distortion provided by Reluplex and the bounds that are slightly tighter but very expensive (e.g. LP-Full).

Toy Networks Average Magnitude of Distortions on 100 Images

Network p Target
Certified Bounds difference Exact Uncertified

Our bounds Our baselines ours vs. Reluplex CLEVER Attacks
Fast-Lin Fast-Lip LP LP-Full LP(-Full) (Katz et al., 2017) (Weng et al., 2018) CW/EAD

MNIST
2× [20]

∞
runner-up 0.0191 0.0167 0.0197 0.0197 -3.0% 0.04145 0.0235 0.04384

rand 0.0309 0.0270 0.0319 0.0319 -3.2% 0.07765 0.0428 0.08060
least 0.0448 0.0398 0.0462 0.0462 -3.1% 0.11711 0.0662 0.1224

2
runner-up 0.3879 0.3677 0.4811 0.5637 -31.2% - 0.4615 0.64669

rand 0.6278 0.6057 0.7560 0.9182 -31.6% - 0.8426 1.19630
least 0.9105 0.8946 1.0997 1.3421 -32.2% - 1.315 1.88830

1
runner-up 2.3798 2.8086 2.5932 2.8171 -0.3% - 3.168 5.38380

rand 3.9297 4.8561 4.2681 4.6822 +3.7% - 5.858 11.4760
least 5.7298 7.3879 6.2062 6.8358 +8.1% - 9.250 19.5960

MNIST
3× [20]

∞
runner-up 0.0158 0.0094 0.0168 0.0171 -7.2% 0.04234 0.0223 0.04786

rand 0.0229 0.0142 0.0241 0.0246 -6.9% 0.06824 0.0385 0.08114
least 0.0304 0.0196 0.0319 0.0326 -6.9% 0.10449 0.0566 0.11213

2
runner-up 0.3228 0.2142 0.3809 0.4901 -34.1% - 0.4231 0.74117

rand 0.4652 0.3273 0.5345 0.7096 -34.4% - 0.7331 1.22570
least 0.6179 0.4454 0.7083 0.9424 -34.4% - 1.100 1.71090

1
runner-up 2.0189 1.8819 2.2127 2.5010 -19.3% - 2.950 6.13750

rand 2.8550 2.8144 3.1000 3.5740 -20.1% - 4.990 10.7220
least 3.7504 3.8043 4.0434 4.6967 -19.0% - 7.131 15.6850

(a) Comparison of bounds

Toy Networks Average Running Time per Image

Network p Target
Certified Bounds Exact Speedup

Our bounds Our baselines Reluplex ours vs.
Fast-Lin Fast-Lip LP LP-Full (Katz et al., 2017) LP-(full)

MNIST
2× [20]

∞
runner-up 3.09 ms 3.49 ms 217 ms 1.74 s 134 s 70X

rand 3.25 ms 5.53 ms 234 ms 1.93 s 38 s 72X
least 3.37 ms 8.90 ms 250 ms 1.97 s 360 s 74X

2
runner-up 3.00 ms 3.76 ms 1.10 s 20.6 s - 6864X

rand 3.37 ms 6.16 ms 1.20 s 23.1 s - 6838X
least 3.29 ms 9.89 ms 1.27 s 26.4 s - 8021X

1
runner-up 2.85 ms 39.2 ms 1.27 s 16.1 s - 412X

rand 3.32 ms 54.8 ms 1.59 s 17.3 s - 316X
least 3.46 ms 68.1 ms 1.74 s 17.7 s - 260X

MNIST
3× [20]

∞
runner-up 5.58 ms 3.64 ms 253 ms 6.12 s 4.7 hrs 1096X

rand 6.12 ms 5.23 ms 291 ms 7.16 s 11.6 hrs 1171X
least 6.62 ms 7.06 ms 307 ms 7.30 s 12.6 hrs 1102X

2
runner-up 5.35 ms 3.95 ms 1.22 s 57.5 s - 10742X

rand 5.86 ms 5.81 ms 1.27 s 66.3 s - 11325X
least 5.94 ms 7.55 ms 1.34 s 77.3 s - 13016X

1
runner-up 5.45 ms 39.6 ms 1.27 s 75.0 s - 13763X

rand 5.56 ms 52.9 ms 1.47 s 82.0 s - 14742X
least 6.07 ms 65.9 ms 1.68 s 85.9 s - 1304X

(b) Comparison of time



Towards Fast Computation of Certified Robustness for ReLU Networks

Table F.2. Comparison of our proposed certified lower bounds Fast-Lin and Fast-Lip with other lower bounds (LP, Op-norm, CLEVER)
and upper bounds (Attack algorithms: CW for p = 2,∞, EAD for p = 1) on networks with 2-7 layers, where each layer has 1024 or
2048 nodes. Differences of lower bounds and speedup are measured on the two corresponding bold numbers in each row. Note that
LP-Full and Reluplex are computationally infeasible for all the networks reported here, and “-” indicates the method is computationally
infeasible for that network. For Op-norm, computation time for each image is negligible as the operator norms can be pre-computed.

Large Networks Average Magnitude of Distortion on 100 Images Average Running Time per Image

Network p Target
Certified Bounds diff Uncertified Certified Bounds Speedup

Our bounds LP Op-norm ours CLEVER Attacks Our bounds LP ours
Fast-Lin Fast-Lip (Baseline) (Szegedy et al., 2013) vs. LP (Weng et al., 2018) CW/EAD Fast-Lin Fast-Lip (Baseline) vs. LP

MNIST
2× [1024]

∞
runner-up 0.02256 0.01802 0.02493 0.00159 -9.5% 0.0447 0.0856 127 ms 167 ms 19.3 s 151X

rand 0.03083 0.02512 0.03386 0.00263 -8.9% 0.0708 0.1291 156 ms 219 ms 20.8 s 133X
least 0.03854 0.03128 0.04281 0.00369 -10.0% 0.0925 0.1731 129 ms 377 ms 22.2 s 172X

2
runner-up 0.46034 0.42027 0.55591 0.24327 -17.2% 0.8104 1.1874 127 ms 196 ms 419 s 3305X

rand 0.63299 0.59033 0.75164 0.40201 -15.8% 1.2841 1.8779 128 ms 234 ms 195 s 1523X
least 0.79263 0.73133 0.94774 0.56509 -16.4% 1.6716 2.4556 163 ms 305 ms 156 s 956X

1
runner-up 2.78786 3.46500 3.21866 0.20601 +7.7% 4.5970 9.5295 117 ms 1.17 s 38.9 s 33X

rand 3.88241 5.10000 4.47158 0.35957 +14.1% 7.4186 17.259 139 ms 1.40 s 48.1 s 34X
least 4.90809 6.36600 5.74140 0.48774 +10.9% 9.9847 23.933 151 ms 1.62 s 53.1 s 33X

MNIST
3× [1024]

∞
runner-up 0.01830 0.01021 0.02013 0.00004 -9.1% 0.0509 0.1037 1.20 s 1.81 s 50.4 s 42X

rand 0.02216 0.01236 0.02428 0.00007 -8.7% 0.0717 0.1484 1.12 s 1.11 s 52.7 s 47X
least 0.02432 0.01384 0.02665 0.00009 -8.7% 0.0825 0.1777 1.02 s 924 ms 54.3 s 53X

2
runner-up 0.35867 0.22120 0.41040 0.06626 -12.6% 0.8402 1.3513 898 ms 1.59 s 438 s 487X

rand 0.43892 0.26980 0.49715 0.10233 -11.7% 1.2441 2.0387 906 ms 914 ms 714 s 788X
least 0.48361 0.30147 0.54689 0.13256 -11.6% 1.4401 2.4916 925 ms 1.01 s 858 s 928X

1
runner-up 2.08887 1.80150 2.36642 0.00734 -11.7% 4.8370 10.159 836 ms 3.16 s 91.1 s 109X

rand 2.59898 2.25950 2.91766 0.01133 -10.9% 7.2177 17.796 863 ms 3.84 s 109 s 126X
least 2.87560 2.50000 3.22548 0.01499 -10.8% 8.3523 22.395 900 ms 4.20 s 122 s 136X

MNIST
4× [1024]

∞
runner-up 0.00715 0.00219 - 0.00001 - 0.0485 0.08635 1.90 s 4.58 s - -

rand 0.00823 0.00264 - 0.00001 - 0.0793 0.1303 2.25 s 3.08 s - -
least 0.00899 0.00304 - 0.00001 - 0.1028 0.1680 2.15 s 3.02 s - -

2
runner-up 0.16338 0.05244 - 0.11015 - 0.8689 1.2422 2.23 s 3.50 s - -

rand 0.18891 0.06487 - 0.17734 - 1.4231 1.8921 2.37 s 2.72 s - -
least 0.20672 0.07440 - 0.23710 - 1.8864 2.4451 2.56 s 2.77 s - -

1
runner-up 1.33794 0.58480 - 0.00114 - 5.2685 10.079 2.42 s 2.71 s - -

rand 1.57649 0.72800 - 0.00183 - 8.9764 17.200 2.42 s 2.91 s - -
least 1.73874 0.82800 - 0.00244 - 11.867 23.910 2.54 s 3.54 s - -

CIFAR
5× [2048]

∞
runner-up 0.00137 0.00020 - 0.00000 - 0.0062 0.00950 24.2 s 60.4 s - -

rand 0.00170 0.00030 - 0.00000 - 0.0147 0.02351 26.2 s 78.1 s - -
least 0.00188 0.00036 - 0.00000 - 0.0208 0.03416 27.8 s 79.0 s - -

2
runner-up 0.06122 0.00951 - 0.00156 - 0.2712 0.3778 34.0 s 60.7 s - -

rand 0.07654 0.01417 - 0.00333 - 0.6399 0.9497 36.8 s 49.4 s - -
least 0.08456 0.01778 - 0.00489 - 0.9169 1.4379 37.4 s 49.8 s - -

1
runner-up 0.93835 0.22632 - 0.00000 - 4.0755 7.6529 36.5 s 70.6 s - -

rand 1.18928 0.31984 - 0.00000 - 9.7145 21.643 37.5 s 53.6 s - -
least 1.31904 0.38887 - 0.00001 - 12.793 34.497 38.3 s 48.6 s - -

CIFAR
6× [2048]

∞
runner-up 0.00075 0.00005 - 0.00000 - 0.0054 0.00770 37.2 s 106 s - -

rand 0.00090 0.00007 - 0.00000 - 0.0131 0.01866 37.0 s 119 s - -
least 0.00095 0.00008 - 0.00000 - 0.0199 0.02868 37.2 s 126 s - -

2
runner-up 0.03463 0.00228 - 0.00476 - 0.2394 0.2979 56.1 s 99.5 s - -

rand 0.04129 0.00331 - 0.01079 - 0.5860 0.7635 60.2 s 95.6 s - -
least 0.04387 0.00385 - 0.01574 - 0.8756 1.2111 61.8 s 88.6 s - -

1
runner-up 0.59638 0.05647 - 0.00000 - 3.3569 6.0112 57.2 s 108 s - -

rand 0.72178 0.08212 - 0.00000 - 8.2507 17.160 61.4 s 88.2 s - -
least 0.77179 0.09397 - 0.00000 - 12.603 28.958 62.1 s 65.1 s - -

CIFAR
7× [1024]

∞
runner-up 0.00119 0.00006 - 0.00000 - 0.0062 0.0102 10.5 s 27.3 s - -

rand 0.00134 0.00008 - 0.00000 - 0.0112 0.0218 10.6 s 29.2 s - -
least 0.00141 0.00010 - 0.00000 - 0.0148 0.0333 11.2 s 30.9 s - -

2
runner-up 0.05279 0.00308 - 0.00020 - 0.2661 0.3943 16.3 s 28.2 s - -

rand 0.05938 0.00407 - 0.00029 - 0.5145 0.9730 16.9 s 27.3 s - -
least 0.06249 0.00474 - 0.00038 - 0.6253 1.3709 17.4 s 27.6 s - -

1
runner-up 0.76647 0.07028 - 0.00000 - 4.815 7.9987 16.9 s 27.8 s - -

rand 0.86467 0.09239 - 0.00000 - 8.630 22.180 17.6 s 26.7 s - -
least 0.91127 0.10639 - 0.00000 - 11.44 31.529 17.5 s 23.5 s - -

MNIST
3× [1024]

∞
untargeted

0.01808 0.01016 0.01985 0.00004 -8.9% 0.0458 0.0993 915 ms 2.17 s 227 s 248X
2 0.35429 0.21833 - 0.06541 - 0.7413 1.1118 950 ms 2.02 s - -
1 2.05645 1.78300 2.32921 0.00679 -11.7% 3.9661 9.0044 829 ms 4.41 s 537 s 648X

CIFAR
5× [2048]

∞
untargeted

0.00136 0.00020 - 0.00000 - 0.0056 0.00950 24.1 s 72.9 s - -
2 0.06097 0.00932 - 0.00053 - 0.2426 0.3702 34.2 s 77.0 s - -
1 0.93429 0.22535 - 0.00000 - 3.6704 7.3687 35.6 s 90.2 s - -


