
Local Density Estimation in High Dimensions

Xian Wu 1 Moses Charikar 1 Vishnu Natchu 2

Abstract
An important question that arises in the study of
high dimensional vector representations learned
from data is: given a set D of vectors and a query
q, estimate the number of points within a speci-
fied distance threshold of q. Our algorithm uses
locality sensitive hashing to preprocess the data to
accurately and efficiently estimate the answers to
such questions via an unbiased estimator that uses
importance sampling. A key innovation is the abil-
ity to maintain a small number of hash tables via
preprocessing data structures and algorithms that
sample from multiple buckets in each hash table.
We give bounds on the space requirements and
query complexity of our scheme, and demonstrate
the effectiveness of our algorithm by experiments
on a standard word embedding dataset.

1. Introduction
In this work, we study a basic question that arises in the
study of high dimensional vector representations: given
a dataset D of vectors and a query q, estimate the num-
ber of points within a specified distance threshold of q.
Such density estimates are important building blocks in
non-parametric clustering, determining the popularity of
topics, search and recommendation systems, the analysis
of the neighborhoods of nodes in social networks, and in
outlier detection, where geometric representations of data
are frequently used. Yet for high dimensional datasets, we
still lack simple, practical, experimentally verified and theo-
retically justified solutions to tackle this question.

Our questions have been studied in the context of spherical
range counting. One class of solution methods arising in
the computational geometry literature, such as hierarchical
splitting via trees, (Arya et al., 2010) have performance
guarantees that depend exponentially on dimension. These
are unsuitable for the higher dimensional models that ma-

1Stanford University, USA 2Laserlike Inc, USA. Correspon-
dence to: Xian Wu <xwu20@stanford.edu>.

Proceedings of the 35 th International Conference on Machine
Learning, Stockholm, Sweden, PMLR 80, 2018. Copyright 2018
by the author(s).

chine learning methods are increasingly shifting towards
e.g. word embeddings (Pennington et al., 2014; Mikolov
et al., 2013) and graph embeddings (Perozzi et al., 2014;
Tang et al., 2015; Cao et al., 2015; Grover & Leskovec,
2016; Yang et al., 2016; Wang et al., 2017; Hamilton et al.,
2017). Over-parameterized models are oftentimes easier
to train (Livni et al., 2014), and perform just as well, if
not better (Zhang et al., 2016). Word embeddings is one
example where rigorous evaluation has shown increased
performance with higher dimensionality (Melamud et al.,
2016) (Lai et al., 2016).

In this paper, we develop an estimation scheme for high di-
mensional datasets to count the number of elements around a
query that are in a given radius of cosine similarity. Angular
distance, which corresponds to Euclidean distance for data
points on the unit sphere is commonly used in applications
related to word and document embeddings, and image and
video search (Jegou et al., 2011) (Huang et al., 2012). Brute
force search requires a linear scan over the entire dataset,
which is prohibitively expensive. Our approach uses index-
ing and search via locality sensitive hashing (LSH) functions
in order to estimate the size of the neighborhood in a more
efficient manner than retrieving the neighbors within the
given radius of similarity.

Recent work has also explored LSH techniques for spherical
range counting and related questions around density estima-
tion for high-dimensional models. For example (Aumüller
et al., 2017) generalizes nearest neighbor LSH hash func-
tions to be sensitive to custom distance ranges. (Ahle et al.,
2017) builds many different parameterized versions of the
prototypical LSH hash tables and adaptively probes them
for spherical range reporting. The closest works to ours
in terms of solution method that we are aware of is that of
(Spring & Shrivastava, 2017), giving an LSH based estima-
tor to compute the partition function of a log-linear model,
and (Charikar & Siminelakis, 2017), adapting LSH to solve
a class of kernel density estimation problems. Both works
produce an unbiased estimator, using LSH to implement
a biased sampling scheme that lowers the variance of this
estimator. However their technique leverages only one hash
bucket per table, and hence requires a large number of ta-
bles for an accurate estimate. The biggest drawback to these
works is the very high storage (hash tables) and query com-
plexities – their techniques, as presented, are impractical for



Local Density Estimation in High Dimensions

adoption.

Our approach improves upon the storage and sample com-
plexities of previous methods using a combination of ex-
tracting information from multiple buckets per table (hence
reducing table complexity) and importance sampling (hence
reducing sample complexity). As we show in our experi-
mental study on GLOVE embeddings, our estimate of the
number of elements that are 60 degrees from a query q
(which corresponds to synonyms and/or related words to q
in the English vocabulary), achieves multiple orders of mag-
nitude improved accuracy over competing methods, subject
to reasonable and practical resource constraints. Our the-
oretical analysis develops a rigorous understanding of our
technique and offers practitioners further insight on optimiz-
ing our solution method for their particular datasets.

2. Problem Formulation and Approach
Given a dataset D of vectors v1, . . . vn ∈ Rd on the unit
sphere, a query q ∈ Rd also on the unit sphere, and a range
of angles of interestA, for example 0-60 degrees, how many
elements v in D are such that the angle between q and v,
denoted θqv, are within range A? We use Aq to denote the
set of data vectors v that are within angle A to q (that have
angular distance to query q that is in the range of interest
A). Our goal is to preprocess D in order to estimate the
cardinality of this set, denoted |Aq|, efficiently for any given
q.

One final note is that our scheme is conceptualized using
bit-wise LSH functions; functions that hash vectors to 0-1
bits, and where the hamming distance between the hash se-
quences of two data points captures information about their
angular distance. For their simplicity, easy implementation,
and high performance in practice, bit hashes such as hyper-
plane LSH (Charikar, 2002) are the standard hash functions
used in practice for angular distance (Andoni et al., 2015).
Our technique and results can be extended for other hash
functions; however, we will use hamming distance and other
implementation details specific to bit-wise LSH functions
in this work.

2.1. Approach Overview

Our overall estimation scheme is an implementation of im-
portance sampling. It consists of two steps, a preprocessing
step that applies locality sensitive hash functions to our
dataset to produce hash tables. After this preprocessing
step, we sample from our hash tables to produce our final
estimate.

To help guide the reader through the technical details of our
implementation, we first offer an intuitive explanation of
our approach. Our importance sampling scheme achieves
2 main objectives: we concentrate the elements of interest

in our overall dataset into a few buckets that we can easily
sample from, and we sample from these buckets to produce
our estimate. In order to compensate for the concentrated
sampling, we adjust the value of each sample by the inverse
of the probability that the sample lands in the target buckets.

Our technique relies on the key insight that LSH functions
can effectively implement both of these objectives. Using
LSH functions to index our dataset ensures that for a given
query q, elements that are close to q in angular distance have
a comparative higher probability of hashing to q’s bucket
and to buckets that are of small hamming distance to q’s
bucket, thereby concentrating the elements of interest into
certain buckets that we can selectively sample from.

Additionally, the hamming distance collision probabilities
for bit-wise LSH functions are well expressed in terms of an-
gular distance. Consider random hyperplane LSH (Charikar,
2002), where each hash vector is chosen uniformly at ran-
dom from the d-dimensional unit sphere. Each hash vector
r contributes one bit to the hash sequence of a data point v,
based on the rule:

hr(v) =

{
0 if r · v ≤ 0

1 otherwise.

It is well-known that for any particular hamming distance i,
and any data point x,

P(dqx = i|θqx) =
(
t

i

)(
1− θqx

π

)t−i(
θqx
π

)i
where dqx is the hamming distance between the hash for
query q and the hash for data vector x, θqx denotes the angle
between the 2 vectors, and t is the total number of bits in
the hash sequence.

Thus, the choice of t affects the sensitivity of the LSH
scheme – the correlation between the hamming distances
of two hash sequences and the angle between the two un-
derlying data points. Moreover, depending on the design
choice for t, the set of hamming distances I that contains
most of the probability mass for collision with elements of
angular distance in range A is different. This is also a con-
sideration in our sampling scheme; we want to sample from
buckets of hamming distances I that have a high probability
of containing elements that are within angle A of q.

Our sampling scheme picks elements over K hash tables
from buckets that are at hamming distance I to the query,
where I is tuned to A. Given a sample, x, we compute the
angular distance θqx = cos−1(q · x). Let p(x) = P(dqx ∈
I|θqx), the collision probability that x lands in a bucket that
is hamming distance I from q over the random choice of
hash functions.



Local Density Estimation in High Dimensions

We define a random variable Z as a function of sample x as
follows:

Z =

{∑K
k=1 C

k
q (I)

K·p(x) if θqx ∈ A
0 otherwise.

(1)

where Ckq (I) is the total number of elements in buckets of
hamming distance I from q’s bucket in table k.

We take S samples and construct Z1, Z2, . . . ZS . We report∑S
i=1 Zi

S as our estimate for |Aq|.

Comparison to Related Work: Note that our problem can
be viewed as kernel density estimation problem for a specific
kernel function that has value 1 for pairs of points within
the required angle range of interest and 0 outside. However
the analysis of (Charikar & Siminelakis, 2017) does not
apply to our setting because they need a scale free hash
function (with collision probabilities related to the kernel
value) and there is no such function for our 0-1 kernel. The
work of (Spring & Shrivastava, 2017) does not make such
an assumption on the hash function, but they do not give
an analysis that gives meaningful bounds in our setting.
As noted previously, both works only look at a single hash
bucket in each hash table, leading to a high storage overhead.

2.2. Main Result

We establish the following theoretical bounds on the storage
and sample complexity of our estimator in order to achieve a
(1±ε)-approximation to the true count with high probability.

Theorem 2.1 (Main Result). For a given angular dis-
tance range of interest A and a given query q, with
probability 1 − δ, our estimator returns a (1 ± ε)-
approximation to |Aq|, the true number of elements within

angle A to q using O

(
1

ε2 min
x∈Aq

p(x) log(
1
δ )

)
tables and

O

(
E(Cq(I))

ε2|Aq|· min
x∈Aq

p(x) log(
1
δ )

)
samples.

To help the reader digest this result, we briefly compare
this statement to the sample complexity of naive random
sampling. It can be shown through a standard Bernoulli-
Chernoff argument that the sample complexity for random
sampling is O( n

|Aq|ε2 ln
(
1
δ

)
), where n

|Aq| is the inverse pro-
portion of elements of interest in the overall population.
Intuitively this says that you need to take more random
samples if |Aq| is very small compared to n.

Our sample complexity replaces the n
|Aq| term with

E(Cq(I))
|Aq|· min

x∈Aq
p(x) , where |Aq| · min

x∈Aq

p(x) is a measure of the

expected number of elements from the set of interest Aq
that will land in hamming distance I to q, and E(Cq(I)) is

the expected size of the overall sampling pool of elements
in hamming distance I. This ratio of expectations seems
intuitive – one would expect to get such an expression if our
scheme took one sample per table. Surprisingly, we achieve
this same type of sample complexity bound while sampling
from relatively few hash tables.

Just like random sampling, our sample complexity bound is
also based on the proportion of elements of interest in ham-
ming distance I to the total number of elements in hamming
distance I. However, it is easy to see that applying LSH to
our dataset will increase this proportion to yield a smaller
sample complexity. We choose I so that min

x∈Aq

p(x) is high

(this probability can be high even for a small set of hamming
distances I, since p(x) is the cumulative probability mass
of I successes in t trials, and binomial distributions in t
concentrate in an O(

√
t) sized interval around the mean),

and E(Cq(I)) to be small (to filter out elements that are not
interesting).

There are certain tradeoffs to choosing I . If more hamming
distances are included in I, then min

x∈Aq

p(x) is higher, how-

ever, E(Cq(I)) is also larger. The optimal choice for I is
to choose the hamming distances that substantially increase
min
x∈Aq

p(x) yet do not substantially increase E(Cq(I)) (so

not too many uninteresting elements are infiltrating those
buckets).

In the following sections, we explain our scheme further
and present our experimental results.

3. Preprocessing
The preprocessing step contributes 3 key ingredients to the
overall estimation scheme:

Hash Tables: Given a family of bit-wise hash functions
H, define a function family G = {g : D → {0, 1}t} such
that g(v) = (h1(v), . . . ht(v)), where hj ∈ H. To construct
K tables, we choose K functions g1, g2, . . . gK from G
independently and uniformly at random. We store each
v ∈ D in bucket gk(v) for k = 1, 2 . . .K. This step sets up
the hash tables that we will sample from in our scheme.

Counts Vector: We create a counts vector, denoted
Cki ∈ Rt+1 for each hash address ik for each table k ∈
{1, . . . ,K}, whereCki (d) is the count of the total number of
items in buckets that are at hamming distance d = 0, 1, . . . t
away from ik in table k.

Sampler: We create a sampler that given a separate hash
address ik for each table k ∈ {1, . . . ,K} and set of ham-
ming distances I, returns a data point uniformly at random
from the union of elements that were hashed to buckets of
hamming distance I from ik across the K tables.



Local Density Estimation in High Dimensions

We describe in greater detail the 3 contributions of the pre-
processing step. For the rest of this paper, all omitted proofs
appear in Appendix C.

3.1. Hash Tables

Setting up quality hash tables to enable accurate and efficient
importance sampling is vital to our scheme. Since we are
importance sampling from buckets of hamming distance I
acrossK tables, we need to make enough tables to guarantee
unbiasedness or near-unbiasedness for our sampling-based
estimator; due to the variance of the randomly generated
hash functions, if we make too few tables we may not find
enough elements of interest contained in those tables within
hamming distance I. We want to characterize the bias of
our importance sampling scheme in relation to the contents
of the buckets of our hash tables.

We let Bkq (I) denote the set of hash buckets that are at ham-
ming distance I from the hash address of query q for table
k. Next, we introduce an intermediate random variable:

W =
1

K

K∑
k=1

∑
x∈Aq

1(x ∈ Bkq (I))
p(x)

.

where p(x) = P(dqx ∈ I|θqx).

W is a random variable that represents the sum of the el-
ements of interest |Aq| that are hashed to the buckets of
sampling focus Bkq (I), weighted by their probabilities p(x).
It is clear that once the set of hash functions is fixed, W
becomes deterministic.

We first show that the random variable Z, as defined in
Equation (1), is an unbiased estimator.
Lemma 3.1 (Expectation of Z). The expectation of Z over
the random choice of hash functions is |Aq|, i.e. E(Z) =
|Aq|. The expectation of Z given a specific realization of
hash functions, or equivalently, given W , is E(Z|W ) =W .

As a consequence, it is immediately clear that E(W ) = |Aq|.
It is important to understand the implications of this lemma.
In particular, the expression for E(Z|W ) says that in a
specific realization of a choice of hash functions (or a set of
tables), the estimator Z is biased if W 6= |Aq|. Therefore
K is essential for helping concentrate the realized value of
W around its mean.

Since in expectation, our estimator Z gives W , we want to
understand how many tables K are required to ensure that
W concentrates around its mean, |Aq|. This is related to the
variance of W .

We also introduce a new quantity p(x, y) = P(dqx ∈ I ∩
dqy ∈ I|θqx, θqy), the collision probability that x and y
both land in buckets that are hamming distance I from q
over the random choice of hash functions.

Lemma 3.2 (Variance of W ). σ2(W ) =
1
K

∑
x,y∈Aq

(
p(x,y)
p(x)p(y) − 1

)
We want to put these pieces together to make a statement
about the number of tables K we should create to guarantee
low inherent bias in our estimator. We use Chebyshev’s In-
equality to bound W ’s deviation from its mean as a function
of K with a constant failure probability 1

8 . For simplicity,
we fix a constant failure probability that we will boost later
by average over several sets of estimators. This analysis is
without loss of generality, as the bounds can be adjusted
for any desired failure probability δ. We will use this piece
again when we analyze our overall estimator.
Lemma 3.3 (Bound on Number of Tables). It suffices to
make K ≥ 8

ε2 min
x∈Aq

p(x) tables to guarantee that W is within

ε of |Aq| (relatively) with probability 7
8 .

Proof. Chebyshev’s inequality states: P(|W − |Aq|| ≥
ε|Aq|) ≤ σ2(W )

ε2|Aq|2 .

Therefore, to achieve a constant failure probability δ = 1
8 ,

it suffices to create enough tables so that

σ2(W ) =
1

K

∑
x,y∈Aq

(
p(x, y)

p(x)p(y)
− 1

)
≤ ε2|Aq|2

8

Hence K needs to be large enough so that:

K ≥
8
∑

x,y∈Aq

(
p(x,y)
p(x)p(y) − 1

)
ε2|Aq|2

Since p(x, y) ≤ min{p(x), p(y)}, we see that it is sufficient
for K to satisfy

K ≥
8|Aq|2

(
minx∈Aq

1
p(x) − 1

)
ε2|Aq|2

Therefore we conclude with the following bound on K:

K ≥ 8

ε2 min
x∈Aq

p(x)
(2)

We emphasize that the joint probability p(x, y) ≤
min{p(x), p(y)} is a very loose worst-case bound assuming
high correlation between data points. The final bound for
K, Equation (2), is also a worst-case bound in the sense that
it is possible that a very minuscule fraction of x ∈ Aq have
small values for p(x). In the experimental section of the
paper, we do an empirical analysis of the inherent bias for
different values of K and demonstrate that for real datasets
the number of tables needed can be far fewer than what is
theoretically required in the worst case scenario.



Local Density Estimation in High Dimensions

3.2. Counts Vector

Query q maps to a bucket ik for each table k = 1, 2 . . .K.
The preprocessing step produces an average counts vector
corresponding to bucket ik, denoted Ckq , where Ckq (i) is
the count of the total number of items in buckets that are at
hamming distance i = 0, 1, . . . t away from the hash address
for q in table k. For the hamming distances of interest I , we
let Ckq (I) =

∑
d∈I C

k
q (d).

Ckq (I) is an integral part of our weighted importance sam-
pling scheme. In Appendix A, we show how to compute
these vectors efficiently.

Theorem 3.1 (Aggregate-Counts). Given a set of K
hash tables, each with 2t hash buckets with addresses in
{0, 1}t, Aggregate-Counts (Algorithm 1) computes,
for each hash address i, the number of elements in buckets
that are hamming distance 0, 1, . . . t away from i, in each of
the K tables, in time O(Kt22t).

Note that the t in our hashing scheme is the length of the
hash sequence; as a general rule of thumb, for bit-wise hash
functions, implementers choose t ≈ log(n), so as to average
out to one element per hash bucket. Therefore, the prepro-
cessing runtime of a reasonable hashing implementation for
Aggregate-Counts (Algorithm 1) is approximately
O(nK log2(n)).

The key benefit of Aggregate-Counts is that it com-
putes via a message-passing or dynamic programming strat-
egy that is much more efficient than a naive brute-force
approach that would take time O(K22t), or O(Kn2) if
t ≈ log(n).

3.3. Sampler

We create a sampler that, given a hash address ik for each
table, and a set of hamming distances I that we want to
sample from, generates a sample uniformly at random from
the union of elements that were hashed to hamming distance
I across the K tables. For an implementation and analysis,
please consult Appendix B.

Theorem 3.2 (Sampler). Given a set of K hash tables, each
with 2t hash buckets with addresses in {0, 1}t, a sampling
scheme consisting of a data structure and a sampling algo-
rithm can generate a sample uniformly at random from any
fixed hash table k, an element at hamming distance d to hash
address i. The data structure is a counts matrix that can be
precomputed in preprocessing time O(Kt32t), and the sam-
pling algorithm Hamming-Distance-Sampler (Algo-
rithm 2) generates a sample in time O(t).

Again, if we follow t ≈ log(n), the preprocessing time
comes out to roughly O(nK log3(n)). Also we expect the
O(t) online sample generation cost to be negligible com-
pared to, say, the inner product computation cost for q · x,

which our method and all competing methods use. We de-
scribe the importance sampling scheme in the next section.

4. Sampling
We now analyze our sampling algorithm. Recall that our
sampling scheme works in the following way. Given query
q, we generate the hash for q in each of our K tables, by
solving for ik = gk(q) for k = 1, . . .K. Given the hash for
q in each of our K tables and the set of hamming distances
I that we want to sample from, we invoke our sampler to
generate a sample from across the K tables.

Given this sample, x, we compute the angular distance
θqx = cos−1(q · x). Let p(x) = P(dqx ∈ I|θqx), the
collision probability that x lands in a bucket that is hamming
distance I from q over the random choice of hash functions;
p(x) is an endogenous property of an LSH function.

We score each sample as in Equation (1).

We take S samples and construct Z1, Z2, . . . ZS . We report∑S
i=1 Zi

S as our estimate for |Aq|.

As an immediate consequence of Lemma 3.1, it is clear that

E

[∑S
i=1 Zi
S

]
= |Aq| .

Now we analyze the variance of our estimator:

Lemma 4.1 (Variance of Estimator).

E

(∑S
i=1 Zi
S

− |Aq|

)2
 ≤ E[Z2]

S
+ σ2(W )

This decomposition of the variance into the two terms indi-
cates that the variance is coming from two sources. The first
source is the variance of the samples, E[Z2]

S . If we don’t take
enough samples, we do not get a good estimate. The second
source is the variance from the random variable W , σ2(W ),
which corresponds to the contents in the tables. As we have
shown, it is crucial to create enough tables so that W is
concentrated around its expectation, |Aq|. Therefore, this
second source of variance of the overall estimator comes
from the variance of the hash functions that underlie table
creation and composition.

The σ2(W ) term has already been analyzed in Section 3.1,
see Lemma 3.2. Now we analyze the second moment of Z.

Lemma 4.2 (Variance of Z).

E[Z2] =
∑
x∈Aq

∑
y∈D

[
p(x, y)

K · p(x)2
+

(
1− 1

K

)
p(y)

p(x)

]



Local Density Estimation in High Dimensions

Now that we have all the components, we are ready to put
together the final sample and storage complexities for our
estimator. We want a final estimate that concentrates with
at most ε error around its mean, |Aq| with probability 1− δ.
To do this, we make several sets 1, 2, . . .M of our estimator
(one estimator consists of a set of K tables and S samples).
We choose K and S so that the failure probability of our
estimator is a constant, say 1

4 . Each estimator produces an
estimate, call it Em, for m ∈ {1, . . .M}. We report our
final estimate as the median of these estimates. This is the
classic Median-of-Means technique.

Let Fm be the indicator variable indicating if the esti-
mator Em fails to concentrate. Clearly E(Fm) ≤ 1

4 .
Moreover, E(F =

∑M
m=1 Fm) ≤ M

4 . The probability
that the median estimate is bad, P(median of Emfails) ≤
P(half of Em fails) = P(F ≥ M

2 ). By a simple Chernoff
bound, we see that: P(F ≥ M

2 ) ≤ e−(2 ln 2−1)M
4 ≤ e

−M
11 .

So to satisfy a desired failure probability δ, it suffices to
have e

−M
11 ≤ δ, therefore M ∈ O(log( 1δ )).

In the rest of the section, we establish bounds on K and S
so that one estimator fails with probability at most 1

4 . We
appeal again to Chebyshev’s Inequality:

P

(∣∣∣∣∣
∑S
i=1 Zi
S

− |Aq|

∣∣∣∣∣ ≥ ε|Aq|
)
≤
σ2(

∑S
i=1 Zi

S )

ε2|Aq|2

In Lemma 4.1, we analyze the variance of our estimator, and
show that σ2(

∑S
i=1 Zi

S ) ≤ E[Z2]
S + σ2(W ). Therefore, in

order so that the failure probability is less than 1
4 , it suffices

to have σ2(
∑S

i=1 Zi

S ) ≤ ε2|Aq|2
4 , which can be obtained by

letting E[Z2]
S ≤ ε2|Aq|2

8 and σ2(W ) ≤ ε2|Aq|2
8 .

Focusing on the σ2(W ) term, which depends on the number
of tables K created, we show in Lemma 3.3 from Section
3.1 that it suffices to take K ≥ 8

ε2 min
x∈Aq

p(x) .

Now that we have our table complexity, we can analyze our
sampling complexity S to bound E[Z2]

S .

Lemma 4.1. Suppose K ≥ 8
ε2 min

x∈Aq
p(x) . Then S ∈

O

(
E(Cq(I))

ε2|Aq|· min
x∈Aq

p(x)

)
suffices to achieve E[Z2]

S ≤ ε2|Aq|2
8 .

Proof. By Lemma 4.2 we have:

E[Z2]

S
=

1

S

∑
x∈Aq

∑
y∈D

[
p(x, y)

K · p(x)2
+

(
1− 1

K

)
p(y)

p(x)

]

Substituting for K ≥ 8
ε2 min

x∈Aq
p(x) gives:

E[Z2]

S
≤ 1

S

∑
x∈Aq

∑
y∈D

ε2p(x, y) min
x∈Aq

p(x)

8p(x)2
+
p(y)

p(x)


≤ 1

S

∑
x∈Aq

∑
y∈D

[
ε2p(x, y)

8p(x)
+
p(y)

p(x)

]

≤ 1

S

∑
x∈Aq

∑
y∈D

[
(1 + ε2)

p(y)

p(x)

]

In order to guarantee E[Z2]
S ≤ ε2|Aq|2

8 , we need:

S ≥

∑
x∈Aq

∑
y∈D

[
(1 + ε2) p(y)p(x)

]
ε2|Aq|2

= (1 + ε2)

∑
x∈Aq

1
p(x)

∑
y∈D p(y)

ε2|Aq|2

= (1 +
1

ε2
)

∑
x∈Aq

1
p(x) E(Cq(I))
|Aq|2

Therefore, we conclude that

S ∈ O

 E(Cq(I))
ε2|Aq| · min

x∈Aq

p(x)


is sufficient.

Putting together Lemmas 3.3 and 4.1 with the median of
means strategy yields our main result, Theorem 2.1.

In the rest of this paper we discuss the results of our experi-
ments on real datasets.

5. Experiments
We describe our experiments using the GLOVE dataset. We
use the set of 400,000 pre-trained 50-dimensional word
embedding vectors trained from Wikipedia 2014 + Giga-
word 5, provided by (Pennington et al., 2014). We nor-
malize the embeddings, as is standard in many word em-
bedding applications (Sugawara et al., 2016) We choose 3
query words with different neighborhood profiles: “venice”,
“cake”, “book”. Venice has the smallest neighborhood, with
206 elements with angular distance less than 60 degrees,
cake has a medium sized neighborhood with about 698
elements, book has the largest neighborhood with 1275 el-
ements. The histogram for these 3 queries are shown in
Figure 1.

We also choose our angle range of interest, A, to be 0-
60 degrees. A search through our dataset gave “florence”,
“cannes”, “rome” as representative elements that are 40-50



Local Density Estimation in High Dimensions

Figure 1: The statistical profiles of angular distance between our 3 queries and the
rest of the dataset D. “venice” has the smallest neighborhood with only about 206
points in the 0-60 range, followed by “cake” with 698, followed by “book” with 1275.
We plot the number of elements at different intervals of cosine similarity from the 3
queries. Notice that most (more than 370,000 out of the total 400,000) embeddings
in the dataset fall at about 60-120 degrees to the query. The leftmost blue bin that
represents the number of elements between 0-60 degrees to our 3 queries are barely
noticeable.

degrees from “venice”, and “renaissance”, “milan”, “tus-
cany”, “italy” in the 50-60 degree range. Terms such as
“cheesecake”, “desserts”, “ganache”, and “bakes” appear
in the 40-50 degree annulus around “cake”, while terms
such as “fruitcake”, “cupcake”, “confections”, “poundcake”,
and “eggs” appear in the 50-60 degree histogram. For
“book”: “character”, “chronicles”, “paperback”, “authors”,
and “text” are in the 40-50 degree range while “bestseller”,
“protagonist”, “publishers”, “booklet”, “publishes”, “edit-
ing”, “monograph”, and “chapter” are in the 50-60 degree
range. This particular experiment shows that while elements
in the 40-50 degree range are extremely related, words in
the 50-60 degree range are also relevant, and so we fix A
to be 0-60 degrees in all of our experiments. We also fix
t = 20 in all of our experiments, since we have 400,000
embeddings in total and 20 ≈ log2(400, 000).

As Table 1 illustrates, the biggest challenge for this esti-
mation problem is the fact that the count of the number of
elements within 0-60 degrees is dwarfed by the number of
elements 60-120 degrees away from the queries. This issue
makes locality sensitive techniques necessary for efficient
search and retrieval in high dimensions.

Table 1: Statistics of Queries

QUERY # WITHIN 60 DEGREES % OF POPULATION

VENICE 206 .0515
CAKE 698 .1745
BOOK 1275 .31875

As we have previously mentioned in section 3.1, the num-
ber of tables K theoretically required for (near) unbiased
estimation relies on a worst-case variance bound; real-world
data do not necessarily exhibit worst-case behavior. In our
studies of our 3 queries see Figures 2, the inherent bias of
our estimator decreases as we increase the sampling ham-

ming threshold. This is as expected, using a larger range
of hamming distances helps concentrate the count of the
elements of interest Aq that fall into the specified range of
hamming distances around the mean, which means that a
smaller K is required to achieve small bias.

Moreover, the empirical bias of our estimator at hamming
threshold 5 is around 5% for 20 hash tables, with very little
improvement with 40 hash tables. This is consistent with
our 3 queries. With this in mind, we compare our estimator
against the benchmark estimator introduced by (Spring &
Shrivastava, 2017). Though their work originally intended
to solve a different problem, their technique can solve our
problem by adapting the weight function appropriately. The
key differences between their work and ours is that they only
probe the 0 hamming distance bucket in each table, similar
to the classic LSH literature, and instead of sampling, they
simply enumerate the elements in the hamming distance 0
bucket for each table. For higher values of K, which our
experiments demonstrate that their estimator needs in order
to get good results, enumeration might not be so efficient.

In Figure 3, we compare (Spring & Shrivastava, 2017)’s
technique of enumerating and importance-weighting ham-
ming distance 0 elements to our technique of importance
sampling from different hamming thresholds. Our experi-
ments use random hyperplane LSH and we report relative
error averaged over 25 trials, where in each trial we generate
a new set of K tables. Panel (b) experiments with (Spring
& Shrivastava, 2017)’s technique for the 3 queries, with dif-
ferent choices of K, the number of tables. Our results show
that even for K = 40 tables, the relative error of their tech-
nique can still be higher than 50%, particularly for queries
with small neighborhoods such as “venice”. For “venice”
the increase in table allocation from 20 to 40 made a very
small difference to the overall estimation error. “book” and
“cake” fared better at 40 tables, however, the error was still
around 25 %, while our estimator (panel a) estimated to
within about 10% error using only 20 tables.

Panel (a) of Figure 3 shows that utilizing any hamming
threshold greater than 0 gives superior estimation perfor-
mance to staying only within the 0 hamming distance bucket.
In this experiment, we fix our sampling budget to 1000
samples and the table budget to 20 tables. The hamming
distance 0 error reported in this figure uses enumeration; all
other hamming thresholds use the 1000 sampling budget.
In our experiments for the 3 queries, one can expect about
80 points in total in the hamming distance 0 buckets across
20 tables. In this experiment, our technique uses 1000 sam-
ples vs 80 points, however, this (somewhat negligible in
today’s computing infrastructure) sample complexity trades
off against a large improvement in precision, as well as a
much lower storage cost in the number of tables K.

Finally, we note that panel (a) of Figure 3 shows the smallest



Local Density Estimation in High Dimensions

(a) venice (b) cake (c) book

Figure 2: The empirical bias for different values of K for queries “venice”, “cake” and “book”. For each hamming threshold, the relative bias is averaged over 50 sets of
K tables, using random hyperplane hash as the LSH function. The bias decreases as the hamming threshold increases and the bias decreases with more hash tables, keeping
hamming threshold fixed. The bias does not drop significantly from 20 to 40 hash tables. At 20 hash tables, the bias at hamming threshold 5 is around 5%. This demonstrates
that for real datasets the number of tables needed can be far fewer than what is theoretically required in the worst case scenario.

(a) Estimation from Different Thresholds Fixing 20 Tables and 1000 samples (b) Estimation using different number of tables fixing I = 0

Figure 3: Comparison of our estimator against the benchmark LSH estimator adapted from ideas introduced in (Spring & Shrivastava, 2017). In our experiments, panel (b),
even after 40 hash tables, the error remained above 20%, and above 50% for queries with very small neighborhoods, such as “venice”. In contrast, panel (a) illustrates the
relative accuracy for our estimator. We fix 20 hash tables and takes 1000 samples from different hamming thresholds. Note that for queries like “venice”, which has a very
small neighborhood, taking 1000 samples at hamming threshold 5 performed worse than at hamming threshold 3; this is likely because 1000 samples was too few for hamming
threshold 5 – the ratio of total elements to elements of interest in hamming threshold 5 is high.

error for “venice” at hamming threshold 3. This is related
to the characteristics of this query and the sampling bud-
get. We see in this example that for “venice”, which is a
fairly isolated data point compared to the other 2 queries,
going to further hamming distances actually hurts the qual-
ity of the estimate because we actually dilute the proportion
of interesting elements. Using higher thresholds typically
requires more samples, as shown in Figure 4. However,
higher thresholds typically lowers the inherent bias in the
importance sampling scheme, as demonstrated in Figure 2.
Implementers should consider this tradeoff in their algorith-
mic design choices.

6. Discussion
Given the case study of our estimator achieving the small-
est estimation error for “venice” at hamming threshold 3,
whereas for the more popular queries “cake” and “book”
performance improves steadily at higher hamming thresh-
olds, it would be interesting to, from the practitioner’s point
of view, understand what is the best hamming threshold to
sample from, and given a hamming threshold, how many
samples should be taken for a quality estimate. The optimal

Figure 4: The inverse proportion of relative elements of interest in the overall sub-
sampling pool for various hamming thresholds, averaged over 50 trials of sets of
20 hash tables. This figure shows that using higher thresholds typically requires
more samples. However, higher thresholds typically have less inherent bias in the
importance sampling scheme, as demonstrated in Figure 2. Implementers should
consider this tradeoff in their algorithmic design choices.

sample complexity is data-dependent, and cannot be known
without a sense of |Aq|, the very quantity we aim to esti-
mate. But instead of fixing the sample complexity up-front,
is there a way we can iteratively, in an on-line fashion, de-
termine whether we should keep sampling or stop, based on
a current belief of |Aq|?



Local Density Estimation in High Dimensions

Acknowledgements
This work was initiated while the authors were visiting
Laserlike, Inc. Xian Wu was supported by a Harold Thomas
Hahn Jr. Fellowship from the Department of Management
Science and Engineering at Stanford University. Moses
Charikar was supported by NSF grant CCF-1617577 and a
Simons Investigator Award.

References
Ahle, T. D., Aumüller, M., and Pagh, R. Parameter-free

locality sensitive hashing for spherical range reporting.
In Proceedings of the Twenty-Eighth Annual ACM-SIAM
Symposium on Discrete Algorithms, pp. 239–256. Society
for Industrial and Applied Mathematics, 2017.

Andoni, A., Indyk, P., Laarhoven, T., Razenshteyn, I., and
Schmidt, L. Practical and optimal lsh for angular distance.
In Cortes, C., Lawrence, N. D., Lee, D. D., Sugiyama, M.,
and Garnett, R. (eds.), Advances in Neural Information
Processing Systems 28, pp. 1225–1233. 2015.

Arya, S., da Fonseca, G. D., and Mount, D. M. A unified
approach to approximate proximity searching. European
Symposium on Algorithms, 2010.

Aumüller, M., Christiani, T., Pagh, R., and Silvestri, F.
Distance-sensitive hashing. 03 2017. URL https://
arxiv.org/abs/1703.07867.

Cao, S., Lu, W., and Xu, Q. Grarep: Learning graph repre-
sentations with global structural information. In Proceed-
ings of the 24th ACM International on Conference on
Information and Knowledge Management, pp. 891–900.
ACM, 2015.

Charikar, M. and Siminelakis, P. Hashing-based-estimators
for kernel density in high dimensions. IEEE Symposium
on Foundations of Computer Science, 2017.

Charikar, M. S. Similarity estimation techniques from round-
ing algorithms. In Proceedings of the Thiry-fourth Annual
ACM Symposium on Theory of Computing, STOC ’02, pp.
380–388, New York, NY, USA, 2002. ACM. URL http:
//doi.acm.org/10.1145/509907.509965.

Grover, A. and Leskovec, J. node2vec: Scalable feature
learning for networks. In Proceedings of the 22nd ACM
SIGKDD international conference on Knowledge discov-
ery and data mining, pp. 855–864. ACM, 2016.

Hamilton, W., Ying, Z., and Leskovec, J. Inductive repre-
sentation learning on large graphs. In Advances in Neural
Information Processing Systems, pp. 1025–1035, 2017.

Huang, E. H., Socher, R., Manning, C. D., and Ng, A. Y.
Improving word representations via global context and

multiple word prototypes. In Proceedings of the 50th
Annual Meeting of the Association for Computational Lin-
guistics: Long Papers - Volume 1, ACL ’12, pp. 873–882,
Stroudsburg, PA, USA, 2012. Association for Computa-
tional Linguistics.

Jegou, H., Douze, M., and Schmid, C. Product quantiza-
tion for nearest neighbor search. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 33, Jan 2011.

Lai, S., Liu, K., He, S., and Zhao, J. How to generate a good
word embedding. IEEE Intelligent Systems, 31, 2016.

Livni, R., Shalev-Shwartz, S., and Shamir, O. On the compu-
tational efficiency of training neural networks. In Ghahra-
mani, Z., Welling, M., Cortes, C., Lawrence, N. D., and
Weinberger, K. Q. (eds.), Advances in Neural Information
Processing Systems 27, pp. 855–863. Curran Associates,
Inc., 2014.

Melamud, O., McClosky, D., Patwardhan, S., and Bansal, M.
The role of context types and dimensionality in learning
word embeddings. 01 2016. URL https://arxiv.
org/abs/1601.00893.

Mikolov, T., Chen, K., Corrado, G., and Dean, J. Efficient es-
timation of word representations in vector space. 01 2013.
URL https://arxiv.org/abs/1301.3781.

Pennington, J., Socher, R., and Manning, C. D. Glove:
Global vectors for word representation. In Empirical
Methods in Natural Language Processing (EMNLP), pp.
1532–1543, 2014.

Perozzi, B., Al-Rfou, R., and Skiena, S. Deepwalk: Online
learning of social representations. In Proceedings of the
20th ACM SIGKDD international conference on Knowl-
edge discovery and data mining, pp. 701–710. ACM,
2014.

Spring, R. and Shrivastava, A. A new unbiased and efficient
class of lsh-based samplers and estimators for partition
function computation in log-linear models. 03 2017. URL
https://arxiv.org/abs/1703.05160.

Sugawara, K., Kobayashi, H., and Iwasaki, M. On approxi-
mately searching for similar word embeddings. Proceed-
ings of the 54th Annual Meeting of the Association for
Computational Linguistics, 2016.

Tang, J., Qu, M., Wang, M., Zhang, M., Yan, J., and Mei,
Q. Line: Large-scale information network embedding.
In Proceedings of the 24th International Conference on
World Wide Web, pp. 1067–1077. International World
Wide Web Conferences Steering Committee, 2015.

Wang, X., Cui, P., Wang, J., Pei, J., Zhu, W., and Yang, S.
Community preserving network embedding. In AAAI, pp.
203–209, 2017.

https://arxiv.org/abs/1703.07867
https://arxiv.org/abs/1703.07867
http://doi.acm.org/10.1145/509907.509965
http://doi.acm.org/10.1145/509907.509965
https://arxiv.org/abs/1601.00893
https://arxiv.org/abs/1601.00893
https://arxiv.org/abs/1301.3781
https://arxiv.org/abs/1703.05160


Local Density Estimation in High Dimensions

Yang, Z., Cohen, W., and Salakhudinov, R. Revisiting
semi-supervised learning with graph embeddings. In
International Conference on Machine Learning, pp. 40–
48, 2016.

Zhang, C., Bengio, S., Hardt, M., Recht, B., and Vinyals, O.
Understanding deep learning requires rethinking general-
ization. 11 2016. URL https://arxiv.org/abs/
1611.03530.

https://arxiv.org/abs/1611.03530
https://arxiv.org/abs/1611.03530

