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Abstract
Many artificial intelligence tasks appear in
dual forms like English↔French translation and
speech↔text transformation. Existing dual learn-
ing schemes, which are proposed to solve a pair
of such dual tasks, explore how to leverage such
dualities from data level. In this work, we pro-
pose a new learning framework, model-level dual
learning, which takes duality of tasks into con-
sideration while designing the architectures for
the primal/dual models, and ties the model param-
eters that playing similar roles in the two tasks.
We study both symmetric and asymmetric model-
level dual learning. Our algorithms achieve signif-
icant improvements on neural machine translation
and sentiment analysis.

1. Introduction
Joint learning of multiple tasks has attracted much atten-
tion in machine learning community, and several learning
paradigms have been studied to explore the task correlations
from different perspective. Multi-task learning (Luong et al.,
2016; Zhang & Yang, 2017) is a paradigm that learns a prob-
lem together with other related problems at the same time,
using a shared representation. This often leads to a better
model for the main task, because it allows the learner to use
the commonality among the tasks. Transfer learning (Pan
& Yang, 2010) focuses on storing knowledge gained while
solving one problem and applying it to a different but related
problem. Recently, a new paradigm, dual learning (He et al.,
2016a; Xia et al., 2017b; Yi et al., 2017; Lin et al., 2018),
is proposed to leverage the symmetric structure of some
learning problems, such as English↔French translation,
image↔text transformation, and speech↔text transforma-
tion, and achieves promising results in various AI tasks (He
et al., 2016a; Yi et al., 2017; Tang et al., 2017).
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Dual learning algorithms have been proposed for different
learning settings. (He et al., 2016a; Yi et al., 2017) fo-
cus on the unsupervised setting and learn from unlabeled
data: given an unlabeled sample x ∈ X , the primal model
f : X 7→ Y first maps it to a sample y ∈ Y , the dual
model g : Y 7→ X maps y to a new sample x̂ ∈ X , and
then the distortion between x and x̂ is used as the feedback
signal to optimize f and g. (Xia et al., 2017b) focuses on
the supervised setting and conducts joint learning from la-
beled data by adding an additional probabilistic constraint
P (x)P (y|x; f) = P (y)P (x|y; g) on any (x, y) data pair
implied by structure duality. This probabilistic constraint
is also utilized in inference process (Xia et al., 2017a). In-
spired by the law of total probability, (Wang et al., 2018)
studies dual transfer learning, in which one model in a pair
of dual tasks is used to enhance the training of the other
model. Although those algorithms consider different set-
tings, they all consider duality at data level, characterized
by either the reconstruction error of unlabeled samples (He
et al., 2016a; Yi et al., 2017), the joint probability of data
pairs (Xia et al., 2017b; Wang et al., 2018), or the marginal
probability of data samples (Wang et al., 2018).

We find that many tasks are of structural duality/symmetry
not only in data level, but also in model level. Take neural
machine translation (briefly, NMT) (Xia et al., 2017c;d),
which attacks the problem of translating a source-language
sentence x ∈ X to a target-language sentence y ∈ Y , as an
example here. Such kinds of tasks are usually handled by an
encoder-decoder framework. We summarize an one-layer
LSTM (Hochreiter & Schmidhuber, 1997) based model in
Figure 1 and the other model structures like CNN (Gehring
et al., 2017), self-attention (Vaswani et al., 2017) can be sim-
ilarly formulated. The encoder ϕc

p,X takes a source sentence
x as an input and outputs a set of hidden representations
hXi ∈ H ∀i ∈ [Tx], where H is the space of hidden rep-
resentations, and Tx is the length of sentence x. Next, the
decoder ϕp,Y computes the hidden state hYj by taking the
previous hYj−1, yj−1 and the hXi ∀i ∈ [Tx] from the encoder
as inputs. ϕp,Y consists of three parts: ϕz

p,Y is the attention
model used to generate ZX

j (e.g., the contextual informa-
tion); ϕc

p,Y is used to compute hYj ; and ϕh
p,Y is used to map

hYj to space Y , which is usually a softmax operator.

The aforementioned processes can be mathematically for-
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Figure 1. An architecture of existing encoder-decoder models. The
black square indicates an optional delay of a single time step. Sub-
scripts “p” and “d” indicate primal and dual models respectively.
Subscripts “X” and “Y” denote the two languages. The unfold
version can be found at Appendix A. All appendices are left in the
supplementary document due to space limitation.

mulated as follows: ∀i ∈ [Tx] and ∀j ∈ [Ty] (Ty is the
length of y),

hXi = ϕc
p,X(xi, h

X
i−1); Z

X
j = ϕz

p,Y (h
Y
j−1, {hXi }

Tx
i=1);

hYj = ϕc
p,Y (yj−1, h

Y
j−1, Z

X
j ); yj = ϕh

p,Y (h
Y
j ). (1)

The dual task can be similarly formulated.

In the primal task, ϕc
p,X serves to encode a source-language

sentence x, without any condition. In the dual task, ϕc
d,X is

used to decode a target-language sentence x, conditioned
on ZY . That is, given two dual tasks, the encoder of the
primal task and the decoder of the dual task are highly
correlated. They only differ in the conditions. Inspired by
representation sharing (e.g., sharing the bottom layers of the
neural network models for related tasks (Dong et al., 2015)),
in this work, we propose to share components of the models
of two tasks in dual form, e.g., forcing ϕc

p,X = ϕc
d,X and

ϕc
p,Y = ϕc

d,Y for neural machine translation, and call such
an approach model-level dual learning.

The strictly symmetric model architectures of a pair of dual
tasks is good to have for model-level dual learning, but it
is not a must-to-have. Take sentiment analysis as an exam-
ple. The primal task is to classify whether a sentence is of
positive sentiment or negative. Usually, the input sequence
is first encoded to several hidden states by an LSTM and
then fed into a few fully-connected layers to get the final
classification decision. For the dual task, sentence gener-
ation with a given sentiment label, the sentiment label is
first encoded into a hidden representation and then decoded
into a sequence by an LSTM. In such asymmetric cases, the
encoders of the primal task and the decoders of the dual task
can be shared, which can be seen as a degenerated version
of our proposed method by setting ϕc

p,X = ϕc
d,X only.

Our main contributions can be summarized as follows:

(1) Model Architecture We re-formulate the current encoder-
decoder framework as a combination of two conditional

encoder and propose a unified architecture, model-level dual
learning, that can handle two dual tasks simultaneously with
the same set of parameters. We consider both the symmetric
setting and the asymmetric setting, in which the primal and
dual models are of the same/different architectures respec-
tively.

(2) Experimental Results Our model is verified on two differ-
ent tasks, neural machine translation and sentiment analysis.
We achieve promising results: (1) On IWSLT14 German-
to-English translation, we improve the BLEU score from
32.85 to 35.19, obtaining a new record (see Table 5); (2)
On WMT14 English→German translation, we improve the
BLEU score from 28.4 to 28.9 (see Table 3); (3) A series
of state-of-the-art results on NIST Chinese-to-English are
obtained (see Table 2). (4) With supervised data only, on
IMDB sentiment classification dataset, we lower the error
rate from 9.20% to 6.96% with our proposed framework
(see Table 6).

The remaining part of the paper is organized as follows:
The framework of model-level dual learning is introduced
in Section 2. Section 3 and Section 4 show how to apply
model level dual learning to neural machine translation and
sentiment analysis. Section 5 discusses the combination of
our method with dual inference (Xia et al., 2017a). Section 6
concludes this paper.

2. The Framework
We introduce the general framework of model-level dual
learning in this section. Similar to the previous work on dual
learning (He et al., 2016a; Xia et al., 2017b), we consider
two spaces X and Y and two tasks in dual form: the primal
task aims to learn a mapping f : X 7→ Y , and the dual task
learns a reverse mapping g : Y 7→ X .

We consider two scenarios: the symmetric setting and the
asymmetric setting. For the symmetric setting, the elements
in X and Y are of the same format so that it is possible to
use the same model architecture for the two mappings. For
example, in NMT and Q&A, both X and Y are composed
of natural language sentences and we can use LSTM to
model both f and g. In the asymmetric setting, the objects
in X and Y are of different formats and semantics, and
thus the two mappings have different model architectures.
For example, in sentiment analysis, X is the set of natural
language sentences while Y = {0, 1} is the set of sentiment
labels. The heterogeneity of X and Y forces one to use
different model structures for the primal and dual tasks.

2.1. Symmetric Model-Level Dual Learning

In the symmetric setting, the models f and g are made up of
two parts: the X component ϕX and the Y component ϕY .
ϕX acts as both the encoder and decoder for space X : in
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the primal model f , it encodes a sample in X to get hidden
representations; in the dual model g, it decodes some hidden
representations and generates a sample in X . Similarly, ϕY

acts as both the encoder and decoder for space Y .

One may wonder why one component can act as both the en-
coder and the decoder, since compared with the encoder, the
decoder of either X or Y typically takes additional informa-
tion from the other space. For example, in neural machine
translation, the encoder is a simple LSTM, but the decoder
is an LSTM plus an attention module generating context
from the source sentence (Bahdanau et al., 2015). This is
easily solved via introducing the encoder a zero vector as
such additional contexts (we name it as the “null context”).
The detailed architecture is shown in Figure 2.

(a) X compotent and Y component

(b) Model for primal task, CY = hX

(c) Model for dual task, CX = hY

Figure 2. Architecture of symmetric model-level dual learning.
The black square indicates an optional delay of a single time step.
The unfold version can be found in Appendix B.

In Figure 2(a), the parameter ϕX of component X consists
of three modules: (1) ϕc

X , used to combine x and ZX ;1 (2)

1ϕc
X takes both ZX and x as inputs. We plot this operator on

ϕz
X , used to combine hX and CX ; (3) ϕh

X , used to map the
hidden states hX to x.

Similarly, ϕY of component Y contains ϕc
Y , ϕz

Y and ϕh
Y .

CX and CY are the context information used for decoding
X and Y , and they are both zero vectors when their corre-
sponding components are used for encoding.

Now we show how the models f and g can be composed by
ϕX and ϕY . We take f as an example. It takes an x ∈ X
as input and outputs a y ∈ Y . According to Figure 2(b), the
encoder and decoder of f are specified as follows.

(1) The Encoder. Set CX to the null context, i.e., CX = {0}.2
At step i ∈ [Tx] where Tx is the length of x, prepro-
cess CX and obtain ZX

i : ZX
i = ϕz

X(hXi−1, CX). ϕz
X is

a function that sums up the elements in CX with adap-
tive weights.3 Then, calculate the hidden representation
hXi = ϕc

X(x, hXi−1, Z
X
i ).4 Eventually, we obtain a set of

hidden representations hX = {hXi }
Tx
i=1. The module ϕh

X in
component X is not used while encoding x ∈ X .

(2) The Decoder. Set CY to the hidden representations hX

obtained in the encoding phase. At step j ∈ [Ty], where Ty
is the length of y, preprocess CY with the information avail-
able at step j and obtain ZY

j : ZY
j = ϕz

Y (h
Y
j−1, CY ). Cal-

culate the hidden representation hYj = ϕc
Y (y<j , h

Y
j−1, Z

Y
j ).

Then map hYj to yj by yj = ϕh
Y (h

Y
j ). If yj is the symbol

indicating the end of a sentence, terminate the decoding
procedure; otherwise, continue to generate words one by
one.

The dual model g can be specified in a similar way as shown
in Figure 2(c): it first uses ϕY to encode a y ∈ Y and then
uses ϕX to generate an x ∈ X . More details can be found
in Appendix C.

Note that ϕX and ϕY can be specialized with different
function classes, such as LSTM, CNN or self-attention (Lin
et al., 2017) networks for neural machine translation.

2.2. Asymmetric Model-Level Dual Learning

As aforementioned, in the asymmetric setting, X and Y are
of different formats or semantics. Take sentiment analysis
as an example. The primal task is to map a natural language
sentence x ∈ X to a label y ∈ Y . The dual task is to gen-
erate one or multiple sentences given the label information,
such as generating a positive movie review or a negative
comment to a restaurant.

the two edges connecting the two inputs.
2When the context is clear, we use 0 or {0} alternatively.
3Such a function is widely adopted in NMT literature, which is

exactly the attention module. That is, ϕz
X(x, {0}) = 0.

4Note that in the encoding phase, all words in x are available.
At step i, ϕc

X and ϕz
X can consider either x<i (Bahdanau et al.,

2015) or all the xi’s (Vaswani et al., 2017).
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(a) primal model f (b) dual model g

Figure 3. Architecture of asymmetric model-level dual learning.

The architecture of the models for this setting is shown in
Figure 3. The models f and g are also made up of two
components, ϕX and ϕY . Given a data pair (x, y) ∈ X ×Y ,
for the primal task, for any i ∈ [Tx],

hXi = ϕc
X(xi, h

X
i−1), y = ϕY (h

X
Tx
). (2)

In the above equation, ϕY maps hXTx
into a distribution

over all the category labels using the category embedding
matrix and the softmax operator. For the dual task, ϕY first
maps y, an one-hot vector/distribution, into a continuous
vector space using the category embedding matrix, and then
∀j ∈ [Tx], we have

hXj = ϕc
X(xj−1, h

X
j−1, ϕY (y)), xj=ϕ

h
X(hXj ), (3)

where ϕX can also be implemented as LSTM, CNN, etc.

We would like to point out although the input/output spaces
of ϕY are different in the above two equations, ϕY uses
the same set of parameters, i.e., the category embedding
matrix, and thus we use the same operator connecting hX

to y in Figure 3(a) and connecting y to hX in Figure 3(b).
More specifically, we set Ey as a |Y| × d matrix where |Y|
is the number of elements in Y and d is the dimension of
hidden states. In Eqn.(2), ϕY (h

X
Tx
) = softmax(Eyh

X
Tx
);

in Eqn.(3), ϕY (y) = ET
y y. Similarly, although ϕc

X takes
different number of inputs in above equations, it uses the
same set of parameters for the transformations.

2.3. Discussions

From the above descriptions, we can see that the primal
model and dual model share the same set of parameters,
but they organize the parameters in different ways. There
are several consequences from this parameter sharing mech-
anism. First, we reduce the total number of parameters
needed for the two tasks, achieving model compression
from a very different perspective. Second, given a data pair
(x, y), the parameters will be updated twice, one from the
primal model (e.g., its gradient) and the other one from the
dual model. To some extent, the parameters are trained more
sufficiently than conventional supervised learning and data-
level dual learning. Third, thanks to parameter sharing, we

reduce the complexity of the two models and therefore they
are likely to achieve better generation. A simple discussion
about the generalization bound of model-level dual learning
provided in Appendix D.

Model-level dual learning is a kind of multi-task learn-
ing. Both multi-task learning and model-level dual learning
share parameters across tasks, but with different sharing
mechanisms: Multi-task learning assumes tasks share the
same input space and thus force their models to share low-
level structures and parameters; model-level dual learning
is based on the duality of tasks and organize the parameters
of the two models in different directions.

There are also distinctions between our work and previ-
ous dual learning methods such as dual unsupervised learn-
ing (He et al., 2016a) and dual supervised learning (Xia
et al., 2017b). As aforementioned, previous dual learn-
ing algorithms leverage the task duality on data level and
change/enhance the loss functions of model training, either
minimizing data reconstruction loss (He et al., 2016a; Lin
et al., 2018) or ensure the consistency of data generation
probability (Xia et al., 2017b; Wang et al., 2018). We bring
the duality into model structures of the two tasks and do not
change the loss functions. It is interesting to unify the two
kinds of duality learning, i.e., combining model-level dual
learning with data-level dual learning. We leave it to future
work.

3. Application to Neural Machine Translation
Neural machine translation perfectly fits into the symmetric
setting of the proposed dual learning framework. Therefore
we apply the framework to this task in this section.

We choose the neural machine translation model Trans-
former (Vaswani et al., 2017) as our basic model archi-
tecture5. We first show how to adapt Transformer to our
framework, and then conduct the empirical experiments to
verify the effectiveness of our proposed method.

3.1. Model Adaption

In Figure 4, we show the mapping from different parts of
Transformer to the submodules in our framework as intro-
duced in Section 2.1. Both the encoder and decoder in
Transformer consist of a list of stacked blocks. There are
three types of layers in each block: (1) a self-attention layer,
that sums up the hidden states from the bottom layer with
adaptive weights; (2) an optional encoder-decoder attention
layer, that outputs contextual information from the encoder.
This layer only exists in the decoder side; (3) a feed-forward
layer, that applies nonlinear transformation on the outputs
of the self-attention and the encoder-decoder attention lay-

5https://github.com/tensorflow/tensor2tensor.
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Figure 4. Model-level dual learning for NMT.

ers. Each layer is associated with a residual connection (He
et al., 2016b) and a layer normalization operation (Ba et al.,
2016).

We introduce the notations used in Figure 4. Both the two
components ϕc

X and ϕc
Y contain two parts: the self-attention

layer (denoted as ϕc
·,1) and feed-forward layer with nonlin-

ear transformations (denoted as ϕc
·,2). Meanwhile ϕz

X and
ϕz
Y are the inter attentions between encoder and decoder.

ϕh
X and ϕh

Y are two softmax operations and for better read-
ability, we omit them from Figure 4.

Now we take the translation from source language X to
target language Y (i.e., the primal task) as an example to
illustrate how to specify the model in our framework. In this
task, the primal model works as follows:

x̃ = ϕc
X,1(x), h

X = ϕc
X,2(x̃+ ϕz

X(x̃, CX)), (4)

where CX = {0}, hX = {hXi }
Tx
i=1. Considering the cross-

space attention Y → X is actually a linear combination of
the elements in set CX , we know that ϕz

X(x̃, 0) = 0.

In different blocks, the x in Eqn.(4) is specified in different
ways: (i) In the first block, it is the embeddings of individual
words in the source input sentence; (ii) in the i(> 1)th block,
it is the hidden state hX outputted by the (i− 1)th layer.

The Y component works as follows. To decode the tth word
yt, given the previously generated words y<t, we have

ỹ<t = ϕc
Y,1(y<t), h

Y
t = ϕc

Y,2(ỹ<t + ϕz
Y (ỹ<t, CY )), (5)

where CY = hX , which is the output of the last block of the
X component, and further, yt = ϕh

Y (h
Y
t ). The input y<t is

specified in a similar way as that for the X component.

In the primal model, the X component and Y component
work like the encoder and decoder in (Vaswani et al., 2017).
The dual model can be specified similarly by first using the
Y component and then the X component.

3.2. Settings

Datasets We choose three widely used neural machine
translation tasks: IWSLT 2014 German↔English (briefly,
IWSLT De↔En), LDC Chinese↔English (briefly, Zh↔En)
and WMT14 English↔German (briefly, WMT En↔De)
as our testbeds. (1) For IWSLT De↔En, we use the data
extracted from IWSLT 2014 evaluation campaign (Cettolo
et al., 2014), which consists of 153k/7k/7k sentence pairs
as training/validation/test sets. (2) For Zh↔En, we extract
1.25M bilingual sentences pairs from LDC dataset, which
is the same as (Xia et al., 2017d). NIST 2003 acts as the
validation set, and NIST 2004/2005/2006/2008/2012 as test
sets6. (3) For WMT En↔De, same as previous works (Jean
et al., 2015; Vaswani et al., 2017; Gehring et al., 2017), we
use the training set consisting of roughly 4.5M sentence
pairs. We use newstest13 and newstest14 as the validation
and test sets respectively. Since subword-level translation
is proven to outperform word-level translation on several
tasks, we apply the BPE (Sennrich et al., 2016) techniques to
Zh↔En translation tasks with 25k merge operations and ap-
ply the techniques proposed in (Wu et al., 2016) to split the
words into wordpieces for the other two tasks. We set source
and target vocabulary sizes of the three tasks as (25k, 25k),
(37k, 22k) and (32k, 32k) respectively. Out-of-vocabulary
words are replaced with a special token “UNK”.

Model Configurations For all experiments, both the en-
coder and decoder contain six blocks. We use the trans-
former small setting for IWSLT De↔En, whose word em-
bedding dimension, hidden size and feed-forward filter size
are 256, 256 and 1024 respectively, and transformer big
setting for Zh↔En and WMT En↔De, where the three
corresponding dimensions are 1024, 1024 and 4096.7 The
residual dropouts of the three tasks are 0.1, 0.3 and 0.3 re-
spectively. We use weight tying (Press & Wolf, 2016) for
the IWSLT De↔En and WMT En↔De translation, i.e., the
source and target word embeddings as well as the softmax
matrix are shared.

Training and Inference Following (Vaswani et al., 2017),
we use Adam (Kingma & Ba, 2014) as the optimizer, with
initial learning rates 0.0002, β1 = 0.9 and β2 = 0.98. Each
mini-batch in all tasks contains around 4096 tokens. All
the models are trained using NVIDIA Tesla M40 GPU. For
training our dual learning models, the training cost is 2
GPUs and 1 day for IWSLT De↔En, 8 GPUs and 1 day
for Zh↔En, 8 GPUs and 7 days for WMT En↔De. At

6It is a common practice to report results on multiple test sets
for Chinese→English translation task (Wu et al., 2017; Shen et al.,
2016; Su et al., 2018).

7We carry out several preliminary experiments to choose the
model structures. On the relatively small dataset IWSLT De↔En,
we find that transformer base and transformer big cannot get
reasonable BLEUs due to overfitting. On the other two tasks,
transformer big performs the best.
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inference phase, we use beam search with beam sizes 6, 6,
4 for the three tasks. The translation quality is evaluated
by tokenized BLEU (Papineni et al., 2002). Following the
common practice in NMT, we use case-sensitive BLEU to
WMT En↔De and case-insensitive BLEU to other tasks.

Furthermore, we implement dual supervised learning (Xia
et al., 2017b) based on Transformer as a baseline for com-
parison, which is briefly denoted as DSL.

3.3. Results

The results on IWSLT De↔En are shown in Table 1, from
which we have several observations. First, we achieve a new
state-of-the-art BLEU score, 34.71, for De→En task, out-
performing all existing works such as (Wang et al., 2018)
and (Edunov et al., 2018). Second, compared with the Trans-
former baseline on both the primal task De→En and the dual
task En→De, our approach can boost the BLEU scores by
1.85 and 0.90 points respectively. It is noteworthy that our
basic model structure is exactly the same with the baseline
for both the primal and dual tasks. This clearly shows the
benefit of pushing duality into model architectures. Finally,
compared with DSL, we achieved 1.13 and 0.73 improve-
ments, demonstrating that the duality constraint is better
imposed on the model level than data level.

Table 1. BLEU scores on IWSTL14 De→En. We do not find
reasonable numbers for IWSLT En→De translation task since
most research works focus on IWSLT De→En.

Existing Results on IWSLT De→En

GRU + Dual Learning (Wang et al., 2018) 32.05
GRU + Dual Transfer Learning (Wang et al., 2018) 32.35
CNN + reinforcement learning (Edunov et al., 2018) 32.85

Model De→En En→De

Transformer 32.86 27.74
DSL 33.58 27.91
Ours 34.71 28.64

(a) En→De (b) De→En

Figure 5. BLEUs w.r.t different number of blocks.

To investigate how our algorithm works with respect to
different model complexities, we train a group of models

with 2/4/6/8 blocks8 respectively. We visualize their test
BLEUs in Figure 5. We have several observations. First,
for all the settings of different numbers of blocks, our work
consistently improves over baseline for both the primal and
dual tasks. Second, when the number of blocks increases
from 2 to 6, the improvement brought by our method (indi-
cated by the green areas) becomes more significant on both
translation directions. Checking the results of the baseline
method (the red areas), we can see that although deeper
models have more capacities for better results, they might
suffer from overfitting, especially on the small scale task
like IWSLT De↔En. Our method mitigates this issue by
pushing duality into model architectures, consequently un-
leashing the potential of deeper models. Third, even for the
deepest models with 8 blocks, our method also brings accu-
racy gain, although not as significant as shallower models.
In this case, to further improve generalization, it is worthy
to combine our method with other regularization method,
e.g., dual supervised learning (Xia et al., 2017b).

The translation results on the Zh↔En task are summarized
in Table 2. Again, we achieve state-of-the-art results, out-
performing quite strong baseline using more complicated
model structures (Su et al., 2018; Wu et al., 2017) and larger
amount of supervised data (Xia et al., 2017b). Here part of
our gain comes from the superior transformer big model,
on top of which we can still increase the BLEU scores by
1.21 points on average. Our method also beats DSL on all
the test datasets, furthering demonstrating the effectiveness
of model-level dual learning.

For En→Zh translation, we again achieve good improve-
ments. Compared with the baseline, we can achieve 0.69
BLEU improvement on average.

At last, we show the results on WMT En↔De translation
in Table 3. To the best of our knowledge, Transformer
achieves the best BLEU score on this dataset, significantly
outperforming the other baselines. Given such a strong
baseline, we are still able to increase the BLEU scores by
0.5 point for both tasks, although the improvements are not
as significant as the other tasks. In addition, for the dual task
De→En translation, we also obtain 0.5 point improvement
for BLEU score.

Overall speaking, the improvements on neural machine
translation experiments demonstrate the success of applying
model-level dual learning to sequence-to-sequence tasks.

Discussion (1) One more point we want to mention is
that, for neural machine translation, although it is not our
main motivation, we can reduce the model size by a non-
trivial margin via parameter sharing. For the IWSLT 2014
German↔English translation tasks with transformer small
configurations, we need two separated models, resulting in

8Keep in mind that each block contains 3 layers.
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Table 2. Translation results of Zh↔En. Blank tabular means that the corresponding results are not reported.
Zh→En NIST 04 NIST 05 NIST 06 NIST 08 NIST 12
MRT (Shen et al., 2016) 41.37 38.81 29.23 - -
VRNMT (Su et al., 2018) 41.07 36.82 36.72 - -
SD-NMT (Wu et al., 2017) - 39.38 41.81 33.06 31.43
GRU+DSL (Xia et al., 2017b) - - - 33.59 32.00
Transformer 42.62 43.13 41.41 33.43 32.75
DSL 42.90 43.21 41.99 34.41 32.93
Ours 43.38 44.16 42.60 35.05 34.19

En→Zh NIST04 NIST05 NIST06 NIST08 NIST12
Bi-Attn (Cheng et al., 2016) 16.98 15.70 16.25 13.80 -
GRU+DSL (Xia et al., 2017b) - - - 15.87 16.10
Transformer 23.24 21.76 21.67 17.23 15.76
DSL 23.62 22.22 22.31 17.79 16.61
Ours 24.23 22.46 21.80 18.06 16.54

Table 3. Translation Results of WMT14 En↔De.
En→De De→En

GNMT (Wu et al., 2016) 24.61 -
CNN (Gehring et al., 2017) 25.16 29.61

Model En→De De→En

Transformer 28.4 31.4
Ours 28.9 31.9

38M parameters. However, if we use our proposed model-
level dual learning, we only need one model with 20M
parameters, which saves about 47% parameters. For NIST
Chinese↔English translations based on transformer big
models, the aforementioned two numbers turn to 556M and
329M respectively. (2) (Firat et al., 2016a;b) also propose
parameter sharing in NMT but in a very different way from
our work: their decoders only serve for decoding and en-
coders only for encoding, no matter for which translation
task; in comparison, the decoder and encoder play two roles
in our work, e.g., the decoder serves for decoding in the
primal task and encoding in the dual task. Furthermore, the
motivation of weight sharing in those papers largely lies in
improving the performance for low/zero resource translation
in the setting of multi-lingual translation. As a comparison,
we focus on the typical setting that only bilingual training
corpus is available.

4. Application to Sentiment Analysis
In this section, we apply model-level dual learning to sen-
timent analysis, in which the primal task is sentiment clas-
sification that aims to justify whether a natural language
sentence is of positive sentiment or negative. The dual task
is language modeling of a sentence conditioned on a given
positive or negative sentiment label. In this application, X
is the space of natural sentences, and Y is the space of sen-

timent labels. Clearly, the objects in the two spaces are of
different formats, and thus this is an asymmetric setting.

4.1. Model Adaption

We choose the classical LSTM network as the basic build-
ing block of both the primal and dual tasks. That is, The
ϕc
X(xt−1, ht−1, y) in Section 2.2 is specified as follows:

[zit, z
o
t , z

f
t , z

c
t ] =Waxt−1 + Uaht−1 + Eyy + ba;

it = σ(zit); ot = σ(zot ); ft = σ(zft ); C̃t = tanh(zct );

Ct = ft � Ct−1 + it � C̃t; ht = ot � tanh(Ct), (6)

where the Wa, Ua, Ey and ba are the parameters to be
learned, � represents element-wise product and σ(·) is the
sigmoid function. In the primal task, y = 0 and Ey is used
as the output embedding matrix to predict the sentiment
label. In the dual task, y is replaced with the corresponding
category label. Thus, Wa, Ua, Ey and ba are shared across
the primal task and dual task.

4.2. Settings

Dataset We use the benchmark movie review dataset
IMDB (Maas et al., 2011) for sentiment analysis. The cor-
pus consists of 25k training samples and 25k test samples,
as well as another 50k unlabeled sentences. We in this paper
focus on using labeled data only. For validation purpose,
we randomly split 3750 samples from the training set as the
validation set. The vocabulary consists of the most frequent
10k words. Out-of-vocabulary words are replaced with the
token “UNK”.

Model Configurations Following (Xia et al., 2017b), we
set the embedding dimension (both word embedding and
sentiment embedding) and the LSTM hidden layer size as
500 and 1024 respectively. The dropout rate is fixed as 0.5
for both embeddings and softmax.
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Table 4. Results of sentiment analysis on IMDB dataset (super-
vised data only). Existing results include [1] (Dai & Le, 2015)
[2] (Johnson & Zhang, 2015) [3] (Johnson & Zhang, 2016).

Previous Works Error Rate (%)

Standard LSTM [1] 10
oh-CNN [2] 8.39
oh-2LSTMp [3] 8.14

Model Error Rate (%) Perplexity

LSTM 10.10 59.19
DSL 9.20 58.78
Ours 7.41 55.59

Training and Evaluation We use Adadelta (Zeiler, 2012)
to optimize our proposed model. When the validation loss
does not decrease, we use plane SGD to finetune the model
with learning rate 0.05 till convergence, indicated by that
the accuracy on the validation set ceases increasing. The
whole training process takes three days on a single Titan XP
GPU. Following (Xia et al., 2017b), we evaluate the primal
task (i.e., sentiment classification) by error rate, and the dual
task (i.e., sentence modeling with conditional sentiment) by
conditional perplexity, which is defined as follows:
perplexity = exp

(
−
∑n

i=1 logP (x
(i)|y(i))/

∑n
i=1Ni

)
,

where n is the number of sentences in the test set, x(i) and
y(i) are the ith data and label, and Ni is the length of x(i).
The smaller the perplexity is, the better the model is.

4.3. Results

Our results on sentiment analysis are summarized in Table 4.
We can see in the primal task, our proposed method can
reduce the classification error rate by 2.69 point, signifi-
cantly outperforming standard LSTM. Also, we can reduce
the error rate by 1.79 points compared with DSL. In the
dual task, we can achieve 55.59 test perplexity, which is
3.19 points lower than the result of DSL. These results val-
idate the effectiveness of model-level dual learning under
the asymmetric setting.

5. Combination with Dual Inference
Dual inference (Xia et al., 2017a) is proposed to leverage
the duality of two tasks to mutually enhance the inference
quality. Mathematically, given the primal model f : X 7→ Y
and the dual model g : Y 7→ X , dual inference makes
predictions for the two tasks as follows:

y∗ = argminy∈Yα`f (x, y) + (1− α)`g(x, y),
x∗ = argminx∈Xβ`g(x, y) + (1− β)`f (x, y),

(7)

where `f and `g are the loss functions of the primal and
dual tasks, and α and β are trade-off hyperparameters, se-
lected by the validation performances. Since our approach

Table 5. Dual inference results on IWSLT De↔En. “DI” stands
for “dual inference”. The third row represents the performance
of Transformer with DI or “standard” inference (i.e., without DI).
The fourth row represents the performance of model-level dual
learning (also based on Transformer) w/o dual inference.

De→En En→De

Model Standard DI Standard DI

Transformer 32.86 33.52 27.74 27.84
Ours 34.71 35.19 28.64 28.83

represents two models using the same set of parameters and
jointly train the two models, it is naturally to combine our
learnt models with dual inference.

We carry out experiments on IWSLT De↔En translation
and sentiment classification to check the effectiveness of the
combination of model-level dual learning and dual inference.
The experimental results of IWSLT De↔En are in Table 5.
We can see that dual inference can boost our method by 0.48
point (from 34.71 to 35.19) for De→En translation and by
0.19 point (from 28.64 to 28.83) for En→De translation,
which shows that our proposed dual learning can still be
improved by further processing.

Table 6. Error rates on IMDB classification w/o dual inference.
Model Standard DI

Mw2v (Xia et al., 2017a) 10.10 8.31
Ours 7.41 6.96

Table 6 shows the dual inference results on IMDB senti-
ment classification. Mw2v represents the standard LSTM
classifier. As shown in the table, by applying dual infer-
ence, we obtain 0.45 classification accuracy improvement,
which demonstrates that dual inference also works for this
asymmetric setting.

6. Conclusions and Future Work
In this work, we proposed a learning framework, model-
level dual learning, which leverages task duality to redesign
the model architectures for both the primal and dual task.
We demonstrated the effectiveness of the proposed frame-
work on neural machine translation and sentiment analysis.

For future work, there are multiple directions to explore.
First, it is interesting to apply the framework to more sce-
narios such as image processing and speech processing.
Second, it is worthy to combine model-level dual learning
with data-level dual learning, which might achieve even
better performance for real-world problems. Third, we will
study how to leverage task duality to learn from scratch
without supervised data, e.g., machine translation without
parallel data (Artetxe et al., 2018; Lample et al., 2018).
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