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Abstract

Large-scale distributed optimization is of great

importance in various applications. For data-

parallel based distributed learning, the inter-node

gradient communication often becomes the per-

formance bottleneck. In this paper, we propose

the error compensated quantized stochastic gra-

dient descent algorithm to improve the training

efficiency. Local gradients are quantized to re-

duce the communication overhead, and accumu-

lated quantization error is utilized to speed up the

convergence. Furthermore, we present theoreti-

cal analysis on the convergence behaviour, and

demonstrate its advantage over competitors. Ex-

tensive experiments indicate that our algorithm

can compress gradients by a factor of up to two

magnitudes without performance degradation.

1. Introduction

Due to the explosive growth of data in recent years, large-

scale machine learning has attracted increasing attention

in various domains, such as computer vision and speech

recognition. Distributed optimization is one of the core

building blocks in these applications, where the training

data is often too massive to be efficiently handled by a sin-

gle computation node.

A commonly used distributed learning framework is data

parallelism, in which the whole data set is split and stored

on multiple nodes within a cluster. Each node computes

its local gradients and communicates gradients with other

nodes to update model parameters. For such learning sys-

tems, the time consumption can be roughly categorized as

either computation or communication. The communication

often becomes the performance bottleneck, especially for

large clusters and/or models with tons of parameters.
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There have been several works attempting to improve the

efficiency of distributed learning by reducing the com-

munication cost. Some methods focused on quantizing

gradients into the fixed-point numbers (Zhou et al., 2016;

Alistarh et al., 2017), so that much fewer bits are needed

to be transimitted. More aggressive quantization, such as

the binary or ternary representation, has also been investi-

gated in (Seide et al., 2014; Strom, 2015; Wen et al., 2017).

Other methods imposed sparsity onto gradients during com-

munication, where only a small fraction of gradients get

exchanged across nodes in each iteration (Wangni et al.,

2017; Lin et al., 2018).

The underlying ideas of these methods are basically to com-

press gradients into some special form, in which each entry

can be represented by much fewer bits than the original

32-bit floating-point number. Such compression introduces

extra stochastic noises, i.e. quantization error, into the opti-

mization process, and will slow down the convergence or

even leads to divergence. 1Bit-SGD (Seide et al., 2014)

adopted the error feedback scheme, which was to compen-

sate the current local gradients with quantization error from

the last iteration, before feeding it into the quantization

function. Although authors stated that this improved the

convergence behaviour, no theoretical analysis was given

to evidence its effectiveness.

In this paper, we propose the error compensated quantized

stochastic gradient descent method, namely ECQ-SGD.

Our algorithm also utilizes the error feedback scheme, but

here we accumulate all the previous quantization errors,

rather than only from the last iteration as in 1Bit-SGD. Al-

though empirical evaluation shows that this modification

leads to faster and more stable convergence than many base-

line methods, it is non-trivial to establish the theoretical

guarantee for this phenomenon.

In (Alistarh et al., 2017), authors proved that for their pro-

posed QSGD algorithm, the number of iterations required

to reach a certain sub-optimality gap is proportional to the

variance bound of stochastic quantized gradients. However,

this cannot explain our method’s convergence behaviour,

since our quantized gradients are biased estimations, unlike

in QSGD. Actually, the variance bound of quantized gradi-

ents is even larger than that in QSGD, due to the accumu-
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lated quantization error. In order to address this issue, we

present the convergence analysis from another perspective,

and prove that our algorithm has a tighter worst-case error

bound than QSGD with properly chosen hyper-parameters.

It can be shown that our proposed error feedback scheme

can well suppress the quantization error’s contribution to

the error bound, leading to a smaller sub-optimality gap

than QSGD, as we observed in experiments.

The remaining part of this paper will be organized as fol-

lows. We briefly review related works in Section 2, and

present preliminaries in Section 3. In Section 4 and 5, we

propose the ECQ-SGD algorithm and its theoretical anal-

ysis. Extensive experiments are carried out in Section 6,

followed by the final conclusions.

2. Related Works

There have been several works proposed to speed up

stochastic gradient descent in the context of distributed

learning. Some adopt asynchronous update to decouple

computation from communication, while others focus on

reducing the communication overhead with gradient quan-

tization or sparsification.

Asynchronous SGD. Hogwild! (Recht et al., 2011) is

a lock-free implementation of paralleled SGD that can

achieve a nearly optimal rate of convergence for certain

problems. (Dean et al., 2012) proposes the DistBelief

framework, which adopts asynchronous SGD to train deep

networks under a distributed setting. The convergence be-

haviour of asynchronous SGD have been extensively anal-

ysed in many works (Chaturapruek et al., 2015; Zhao & Li,

2016; Zheng et al., 2017; De Sa et al., 2017).

Gradient Quantization. In (Seide et al., 2014), 1Bit-SGD

is proposed to quantize each gradient component to either

1 or -1 with zero-thresholding. An error feedback scheme

is introduced during quantization, to compensate the quan-

tization error from the last iteration. Similar ideas are

adopted in (Strom, 2015), which accumulates local gradi-

ents across iterations, and only transmits gradient compo-

nents exceeding a pre-selected threshold. Wen et al. further

extend this idea and compress gradients into ternary values

with a stochastic quantization function to ensure the unbi-

asness (Wen et al., 2017). Quantized SGD (Alistarh et al.,

2017) randomly quantizes gradients using uniformly dis-

tributed quantization points, and detailed analysis is pre-

sented to address its convergence. ZipML (Zhang et al.,

2017) introduces an optimal quantization strategy via dy-

namically choosing quantization points based on the distri-

bution. Zhou et al. propose the DoReFa-Net to train con-

volutional networks with inputs, weights, and gradients all

quantized into fixed-point numbers (Zhou et al., 2016).

Gradient Sparsification. The gradient dropping method

is proposed in (Aji & Heafield, 2017) to introduce spar-

sity into gradients to reduce the communication cost. In

(Wangni et al., 2017), gradient sparsification is modelled

as a linear programming problem, aiming to minimize the

variance increase of quantized gradients. Lin et al. propose

the deep gradient compression algorithm, utilizing momen-

tum correction, gradient clipping, momentum factor mask-

ing, and warm-up training to achieve higher sparsity with-

out losing the accuracy (Lin et al., 2018).

3. Preliminaries

We consider the following unconstrained optimization:

min
w

f (w) (1)

where w ∈ R
d and f : Rd → R is a convex and differen-

tiable function we wish to minimize. Often, the objective

function f is defined on a set of training samplesD = {xi},
and the need for distributed optimization arises when the

training set is too large to fit into a single node.

Assume we are solving this distributed optimization prob-

lem in a data-parallel manner. The full set D is evenly dis-

tributed across P nodes, and the data subset located at the

p-th node is denoted as Dp. Formally, we wish to optimize:

min
w

P
∑

p=1

∑

xi∈Dp

f (w;xi) (2)

Figure 1 depicts how model parameters w are updated

via distributed SGD. Every node initializes its local model

replica using the same random seed, to ensure the consis-

tency of all model replicas. In the t-th iteration, each node

randomly selects a mini-batch of training samples, com-

putes local gradients, and then broadcasts to all the other

nodes. When one node gathers all the local gradients sent

by other nodes, global gradients can be computed and used

to update model parameters.

Figure 1. Distributed optimization under the data-parallel setting.
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4. Error Compensated Quantized SGD

For distributed optimization under the data-parallel setting,

it is required to exchange local gradients between every

two nodes in each iteration. For large-scale distributed op-

timization with massive number of model parameters, e.g.

training a convolutional neural network, gradient commu-

nication may become the performance bottleneck.

One possible solution is to quantize local gradients before

transmission, so as to reduce the communication cost. In

this section, we propose the ECQ-SGD (Error Compen-

sated Quantized SGD) algorithm, which updates model pa-

rameters with quantized local gradients. In each iteration,

current local gradients are compensated with accumulated

quantization error from all the previous iterations, and then

fed into a stochastic quantization function for compression.

Let Q : Rd → Cd be an unbiased stochastic quantization

function, which maps each component in a d-dimensional

vector into some element from the quantization codebook C.

The codebook usually only contains limited number of el-

ements, so the quantized vector can be efficiently encoded.

In each iteration, each node quantizes its local gradients

before broadcasting:

g̃(t)
p = Q(g(t)

p ) (3)

where g
(t)
p is the local gradients of the p-th node at the t-th

iteration, and g̃
(t)
p is its quantized counterpart.

When a node receives all the local gradients sent by other

nodes, it computes the global gradients and updates its local

model replica via:

w(t+1) = w(t) − η · g̃(t) = w(t) − η

P

P
∑

p=1

g̃(t)
p (4)

where η > 0 is the learning rate.

The core idea of ECQ-SGD is that when quantizing local

gradients, both the current gradients and previously accu-

mulated quantization error should be taken into considera-

tion. Specifically, we use h
(t)
p to denote the accumulated

quantization error of the p-th node at the t-th iteration:

h(t)
p =

t−1
∑

t′=0

βt−1−t′(g(t′)
p − g̃(t′)

p ) (5)

where β is the time decaying factor (0 ≤ β ≤ 1). Note

that the accumulated quantization error can be incremen-

tally updated:

h(t)
p = βh(t−1)

p + (g(t−1)
p − g̃(t−1)

p ) (6)

where h
(0)
p = 0. The quantized local gradients are now

computed by applying the quantization function to the com-

pensated gradients:

g̃(t)
p = Q(g(t)

p + αh(t)
p ) (7)

where α is the compensation coefficient (α ≥ 0).

Here, we adopt a stochastic quantization function with uni-

formly distributed quantization points, similar to QSGD

(Alistarh et al., 2017), where the i-th component is quan-

tized as:

g̃i = ‖g‖ · sgn (gi) · ξ (|gi| ; ‖g‖) (8)

where ‖g‖ acts as the scaling factor (possible choices in-

clude l2-norm and l∞-norm), and ξ (·) is a stochastic func-

tion which maps a scalar to some element in
{

0, 1
s
, . . . , 1

}

:

ξ (|gi| ; ‖g‖) =
{

l
s
, with probability l + 1− s · |gi|‖g‖

l+1
s
, otherwise

(9)

when |gi| / ‖g‖ falls in the interval
[

l
s
, l+1

s

)

. The hyper-

parameter s defines the number of non-zero quantization

levels: a larger s leads to more fine-grained quantization,

at the cost of increased communication cost. From now on,

we use Qs (·) to denote the quantization function with s
non-zero quantization levels.

After quantization, we only need r = ⌈log2 (2s+ 1)⌉ bits

to encode each quantized g̃i, and one floating-point number

to represent the scaling factor ‖g‖. The overall communi-

cation cost is 32+dr bits (r ≪ 32), which is much smaller

than 32d bits needed by the original 32-bit full-precision

gradients. More efficient entropy encoding schemes, e.g.

Huffman encoding (Huffman, 1952), can further reduce the

communication cost. Let dk denote the number of dimen-

sions assigned to the k-th quantization level, then the over-

all encoding length is at most
∑2s+1

k=1 dk log2
d
dk

bits.

We summarize the overall workflow in Algorithm 1. Since

all the local gradients are quantized before transmission,

the communication overhead can be greatly reduced. This

is crucial to the learning efficiency, especially when the

inter-node communication is the performance bottleneck.

5. Theoretical Analysis

In this section, we analyse the convergence behaviour of the

proposed ECQ-SGD algorithm. We start with the discus-

sion on the variance bound of quantization error. After that,

we build up the error bound for quadratic optimization prob-

lems, and demonstrate ECQ-SGD’s advantage over QSGD.

5.1. Variance Bound of Quantization Error

We define the quantization error as the difference between

the compensated local gradients and its quantization results:

ε(t)p = g̃(t)
p −

(

g(t)
p + αh(t)

p

)

(10)

If the quantization function uses l2-norm as the scaling fac-

tor, then it is identical to the one used in QSGD. In this case,
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Algorithm 1 Error Compensated Quantized SGD

Input: distributed data D = D1 ∪ · · · ∪ DP

initialize model parameters w(0), and reset h
(0)
p ← 0

for t = 0, . . . , T − 1 do

// 1. Gradient Computation and Communication

for p = 1, . . . , P do

randomly select a mini-batch D(t)
p

compute local gradients g
(t)
p = ∇f(w(t);D(t)

p )

compute quantized local gradients g̃
(t)
p with (7)

broadcast quantized local gradients g̃
(t)
p

update the accumulated quantization error h
(t+1)
p

with (6)

end for

// 2. Model Update

for p = 1, . . . , P do

receive quantized local gradients {g̃(t)
p }

compute global gradients g̃(t) =
∑

p g̃
(t)
p /P

update model parameters w(t+1) = w(t) − η · g̃(t)

end for

end for

we can directly borrow their conclusions on the following

two properties of quantization error:

Lemma 1. (Alistarh et al., 2017) For any vector v ∈ R
d,

let ε = Qs (v) − v denote the quantization error, then we

have:

• Unbiasness: E [ε] = 0

• Bounded variance: E ‖ε‖22 ≤ min
(

d
s2
,
√
d
s

)

· ‖v‖22

Here, we assume that the second moment of local gradients

are bounded, i.e. ‖g(t)
p ‖22 ≤ B, ∀(p, t). Under this assump-

tion, the quantization error in QSGD satisfies:

E‖ε(t)p ‖22 ≤ γB (11)

where γ = min(d/s2,
√
d/s).

In ECQ-SGD, however, the vector to be quantized is a lin-

ear combination of current local gradients and accumulated

quantization error. Still, we can derive a slightly relaxed

bound for the quantization error’s second moment:

Lemma 2. For the p-th node, its quantization error at the

t-th iteration satisfies:

E‖ε(t)p ‖22 ≤
(

1 + α2γ · 1− λt

1− λ

)

· γB (12)

where λ = α2γ + (β − α)2.

Proof. Please refer to the supplementary material.

In ECQ-SGD, we usually select hyper-parameters (α, β)
to satisfy λ < 1 (i.e. let 0 < α < 2

γ+1 and β = 1),

ensuring that the following variance bound of quantization

error holds for any iteration t:

E‖ε(t)p ‖22 <
(

1 +
α2γ

1− λ

)

· γB (13)

Therefore, as long as α2γ
1−λ

is small, the variance bound of

quantization error in the ECQ-SGD algorithm is still very

close to that of QSGD. Also, it is worth noting that this up-

per bound does not depend on t, indicating that the variance

bound will not diverge during the optimization.

Based on the above results, one can derive that the quan-

tized local gradients’ variance bound in ECQ-SGD is also

larger than that in QSGD. According to the convergence

analysis in QSGD, the number of iterations required to

reach certain sub-optimality is proportional to the stochas-

tic gradients’ variance bound. This implies that following

the convergence analysis in QSGD, one would conclude

that ECQ-SGD should converge slower than QSGD, which

actually conflicts with experimental results (as shown later).

Therefore, we need to analyse ECQ-SGD’s convergence be-

haviour from another perspective to explain its advantage

over QSGD as observed in practice.

5.2. Convergence for Quadratic Optimization

Now we analyse how model parameters converge to the op-

timal solution in ECQ-SGD. Consider the following convex

quadratic optimization:

min
w

P
∑

p=1

∑

(Ai,bi)∈Dp

1

2
wTAiw + bT

i w (14)

where the whole data setD = D1∪· · ·∪DP is evenly split

and stored at P nodes. By summing up all Ais and bis, the

above optimization is equivalent to:

min
w

1

2
wTAw + bTw (15)

where A =
∑

(Ai,bi)∈D Ai and b =
∑

(Ai,bi)∈D bi. The

smallest and largest singular values of A are denoted as a1
and a2, respectively, i.e. a1I � A � a2I. Here, we assume

a1 > 0 to ensure the strong convexity, which leads to the

closed-form optimal solution w∗ = −A−1b.

In each iteration, every node constructs a mini-batch of

training samples {(Ai,bi)}, uniformly sampled from its

local data subset. The resulting local gradients can be rep-

resented as the underlying true gradients plus a stochastic

noise term, which is:

g(t)
p = Aw(t) + b+ ξ(t)p (16)
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where {ξ(t)p } are i.i.d. random noises with zero mean. The

quantized local gradients are given by:

g̃(t)
p = Aw(t) + b+ ξ

(t)
p + αh(t)

p + ε(t)p (17)

Recall the update rule of ECQ-SGD, we have:

w(t+1) = w(t)−η(Aw(t)+b+ξ(t)+αh(t)+ε(t)) (18)

where auxiliary variables are defined as follows:

ξ(t) =
1

P

P
∑

p=1

ξ(t)p , h(t) =
1

P

P
∑

p=1

h(t)
p , ε(t) =

1

P

P
∑

p=1

ε(t)p

(19)

From Lemma 2, we can derive the variance bound for the

pseudo quantization error:

E‖ε(t)‖22 ≤
[

1 + α2γ · 1− λt

1− λ

]

· γB
P

(20)

Below, we present the worst-case upper bound on the ex-

pected distance between w(t+1), solution obtained in the

(t+ 1)-th iteration, and w∗, the optimal solution.

Theorem 1. Let f (w) = 1
2w

TAw + bTw be the objec-

tive function to be minimized, whose optimal solution is

denoted as w∗, and R2 = supw∈Rd ‖w − w∗‖22. Assume

the stochastic noise in the mini-batch’s gradients satisfies

E‖ξ(t)‖22 ≤ σ2, then the error bound in the ECQ-SGD al-

gorithm satisfies:

E‖w(t+1) −w∗‖22 ≤ R2‖Ht+1‖22 + η2σ2
t
∑

t′=0

‖Ht′‖22

+η2E‖ε(t)‖22 + η2
t−1
∑

t′=0

‖Θ(t′)‖22 · E‖ε(t
′)‖22

(21)

where H = I− ηA and:

Θ(t′) = Ht−t′ −
t
∑

t′′=t′+1

α(β − α)t
′′−t′−1Ht−t′′ (22)

Proof. Please refer to the supplementary material.

It is worth mentioning that our algorithm only differs from

QSGD in the last two terms of error bound given above;

the other two terms are identical in both algorithms. Now

we analyse Θ(t′)’s value to reveal the difference between

ECQ-SGD and QSGD. Firstly, we can prove that:

Lemma 3. If the learning rate satisfies ηa1 < 1, then:

Θ(t′) �
(

1− α

1− ηa1

1− νt−t′

1− ν

)

·Ht−t′ (23)

where ν = (β − α)/(1− ηa1).

By letting 0 < α < 1 and β = 1 − ηa1, the inequality

in Lemma 3 is simplified to Θ(t′) � νt−t′ ·Ht−t′ . Also,

we have 0 < ν < 1 from its definition, which implies that

in ECQ-SGD, the multiplier of each previous quantization

error consistently precedes its counterpart in QSGD (where

ν = 1 due to α = 0).

To simplify further discussions, we introduce the auxiliary

variable τ (t
′), defined as:

τ (t
′) = sup

(

‖Θ(t′)‖22 · E‖ε(t
′)‖22
)

(24)

which stands for the upper bound of quantization error

ε(t
′)’s contribution to the final error bound (21). Simi-

larly, the upper bound of quantization error’s contribution

in QSGD is given by:

τ
(t′)
QSGD = ‖Ht−t′‖22 ·

γB

P
(25)

which is actually a special case of ECQ-SGD when α = 0.

Recall that in (13), by ensuring λ < 1, the variance

bound of quantization error in ECQ-SGD is relatively close

to that of QSGD. Therefore, with properly chosen hyper-

parameters, ECQ-SGD’s reduction ratio in τ (t
′) (compar-

ing against QSGD) approaches to zero as the time gap

(t− t′) grows to infinity:

Lemma 4. If β = 1 − ηa1 and α > 0 satisfies that λ =
α2γ + (β − α)2 < 1, then we have:

lim
(t−t′)→∞

τ (t
′)

τ
(t′)
QSGD

= 0 (26)

The detailed proof for Lemma 3 and 4 can be found in the

supplementary material. In practice, since the learning rate

η ≪ 1
a1

, we can simply set β = 1 and α to some small

positive number to approximately satisfy the requirements

in Lemma 4.

Lemma 4 implies that as the iteration goes on, ECQ-SGD

can better suppress all the previous quantization errors’

contribution to the error bound (21) than QSGD. An intrin-

sic understanding is that with the error feedback scheme,

quantization errors from different iterations are cancelled

out when evaluating the final error bound, leading to a

tighter worst-case upper bound than that of QSGD.

6. Experiments

In this section, we demonstrate the effectiveness of our

proposed ECQ-SGD algorithm with extensive experiments.

We start with linear models for convex optimization, and

then extend to non-convex optimization with deep convolu-

tional neural networks. We further analyse the scalability

for large-scale scenarios, and finish the discussion with a

detailed study on choices of hyper-parameters.
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Figure 2. Comparison on the loss function’s value and distance to the optimal solution (left: Syn-256; middle: Syn-512; right: Syn-1024).

6.1. Linear Models

In the previous convergence analysis, we claim that for con-

vex quadratic optimization, ECQ-SGD can reduce the quan-

tization error’s contribution to the error bound, which leads

to better solution after convergence. Now we verify this

by comparing the convergence behaviour of ECQ-SGD and

QSGD for training linear regression models.

Here we start with three synthetic datasets: Syn-256, Syn-

512, and Syn-1024. Each dataset consists of 10k training

samples, and the suffix denotes the feature dimension d.

The training sample is generated as yi = w∗Txi+ǫi, where

w∗ ∈ R
d is the underlying model parameters we wish to

obtain, and {ǫi} are i.i.d. random noises. The learning rate

is set to 0.02, and both QSGD and ECQ-SGD use l2-norm

as the scaling factor and 4 non-zero quantization levels, i.e.

s = 4. For ECQ-SGD, we let α = 0.2 and β = 0.9.

In Figure 2, we compare the loss function’s value (top)

and distance to the optimal solution (bottom) in each iter-

ation. For all three datasets, the convergence of loss func-

tion’s value of ECQ-SGD is more close to the 32-bit full-

precision SGD, and significantly faster than QSGD. On the

other hand, the gap between QSGD (or ECQ-SGD) and

32Bit-FP in the distance to the optimal solution measures

the quantization error’s contribution to the error bound as

defined in (21). The distance gap of ECQ-SGD is clearly

smaller than QSGD, indicating that the quantization error’s

contribution to the error bound is well suppressed.

Now we compare the run-time speed between QSGD and

ECQ-SGD on a larger dataset, Syn-20k, which consists of

50k training samples and the feature dimension is 20k. In

Figure 3, we report the decomposed time consumption and

test loss (in brackets) of various methods after 1k iterations.

We discover that ECQ-SGD achieves similar test loss with

32Bit-FP in a shorter time than both 32Bit-FP and QSGD.

Although ECQ-SGD requires extra encoding and decoding

time, the overall training speed is still improved due to the

reduction in the gradient communication time.
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Figure 3. Comparison on the decomposed time consumption and

test loss (in brackets) on the Syn-20K dataset. The suffix in QSGD

and ECQ-SGD represents s, the number of non-zero quantization

levels. The time consumption is for 1k iterations in total.

Furthermore, we extend the evaluation to two publicly

available datasets, YearPredictionMSD for regression and

gisette for classification (Chang & Lin, 2011). Linear re-

gression and logistic regression models are trained with dif-

ferent gradient quantization methods on these two datasets

respectively. The comparison on the loss function’s value
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and communication cost, averaged from five random runs,

is as depicted in Figure 4 and Table 1. Here we use squared

l2-loss for regression and log-loss for classification. The

communication cost is measured by the total number of bits

to encode gradients after 1k iterations. We use entropy en-

coding to fully exploit the sparsity after gradient quantiza-

tion for all methods.
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Figure 4. Comparison on the loss function’s value for training lin-

ear models with various methods (top: YearPredictionMSD; bot-

tom: gisette; left: training loss; right: test loss).

Table 1. Comparison on the loss function’s value and overall com-

munication cost for training linear models with various methods.

YEARPREDICTIONMSD LOSS # OF BITS RATIO

32BIT-FP 4.99e3 2.88e6 -
1BIT-SGD 6.57e3 1.51e5 19.07×
TERNGRAD 5.04e3 1.41e5 20.43×
QSGD 5.11e3 1.17e5 24.63×
ECQ-SGD 5.00e3 1.22e5 23.62×

GISETTE LOSS # OF BITS RATIO

32BIT-FP 1.16e−1 1.60e8 -
1BIT-SGD 1.47e−1 2.59e6 61.75×
TERNGRAD 1.16e−1 4.62e6 34.67×
QSGD 1.48e−1 5.88e5 272.18×
ECQ-SGD 1.16e−1 5.68e5 281.88×

From Figure 4, we observe that all methods except 1Bit-

SGD converge at similar speed, and the final performance

is also almost identical to each other. This may due to the

relatively small number of feature dimensions (90) of the

YearPredictionMSD dataset, so that different gradient quan-

tization methods do not have significant performance gap.

For the gisette dataset, whose feature dimension is 5000,

both TernGrad and ECQ-SGD can still match the perfor-

mance of the 32-bit full-precision SGD, while 1Bit-SGD

and QSGD suffer more severe performance degradation.

On the other hand, ECQ-SGD achieves much higher com-

pression ratio (281.88×) than TernGrad (34.67×).

6.2. Convolutional Neural Networks

Now we evaluate the ECQ-SGD algorithm for training con-

volutional neural networks, which is a highly non-convex

optimization problem.

The experiments are carried out on the CIFAR-10 dataset

(Krizhevsky, 2009), which consists of 60k images from 10

categories. We follow the common protocol, using 50k im-

ages for training and the remaining 10k images for evalua-

tion. We train the ResNet-20 model (He et al., 2016) with

different gradient quantization methods, and the results are

as reported in Figure 5. For all methods, the batch size is

set to 128, and the learning rate starts from 0.1, divided by

10 at 40k and 60k iterations. The training process is termi-

nated at the end of the 200-th epoch (∼78k iterations).

In the first column of Figure 5, we compare the loss func-

tion’s value and overall communication overhead of vari-

ous methods. The hyper-parameters of each method1 are se-

lected to achieve negligible accuracy loss, comparing with

the 32-bit full-precision baseline. We discover that all meth-

ods converge at a similar speed, but ECQ-SGD offers over

80× reduction in the communication cost and significantly

outperforms other gradient quantization methods.

In the second and third column of Figure 5, we present

more detailed comparison against QSGD, since it is the

most relevant one with our method. Different scaling fac-

tors are used: l2-norm for the second column, and l∞-norm

for the third column. Both methods use a bucket size of

4096 for fair comparison. We observe that ECQ-SGD is

consistently superior to QSGD in both convergence speed

and classification accuracy, while the reduction in the com-

munication cost of these two methods are similar under the

same hyper-parameter settings.

6.3. Performance Model

We adopt the performance model proposed in (Yan et al.,

2015) to evaluate the scalability of our ECQ-SGD algo-

rithm. Lightweight profiling on the computation and com-

munication time is carried out to estimate the learning ef-

ficiency for larger clusters. Major hardware specifications

are as follows: Intel Xeon E5-2680 CPU, Nvidia Tesla P40

GPU (8 units per node), and Mellanox ConnectX-3 Pro net-

work card (40Gb/s connectivity).

In Figure 6, we report the throughput for training a ResNet-

50 model on the ILSVRC-12 dataset (Russakovsky et al.,

2015). For training with 512 GPUs, ECQ-SGD achieves

143.5% speed-up over the vanilla SGD (66.42k vs. 27.28k

1For 1Bit-SGD, the bucket size is set to 3. For TernGrad, the
bucket size is set to 16. For QSGD, the bucket size is set to 512,
using l∞-norm as the scaling factor and s = 4. For ECQ-SGD,
the bucket size is set to 4096, using l2-norm as the scaling factor,
and s = 4, α = 0.01, and β = 1.0.
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Figure 5. Comparison on the loss function’s value and communication cost (measured by the number of transmitted bits) for training a

LeNet model on the CIFAR-10 dataset. The classification accuracy is noted in the bracket. For the first two columns, both QSGD and

ECQ-SGD use l∞-norm as the scaling factor, and for the last column, l2-norm is used.
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Figure 6. Comparison on the throughput for training a ResNet-50

model on the ILSVRC-12 dataset with different number of GPUs.

images per second). In our experiments, the connection

bandwidth is relatively large and thus for clusters with

a smaller bandwidth, it is expected that our method can

achieve even higher speed-up.

6.4. Parameter Study

In Lemma 4, we present a guideline for choosing hyper-

parameters α and β in ECQ-SGD. A simple practice is to

set β = 1 and α to some small positive number satisfying

α2γ+(β−α)2 < 1. Now we verify whether this is indeed

optimal for training models to higher accuracy.

For quantitative evaluation, we train ResNet-20 models on

the CIFAR-10 dataset with various hyper-parameters com-

binations, and the results are as reported in Table 2. When

fixing α to 0.01, we discover that the lowest error rate is

achieved when β is set to 1. On the other hand, when β = 1

is fixed, similar error rate is achieved by setting α to any

value between 0.01 and 0.1. If α is too small, then the error

feedback effect is greatly weaken, leading to similar per-

formance with QSGD. If α is too large, then the constraint

λ = α2γ+(β−α)2 < 1 might be violated, and the training

process becomes less stable (e.g. when α = 0.15, the opti-

mization does not converge at all). The above observations

are consistent with our previous analysis in Lemma 4.

Table 2. Comparison on the classification error rate of ResNet-20

on CIFAR-10, under various hyper-parameter combinations.

α β ERR. RATE α β ERR. RATE

0.01 0.90 12.05% 0.001 1.00 9.18%
0.01 0.95 11.47% 0.003 1.00 9.06%
0.01 0.98 10.69% 0.010 1.00 8.25%
0.01 0.99 9.64% 0.030 1.00 8.18%
0.01 1.00 8.25% 0.100 1.00 8.22%

- - - 0.150 1.00 N/A

7. Conclusion

In this paper, we present the error compensated quantized

SGD algorithm to improve the learning efficiency for large-

scale distributed optimization. By introducing the error

feedback scheme, the ECQ-SGD algorithm can effectively

suppress the quantization error’s contribution to the error

bound. We analyse its convergence behaviour from the

theoretical perspective, add demonstrate its advantage over

the state-of-the-art QSGD algorithm. Experiments on con-

vex linear models and non-convex convolutional neural net-

works demonstrate the efficacy of the proposed algorithm.
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