
A. Unfold Architecture of Figure 1 in the Main Paper
The unfold architecture of Figure 1 in the main paper is shown in Figure 1 of Appendix A .

(a) Primal task, unfold encoder (b) Primal task, unfold decoder

(c) Dual task, unfold encoder (d) Dual task, unfold decoder

Figure 1. The unfold encoder-decoder framework.
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where αi is calculated following (Bahdanau et al., 2015).
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B. Unfold Architectures of X Component and Y Component in Figure 2 of the Main Paper
The unfold architectures of X Component and Y Component in Figure 2 of the main text is shown in Figure 2 of the
appendix. ZX

j and ZY
i are computed in the same ways as those in Eqn.(1) and Eqn.(2).

C. How to Build up the Dual Model
(1) The Encoder. Set CY to the null context, i.e., CY = {0}. At step j ∈ [Ty] where Ty is the length of y, preprocess CY and
obtain ZY

j : ZX
j = ϕz

Y (hYj−1, CY ). ϕz
Y is a function that sums up the elements in CY with adaptive weights. Then, calculate

the hidden representation hYj = ϕc
Y (y, hYj−1, Z

Y
j ).1 Eventually, we obtain a set of hidden representations hY = {hYj }

Ty

j=1.
The module ϕh

Y in component Y is not used while encoding y ∈ Y .

(2) The Decoder. Set CX to the hidden representations hY obtained in the encoding phase. At step i ∈ [Tx], where Tx is the
length of x, preprocess CX with the information available at step i and obtain ZX

i : ZX
i = ϕz

X(hXi−1, CX). Calculate the

1Note that in the encoding phase, all words in y are available. At step j, ϕcY and ϕzY can consider either y<j (Bahdanau et al., 2015)
or all the yj’s (Vaswani et al., 2017).



Figure 2. The unfold flow-chart of X component and Y component

hidden representation hXi = ϕc
X(x<i, h

X
i−1, Z

X
i ). Then map hXi to xi by xi = ϕh

X(hXj ). If xi is the symbol indicating the
end of a sentence, terminate the decoding procedure; otherwise, continue to generate words one by one.

D. Theoretical Analysis
We give a brief theoretical discussion about model-level dual learning. Note that there are a primal model f : X → Y and a
dual model g : Y → X . The parameters of f and g are denoted as θf and θg respectively.2 We take the symmetric setting as
an example and the result for the asymmetric setting is similarly obtained.

We want to minimize the (expected) risk of two models f and g, which is defined as follows:

R(f, g) = E
[

1

2

(
`1(f(x), y) + `2(g(y), x)

)]
,

∀f ∈ F , g ∈ G,
(3)

where F = {f(x; θf ); θf ∈Θxy}, G = {g(y; θg); θg ∈ Θyx}, Θxy and Θyx are parameter spaces, and the E is taken over
the underlying data distribution P . The `1 and `2 in Eqn.(3) are loss functions, both of which are mappings X × Y 7→ R.

As shown in Figure 1 of Section 1 at the main text, if we use two individual models to solve a pair of dual tasks, then for the
primal task, we need to use a set of parameters ϕc

p,X , ϕ
c
p,Y , ϕ

z
p,Y , ϕ

h
p,Y , where the subscript p stands for “primal”. The dual

task needs another group of parameters ϕc
d,Y , ϕ

c
d,X , ϕ

z
d,X , ϕ

h
d,X , where the superscript d stands for “dual”. By using our

proposed method, we actually add the following constraints:

ϕc
p,Y = ϕc

d,Y ; ϕc
p,X = ϕc

d,X . (4)

Let T denote the product space of the two models satisfying Eqn.(4). As a result, the model space of our proposed
model-level dual learning is (F × G) ∩ T , and we briefly denote it asH1.

Define the empirical risk on the n sample as follows: for any f ∈ F , g ∈ G,

Rn(f, g) =
1

n

n∑
i=1

1

2n
(`1(f(xi), yi) + `2(g(yi), xi)).

2The parameters θf and θg will be omitted when the context is clear.



Following (Bartlett & Mendelson, 2002), we introduce Rademacher complexity for our proposed method, a measure for the
complexity of the hypothesis.

Definition 1 Define the Rademacher complexity of our proposed method, Rd
n, as follows:
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,

where z = {z1, z2, · · · , zn} ∼ Pn, zi = (xi, yi) in which xi ∈ X and yi ∈ Y , σ = {σ1, · · · , σm} are i.i.d sampled with
P (σi = 1) = P (σi = −1) = 0.5.

The following theorem generally holds for our proposed method:

Theorem 1 (Theorem 3.1, (Mohri et al., 2012)) Let 1
2`1(f(x), y)+ 1

2`2(g(y), x) be a mapping fromX×Y to [0, 1]. Then,
for any δ ∈ (0, 1), with probability at least 1− δ, the following inequality holds for any (f, g) ∈ H1,

R(f, g) ≤ Rn(f, g) + 2Rd
n +

√
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δ
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Let Rc
n denote the Rademacher complexity for the standard supervised learning without our proposed method, i.e., no

constraint like Eqn.(4) is applied. It is defined as follows:

Definition 2 Define the Rademacher complexity of conventional learning scheme on the tasks Rc
n, as follows:

Rc
n = E
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[
sup

(f,g)∈F×G

1

2n

n∑
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(
`1(f(xi), yi) + `2(g(yi), xi)

)]
,

where z = {z1, z2, · · · , zn} ∼ Pn, zi = (xi, yi) in which xi ∈ X and yi ∈ Y , σ = {σ1, · · · , σm} are i.i.d sampled with
P (σi = 1) = P (σi = −1) = 0.5.

ConsideringH1 ∈ F × G, by the definition of Rademacher complexity, we have Rd
n ≤ Rc

n. Therefore, model-level dual
learning has a smaller generation error bound than the conventional supervised learning.
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